
Integrity = Validity + Completeness

AMIHAI MOTRO
University of Southern California

Database integrity has two complementary components: validity, which guarantees that all false
information is excluded from the database, and completeness, which guarantees that all true infor-
mation is included in the database. This article describes a uniform model of integrity for relational
databases, that considers both validity and completeness. To a large degree, this model subsumes the
prevailing model of integrity (i.e., integrity constraints). One of the features of the new model is the
determination of the integrity of answers issued by the database system in response to user queries.
To users, answers that are accompanied with such detailed certifications of their integrity are more
meaningful. First, the model is defined and discussed. Then, a specific mechanism is described that
implements this model. With this mechanism, the determination of the integrity of an answer is a
process analogous to the determination of the answer itself.

Categories and Subject Descriptors: H.2.0 [Database Management]: General-security, integrity,
and protection; H.2.1 [Database Management]: Logical Design--data models; H.2.4 [Database
Management]: Systems-query processing

General Terms: Design, Languages, Theory

Additional Key Words and Phrases: Closed world assumption, completeness, integrity, integrity
constraints, metarelation, relational algebra, relational database, relational view, validity

1. INTRODUCTION

When one receives information from a database (or, for that matter, from any
other source), the question of the integrity of the information that is delivered
immediately comes to one’s mind. Usually, this question has two parts: (1) Is the
information valid? and (2) Is it complete ? For example, when a prospective
traveler requests a database to list all flights from Los Angeles to New York, he
is concerned with the validity of the information he receives (does each listing
indeed represent an actual flight from Los Angeles to New York?), but also with
its completeness (are there any other flights from Los Angeles to New York that
were not listed?).

In other words, answers have integrity if they contain the whole truth (com-
pleteness) and nothing but the truth (validity).

This work was supported in part by NSF Grant No. IRI-8609912 and by an Amoco Foundation
Engineering Faculty Grant. Submitted for publication in ACM Transactions on Database Systems.
Second Revision, January 1989.
Author’s address: Computer Science Department, University of Southern California, University Park,
Los Angeles, CA 90089-0782
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1989 ACM 0362-5915/89/1200-0480 $01.50

ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989, Pages 480-502.

Integrity = Validity + Completeness 481

Until now, all efforts to enhance the integrity of relational databases have been
within the framework of integrity constraints. In general, integrity constraints
are formulas in predicate calculus that express relationships that must be satisfied
by the database [1,2]. Assuming that initially a database satisfies the constraints,
update requests thereafter are accepted only if they do not violate any of the
constraints.

Such constraints enhance the integrity of a database (and hence the integrity
of its answers), but they cannot ensure it. Thus, it is not possible to express
integrity constraints that ensure that the information about each flight from Los
Angeles to New York is valid, or that all actual flights from Los Angeles to New
York are included.

Another potential problem with this integrity model is that constraints are
applied selectively to prevent certain undesirable data relationships, but when
answers are issued, there is no way to distinguish the information monitored by
constraints from the rest. For example, a database with flight information may
not have a constraint that prevents flights of a particular airline that depart on
different days from having the same flight number. The answer to a query about
flights from Los Angeles to New York via TWA may then show flight number
TW-391 as departing on two different days. And yet, this information is issued
with the same guarantee as information that is indeed monitored by integrity
constraints.

For reasons of efficiency, most database systems do not permit constraints
that are arbitrary predicate calculus formulas. Usually, only very specific types
of formulas are permitted. For example, UNIFY [lo] permits only referential
constraints, and INGRES [8] permits only range constraints. Thus, this integrity
model remains largely unimplemented.

In this article we describe a model of integrity control that addresses these
problems. New kinds of integrity constraints, called validity constraints and
completeness constraints are intr0duced.l Roughly, these constraints are intended
to ensure the validity and the completeness of the information in the database,
and hence the validity and completeness of each answer. Together, they ensure
the integrity of the information in the database. In general, the enforcement of
these constraints requires human supervision. However, a particular family of
constraints will be defined that can be enforced by the database system itself. As
we shall show, to a large degree, the new integrity model subsumes the integrity
model that employs “traditional” integrity constraints.

In addition, the new integrity model is designed to certij, the integrity of
answers. For each answer issued in response to a query, it determines (1) whether
the answer is valid (the information is ensured to be correct), or only partially
valid (specified portions are ensured to be correct); and (2) whether the answer
is complete (the information is ensured to include all the real world occurrences),
or only partially complete (specified portions are ensured to include all the real
world occurrences). In effect, the database is qualifying its answers, by the scope
of its knowledge (as defined by the integrity constraints).

’ Interestingly, integrity expresses both validity and completeness, and we shall continue to use this
term.

ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

482 l Amihai Motro

In addition to the general model, we describe a specific mechanism that
implements it efficiently. For a more restricted, yet powerful, family of integrity
constraints we develop a representation that stores constraints in meta-relations
that mirror the actual database relations. And we extend standard relational
algebra operations to these meta-relations. When a query is presented to the
database, it is performed both on the relations, resulting in a set of tuples, and
on the meta-relations, resulting in a set of constraints. The derived constraints
assert the integrity of the derived answer. Thus, the determination of the integrity
of an answer is a process analogous to the determination of the answer itself.

As an example, consider a database with information about flights, and assume
it satisfies two integrity constraints that guarantee valid information about
nonstop flights and complete information about flights via domestic carriers.
The answer to a query to retrieve all flights from Los Angeles to New York that
depart on Sundays is certified to be valid with regard to nonstop flights and
complete with regard to domestic carriers. Clearly, answers that are accompanied
by such “certification of quality” are more meaningful.

Central to our approach is the view that validity and completeness are two
complementary components of integrity, and we define a uniform framework
that accommodates both components and allows us to elucidate their duality.
Completeness constraints were first introduced in [5], and an application of
completeness constraints in verifying user presuppositions is described in [6].

The concept of information completeness is related to the Closed World
Assumption (CWA) [7]. Under this assumption, a database contains all the
occurrences of data that it attempts to model. More accurately, the CWA states
that if a fact is not included in the database (and cannot be inferred from it),
then it is false. The CWA is usually made on the database as a whole. In practice,
however, this assumption is not realistic, as most databases include at least some
information that is possibly incomplete. In other words, in reality the CWA can
only be made on some subsets of the database. Levesque [3] argues the same
point, and offers a solution based on extending predicate calculus with formulas
that express what the database knows (K formulas). Roughly speaking, our
completeness constraints assert that certain database subsets are “closed world.”
More accurately, completeness constraints correspond to predicates whose inter-
pretations must contain all the tuples that represent real world relationships;
validity constraints correspond to predicates whose interpretations must contain
only tuples that represent real world relationships.

This article is divided into two parts. In the first part (Sections 2, 3, and 4) we
define a model for integrity of relational databases. Section 2 defines the basic
concepts of integrity constraints and database integrity. In particular, it distin-
guishes between “absolute” integrity (the database is a perfect model of the real
world), and “qualified” integrity (the database is a perfect model of certain
portions of the real world). The integrity of databases can be violated either
through unwarranted changes to the database, or as a result of changes in the
real world. Monitoring database integrity is discussed in Section 3. An important
goal of integrity control is to determine the integrity of each answer. The integrity
of answers is defined and discussed in Section 4. In the second part (Sections 5,
6, and 7) we concentrate on a particular mechanism for implementing this model
ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

Integrity = Validity + Completeness * 483

with a more restricted family of constraints. Section 5 describes a representation
for these constraints in meta-relations, Section 6 defines extensions to relational
algebra operations for operating on meta-relations, and Section 7 illustrates the
mechanism with examples. Section 8 concludes this article with a brief summary
and discussion of several further issues.

2. DATABASE VALIDITY AND COMPLETENESS

To formalize the concepts of validity and completeness in relational databases,
we shall assume the existence of a hypothetical database that captures a desig-
nated environment of the real world perfectly. The stored database is then an
approximation of this hypothetical database.

We assume the following definition of a relational database [4]. A relation
scheme R is a finite set of attributes Al, . . . , A,. With each attribute Ai a set of
values Di, called the domain of Ai, is associated (domains are nonempty, finite,
or countably infinite sets). A relation on the relation scheme R is a subset of the
Cartesian product of the domains associated with the attributes of R. A database
scheme 92 is a set of relation schemes RI, . . . , R,. A database instance D of the
database scheme 92 is a set of relations R,(D), . . . , R,(D), where each Ri(D) is
a relation on the relation scheme Ri.

Assume a database scheme 9. We consider three different database instances
of 9. U is the instance of all possible tuples (“the universe”); for every relation
scheme R E 9, the relation R(U) is defined as the Cartesian product of the
domains associated with the attributes of R. At any particular moment some
tuples in U are true (represent associations which currently hold in the real
world), and the others are fake. W is the instance of all true tuples (“the real
world”); for every relation scheme R E 9, the relation R(W) is defined as the
tuples of R(U) that are true. Finally, D is the instance of all stored tuples
(“the database”); for every relation scheme R E 9, the relation R(D) is defined
as the tuples of R(U) that are stored in the database. The relationships between
U, W, and D are illustrated in Figure 1. Note that both W and D may change
with time. Thus, their definitions are always relative to a particular moment in
time.

We define the difference between two database instances as the database
obtained by taking the difference between the corresponding relations, and the
empty database instance as the instance whose relations are all empty. The
discrepancy between D and W is of two kinds: D - W is composed entirely of
database tuples that are false; W - D is composed entirely of true tuples that
are not in the database. If D - W = 0, then D is valid (with respect to W). If W
- D = 0, then D is complete (with respect to W). If D is both valid and complete
(with respect to W), then D = W and D has integrity (with respect to W). A
database instance that has integrity is a perfect model of the real world.

The above definitions compare the entire instances D and W, so they can be
seen as definitions of total integrity. The following definitions are more refined,
in that they compare only selective views of D and W.

A view V is an expression in the relation schemes of 9 that defines a new
relation scheme, and for each database instance D defines a unique relation on
this scheme denoted V(D).

ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

484 . Amihai Motro

Fig. 1. The universe of all possible tuples U, the real world W, and a database D.

We define a view V to be valid in D (with respect to W), if V(D) c V(W).
That is, the view of the database is contained in the view of the real world. We
define a view V to be complete in D (with respect to W), if V(W) G V(D). That
is, the view of the database contains the view of the real world. A view that is
both valid and complete in D (with respect to W) is said to have integrity in D
(with respect to W).

To illustrate these concepts, Figure 2 shows two views called V and C. V is
valid in D if the top shaded area is empty. C is complete in D if the bottom
shaded area is empty.

We now modify the definition of a database scheme to include (in addition to
9) two sets of views: y is a set of views of 9 called validity constraints, and 557
is a set of views of 9 called completeness constraints. Finally, we modify
the definition of a database instance D, requiring also that every view in 57 be
valid in D (with respect to W), and every view in S? be complete in D (with
respect to W).

Note that the new definition of a database instance subsumes the earlier
definition of integrity: If we select M and S5 to be 9, then instances of this
database will have integrity.

Validity constraints are concerned with false information that must not be part
of a valid database. For example, assume that it is desirable to ensure the validity
of the set of nonstop flights from Los Angeles to New York. The appropriate
validity constraint would be “nonstop flights from Los Angeles to New York.” A
database satisfies this validity constraint if it does not include any false nonstop
flights from Los Angeles to New York.

Completeness constraints are concerned with true information that must be
part of a complete database. For example, assume that it is desirable to ensure
the completeness of the set of flights from Los Angeles to New York via domestic
carriers. The appropriate completeness constraint would be “flights from Los
Angeles to New York via domestic carriers.” A database satisfies this complete-
ness constraint if it includes every true flight from Los Angeles to New York via
a domestic carrier.
ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

Integrity = Validity + Completeness l 485

Fig. 2. A valid view V and a complete view C.

3. MONITORING DATABASE INTEGRITY

If both the database and the real world environment it models are static, then a
database with integrity will always retain its integrity. In general, however, real
world environments are subject to changes, and databases must change accord-
ingly. Such changes may violate the integrity of databases. Violations of integrity
are of four different types. The following analysis is demonstrated with the
validity constraint “nonstop flights from Los Angeles to New York” and the
completeness constraint “flights from Los Angles to New York via domestic
carriers.”

A validity constraint is violated whenever a tuple is in its view of the database
but not in its view of the real world. A validity constraint currently satisfied by
the database may be violated in one of two ways:

Vl. The database is updated by adding a tuple to the view of the database that
is false (is not in the view of the real world). For example, a nonexisting
nonstop flight from Los Angeles to New York is added to the database.

V2. The real world changes and a tuple is deleted from the view of the real world,
which is stored (is in the view of the database). For example, a nonstop
flight from Los Angeles to New York which is stored in the database is
canceled by the carrier.

A completeness constraint is violated whenever a tuple is in its view of the
world but not in its view of the database. A completeness constraint currently
satisfied by the database may be violated in one of two ways:

Cl. The database is updated by deleting a tuple from the view of the database
that is true (is in the view of the world). For example, an existing flight from
Los Angeles to New York via a domestic carrier is deleted from the database.

C2. The real world changes and a tuple is added to the view of the real world,
which is not stored (is not in the view of the database). For example, a new
flight from Los Angeles to New York is started by a domestic carrier.

ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

486 . Amihai Motro

Fig. 3. Violations of constraints.

Figure 3 illustrates the migrations of tuples involved in the four types of
integrity violations. These four types are of two categories: violations caused by
unwarranted modifications to the database (Vl and Cl), and violations caused
by continuing changes in the real world (V2 and C2).

All four types of integrity violation involve testing whether a tuple is true (is
in the view of W) or false (is not in the view of W). However, the real world W
is a hypothetical database whose actual membership is usually not known.
Consequently, it may not be feasible to determine whether a tuple is true or not.

Therefore, in the general case, it would be the responsibility of the database
administrator (i.e., an authorized person) to monitor the integrity of the database.
To detect violations of the former category (types Vl and Cl), the database
administrator must authorize any updates to the database that add to the views
of validity constraints (verify that they are true), or delete from the views of
completeness constraints (verify that they are false). To detect violations of the
latter category (types V2 and C2), the database administrator must track the
real world and update the database to delete from the views of validity constraints
tuples that become false, and add to the views of completeness constraints tuples
that become true.

Thus, human supervision is necessary for two reasons: (1) A database system
cannot determine whether a tuple is true or false; if it could, then violations of
types Vl and Cl could be detected automatically (the system would then reject
the update attempts); (2) A database system cannot sense changes in the real
world, if it could, then violations of types V2 and C2 could be detected automat-
ically (the system would then update the database accordingly).

Consider now the implementation of validity constraints with the following
restriction: Views of validity constraints never include true tuples (i.e., for each
V E 7, V(W) = 0). This restriction has two consequences. First, the situation
described in Vl is easy to detect, as it is only necessary to determine whether the
update will add a tuple to the view of the validity constraint (i.e., it is not
necessary to verify that the tuple is also false!). Therefore, all updates that add
tuples to views of validity constraints are rejected by the system. As an example,
ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

integrity = Validity + Completeness 487

assume that flights from Los Angeles to Tel Aviv always require a stop-over. The
validity constraint “nonstop flights from Los Angeles to Tel Aviv” would then
specify only false tuples. Thus, any update that would result in a nonstop flight
from Los Angeles to Tel Aviv may be rejected right away. Second, if there are
never any true tuples in the view of a validity constraint, then the situation
described in V2 cannot occur. Thus, the restriction on the type of validity
constraints relieves the database administrator from the need to monitor the real
world for tuples in the view of validity constraints that become false and should
be deleted from the database.

In conclusion, validity constraints that never specify true tuples may be
monitored by the system itself: Every attempt to update the database is rejected
if it would add to the view of such a constraint.

Consider now an implementation of completeness constraints with the dual
restriction: Views of completeness constraints neuer include false tuples (i.e., for
each C E @?, C(W) = C(U)). The consequences of this restriction are analogous.
First, the situation described in Cl is easy to detect, as it is only necessary to
determine whether the update will delete a tuple from the view of the complete-
ness constraint (i.e., it is not necessary to verify that the tuple is also true!).
Therefore, all updates that delete tuples from views of completeness constraints
are rejected by the system. As an example, assume that TWA has daily flights
from Los Angeles to New York. The completeness constraint “days on which
TWA flys from Los Angeles to New York” would then specify only true tuples.
Thus, any update that would result in unavailability of a TWA flight from Los
Angeles to New York on a particular day may be rejected right away. Second, if
there are never any false tuples in the view of a completeness constraint, then
the situation described in C2 cannot occur. Thus, the restriction on the type of
completeness constraints relieves the database administrator from the need to
monitor the real world for tuples in the view of completeness constraints that
become true and should be added to the database.

In conclusion, completeness constraints that never specify false tuples may be
monitored by the system itself: Every attempt to update the database is rejected
if it would delete from the view of such a constraint.

Of course, the database system must be told which validity and completeness
constraints are of these restricted kinds, so that it would monitor updates to the
views that correspond to these constraints. Also, it should be noted that, in some
cases, the assumptions that validity constraints never specify true tuples and
completeness constraints never specify false tuples are themselves subject to
eventual violation. For example, a nonstop flight from Los Angeles to Tel Aviv
may be announced in the future. Thus, the database administrator may still need
to verify that the assumptions hold.’

It is interesting to compare the integrity model presented here with the
“traditional” approach to integrity. The accepted framework for defining integrity
constraints under that approach is predicate calculus, and its main advantage is
that integrity constraints may be monitored by the system itself. However, for
reasons of efficient implementation, most systems allow only very simple predi-
cates (e.g., referential constraints or range constraints). In this light, the following

’ This is also true for “traditional” integrity constraints.

ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

488 - Amihai Motro

family of integrity constraints may be considered quite powerful, (Vx,) . . .
(~&I)(~(% * * * , &I) * Ph, * * *, x,)), where xi are domain variables and (Y and ,6
are safe relational calculus expressions with these free variables. Such expressions
may be rewritten as ((x1,. . . , x,) 1 &(x1, . . . , x,) A lp(xi, . . . , z,)] = 0. Therefore,
these constraints are indeed statements of database views that must always be
empty. In our model, these constraints are modeled as validity constraints that
never include any true tuples. As discussed above, these constraints do not
require human supervision either.

As an example, assume a system with the “traditional” integrity constraint
“every flight from Los Angeles to Tel Aviv requires a stop-over.” Before an
update is accepted, the system will check whether this constraint would be
violated. In our model this constraint will be represented as “nonstop flights
from Los Angeles to Tel Aviv.” Before an update is accepted the system will
check whether it inserts a tuple into this view.

However, the new integrity model also allows validity constraints that include
true tuples, requiring only that the false tuples that they include be excluded
from the database. Thus, in this model it is possible to monitor the validity of
views such as “nonstop flights from Los Angeles to New York.” We conclude
that the traditional integrity model (assuming the family of constraints defined
above) is subsumed in the validity component of the new model.

4. THE INTEGRITY OF ANSWERS

In the previous sections we introduced integrity constraints and discussed how
to enforce them in a dynamic environment, where both the database and the real
world are changing. In addition to enforcing integrity, such constraints can be
used for determining the integrity of answers issued by the database in response
to queries. By accompanying its answers with statements of their integrity, the
database system is, in effect, qualifying its answers by the scope of its knowledge.
Such statements may be regarded as certification of the quality of the information
delivered.

A query Q is an expression in the relation schemes of 2, that defines a new
relation scheme, and for each database instance D defines a unique relation
denoted Q(D), which is the answer to the query in D. We define the answer to a
query Q to be valid in D (with respect to W), if Q(D) C Q(W). That is, the
answer from the database is contained in the answer from the real world.
We define the answer to a query Q to be complete in D (with respect to W),
if Q(W) !C Q(D). That is, the answer from the database contains the answer
from the real world. An answer that is both valid and complete in D (with respect
to W) is said to have integrity in D (with respect to W).

Of course, this definition of answer validity and completeness cannot be used
to test whether the answer to a given query Q is valid or complete. Instead, we
apply our knowledge about the views that are valid and complete. Intuitively, the
answer to a query is valid or complete if it is “covered” by views that are known
to be valid or complete.

Assume that a set of operations is available for manipulating views to create
other views, while preserving the qualities of validity and completeness. Then,
the sets y and %? can be used to “span” additional views that are valid or
ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

Integrity = Validity + Completeness 489

complete. If a given query Q can be derived from the views in y, then its answer
is valid. Similarly, if a given query Q can be derived from the views in %, then its
answer is complete.

Even when the answer to a query cannot be shown to be valid or complete,
information about what portions of the answer are valid or complete is very
useful.

Assume that V is a view of Q. If V is a validity constraint, then the answer to
the query is guaranteed not to contain any false tuples from the view. We shall
then say that Q is valid with respect to V. Similarly, if V is a completeness
constraint, then the answer to the query is guaranteed to contain all the true
tuples from the view. We shall then say that Q is complete with respect to V.

As an example, recall the validity constraint “nonstop flights from Los Angeles
to New York” and the completeness constraint “flights from Los Angeles to
New York via domestic carriers.” The answer to the query “nonstop flights from
Los Angeles to New York via TWA” is valid and complete (i.e., the answer has
integrity). The answer to the query “flights from Los Angeles to New York that
depart on Sundays” is valid only with respect to nonstop flights, and complete
only with respect to domestic carriers (therefore, the answer has integrity only
with respect to nonstop flights via domestic carriers).

Recall that if it is assumed that validity constraints never specify true tuples,
then given a valid database instance D, there are no database tuples in the views
of the validity constraints. Under this assumption, if Q is valid, its answer from
D is guaranteed to be empty. We define such queries to be unsatisfiable in D. For
example, consider a validity constraint “nonstop flights from Los Angeles to
Tel Aviv,” and the query “nonstop flights from Los Angeles to Tel Aviv that
depart on Sunday.” This query is unsatisfiable. Learning from a database system
that a submitted query is unsatisfiable would be very valuable to the user; the
null answer that would be delivered in such a case indicates only that there are
no data that satisfy the query; the fact that a query is unsatisfiable indicates that
there may be no data that satisfy the query.

5. REPRESENTING INTEGRITY CONSTRAINTS

In this and the following two sections we develop particular methods for express-
ing, storing, and manipulating integrity constraints, and show how they are used
to determine the integrity of answers. For our examples we shall assume the
database described in Figure 4.

Using domain relational calculus [9], a view is an expression of the form
Ital, . . . , a,) I $h, . . . , adI, where al, . . . , a, are domain variables and # is a
safe formula in predicate calculus with al, . . . , a, as its only free variables. It
defines a relation with the n-tuples of values that satisfy $.

Let RI, . . . , R, be the relation schemes. A conjunctiue view [9] is an expression
of the form:

lh, . . . , a,) I (3 W . . - (3 b,) h A . -. A $kl,

where the $JS may be of two kinds:

(1) membership: (cl, . . . , c,) E R, where R is a database relation scheme (of
arityp), and the cs are either as or bs or constants.

ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

490 - Amihai Motro

CARRIER = (AIRLINE, NATIONALITY,FLEET)
= (FLIGHT-NO, AIRLINE, ORIGIN, DESTINATION,DEPART-DAY,

FLIGHTSTOPS)

Fig. 4. Scheme of database FLIGHTS.

(2) comparative: cl, 8 dp, where d1 is either an a or a b, dz is either an a or a b or
a constant, and 0 is a comparator (e.g., <, I, >, 2, =, #).

In particular, each a and each b must appear at least once among the cs.
While conjunctive relational calculus expressions are a strict subset of the

relational calculus, they are a powerful subset, corresponding to the set of
relational algebra expressions with the operations Cartesian product, selection,
and projection (where the selection predicates are conjunctive).

As an example, the view “stopover flights from Los Angeles to New York via
domestic carriers” is expressed as follows:

((a) I (3b,)(3b,)(3b3)(3b,)(a, bl, Los ANGELES, NEW YORK, bz, b3) E FLIGHT
A (bl, UsA, b4) E CARRIER A b,>Oj

For views from this family we have developed a representation that resembles
regular data tuples. As we point out later, this approach provides important
advantages. This method recalls the representation of QBE queries in skeleton
tables [ll].

For each relation R a meta-relation R’ is defined. The scheme of R’ is identical
to the scheme of R, except for an additional attribute called IC. Also, an auxiliary
relation is defined: COMPARISON = (x, COMPARE, Y). The meta-relations will be
used to store membership subformulas of views. Their tuples will be referred to
as meta-tuples. Comparative subformulas will be stored in relation COMPARISON.

Consider a view

((al, . . . , a, I (3bd -. . (3b,) $1 A -0. A hi,

A subformula rc/ of the kind (cl, . . . , cP) E R is first modified so that the cs that
are as are suffixed with *, and the cs that are variables (i.e., as or bs) that appear
only once in the whole expression are replaced with U (blank). Hence, each
component of the modified subformula is either a constant (a value), or a variable,
or a blank, and each may be suffixed by *. This tuple is prefixed with either V or
C, to indicate whether the corresponding view is a validity constraint or a
completeness constraint, and is stored in R ‘. A subformula Ic/ of the kind dled2,
where 0 is not =, is transformed to the tuple (dl, 0, d,) and stored in the auxiliary
relation COMPARISON. If t9 is =, then all occurrences of d, in the other subformulas
are substituted with d2. Finally, we assume that variable names are not shared
among views.

As an example, consider the following six views:

{(al, aA I (3bh, a2, b) E CARRIER A a2 = USA)

I(aI, a2, ad I (3bI)(3b2)(3b3)(aI, a2, h, b2, as, b3) E FLIGHT
A a2 = TWA A a3 # SATURDAY A a3 # SUNDAY]

ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

(1)

(2)

Integrity = Validity + Completeness l 491

i(% u2, u3, u4, ~5) 1 (3b)b1, u2, u3, u4, b, ~5) E FLIGHT

A u3 = Los ANGELES A u4 = NEW YORK A u5 = 0) (3)

{(al, u2)l (3 b)(ul, b, ~2) E CARRIER /\ u2 > 50) (4)

((al, ~2, u3, u4, ~5) I (3M~M3bs)h ~1, u4, u5, b2, b3) E FLIGHT

A (al, u2, bl) E CARRIER A a2 = USA (5)
A u4 = Los ANGELES A u5 = NEW YORK]

lh, ~2, u3) I (3W(3bd(3bd(~l, USA, bd E CARRIER

A (an, al, Los ANGELES, b2, b3, 0) E FLIGHT
A (u3, al, b2, NEW YORK, b3, 0) E FLIGHT)

(6)

Assume that the first three views are validity constraints and the other three
views are completeness constraints. Figure 5 shows a small instance of the
database together with these six constraints. For convenience of presentation,
each pair of relations, R, R’ is shown as a single contiguous table, and the
attribute IC is also used to identify the meta-tuples. The first constraint (“do-
mestic carriers”) is represented with the meta-tuple Vl. The second constraint
(“mid-week flights via TWA”) is represented with the meta-tuple V2 and the
first two tuples in COMPARISON. The third constraint (“nonstop flights from Los
Angeles to New York”) is represented with the meta-tuple V3. The fourth
constraint (“large carriers”) is represented with the meta-tuple Cl and the third
tuple in COMPARISON. The fifth constraint (“flights from Los Angeles to New
York via domestic carriers”) is represented with the meta-tuples C2 and C3. The
sixth constraint (“pairs of nonstop flights via the same domestic carrier that
depart on the same day, where the first flight originates in Los Angeles, and the
second flight departs from the destination of the first flight and arrives at New
York”) is represented with the meta-tuples C4, C5, and C6. Note that many of
the views are defined to include the selection attributes in the projection attri-
butes. The advantage of such views will be evident later.

Indeed, each individual meta-tuple stored in relation R ’ may be regarded as
defining a view of R: The constants and variables specify the selection condition,
and the *s specify the projected attributes. For example, the meta-tuple Vl
specifies a selection of all tuples of relation CARRIER for which NATIONALITY =
USA and a projection on AIRLINE and NATIONALITY. (Note that a variable shared
by another meta-tuple, such as x3 in the meta-tuple C2, specifies a selection
condition which is satisfied by any value from a set of values defined elsewhere.)
We observe that each individual meta-tuple expresses an integrity constraint
that is satisfied by every instance of the database that satisfies the constraint to
which it belongs (the view defined by each meta-tuple is simply the projection of
the entire view on the attributes in which the meta-tuple has *s).

This method for storing constraints has several advantages. First, the specifi-
cation of integrity constraints using QBE-like notation is very intuitive. Second,
storing the constraints does not require any new data structures. Third, the
constraints may be updated with tools similar to those used to update the data.
Finally, this representation allows us to develop a method that determines the
integrity of an answer, in a process analogous to the determination of the answer
itself.

ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

492 ’

Ic -

Amihai Motro

T AIRLINE

AIR FRANCE
AMERICAN
EL AL

JAL
BA
TWA
UNITED
VARIC

I Vl * Vl *
Cl * Cl *
c2 c2 23’ 23’
c4 c4 x4* x4*

-
IC -

-
v2
v3
c3
c5
C6 -

CARRIER

FLIGHT-NO

AA-360
JA-400
BA-021
LY-006
TW-391
UA-366
VG-183

NATIONALITY

FRANCE
USA
ISRAEL

JAPAN
BRITAIN
USA
USA
BRAZIL

USA.

USA*
USA

COMPARISON

FLEET

63
156

18
52
44

195
230

42

FLIGHT

AIRLINE ORIGIN

AMERICAN Los ANGELES
JAL NEW YORK
BA BOSTON
EL AL Los ANGELES
TWA Los ANGELES
UNITED Los ANGELES
VARIG RIO DE JANEIRO

TWA*
* Los ANGELES*
x3* Los ANGELES*
x4* Los ANGELES
x4* x5

DESTINATION

PHILADELPHIA
TOKYO
LONDON
TEL AVIV
NEW YORK
NEW YORK
CHICAGO

NEW YORK*
NEW YORK*
x5
NEW YORK

WEDNESDAY

Fig. 5. A database extended with constraints.

6. DETERMINING THE INTEGRITY OF ANSWERS

Consider a database scheme with relation schemes RI, . . . , R,, and meta-relation
schemes RI, . . . , RA and COMPARISON. Assume that the meta-relations include
definitions for validity constraints VI, . . . , Vk and completeness constraints
Cl,...,&.

Assume a set of view operations that preserve validity and completeness, and
consider a query Q submitted against an instance of this database. If Q is a view
of the validity constraints VI, . . . , Vk, then its answer is valid; if Q is a view of
the completeness constraints Ci, . . . , C,, then its answer is complete.

Also, if any view of Q is a view of V,, . . . , V,, then the answer is valid with
respect to this view; if any view of Q is a view of C1, . . . , C,, then the answer is
complete with respect to this view.

We describe a method that discovers views of a given query that are valid or
complete. Basically, this method generates valid or complete views of Q, by
manipulating the definitions of the constraints algebraically. These manipula-
ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989

integrity = Validity + Completeness - 493

R’ R

I
‘r

I

I

IQ
Q

Fig. 6. Extending query processing to manipulate
constraints.

I

L----.&f

A’ A

tions mirror those that are necessary to implement Q. In effect, we generalize the
standard Cartesian product, selection and projection operations to manipulate
also meta-relations of view definitions.

This method is illustrated by the commutative diagram shown in Figure 6. The
solid lines describe the current situation: the meta-relations R’ define the validity
and completeness of the database relations R, and the virtual relation A is derived
from R to answer query Q. The dashed lines describe our method: query processing
is extended to manipulate also R’, to yield the meta-relation A’ that defines the
validity and completeness of the answer A.

We shall assume queries are from the same family of conjunctive relational
calculus expressions. Recall that these are also the queries that can be expressed
with the algebraic operations Cartesian product, selection, and projection. For
simplicity, in the remainder of this section we shall ignore the attribute IC in the
meta-relations.

6.1 Meta-Relation Operations

Definition 1. Assume that R’ and S’ are meta-relations that define integrity
constraints on R and S. The Cartesian product of R ’ and S’, denoted R ’ X S ‘,
is defined as follows. For every pair r and s of validity (completeness) meta-tuples
from R’ and S’, respectively,

r = (rl, . . . , r,)
s = (Sl, . . . , SJ,

R’ x S’ includes the validity (completeness) metatuple

4 = h, . . . , r,, sit . . . , s,).

PROPOSITION 1. Let r, s, and q be as in Definition 1, let D be an instance of
this database, and let r(D), s(D), and q(D) denote, respectively, the relations
defined by r, s, and q. Then q(D) = r(D) x s(D).

PROOF. Let X and p denote, respectively, the selection predicates of r and s,
and let (Y and /3 denote, respectively, the projected attributes of r and s. Then

ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

494 - Amihai Motro

r(D), s(D) and q(D) can be expressed as the following Cartesian product-
selection-projection expressions:

r(D) = *,ux(R(D))
s(D) = ?rau,W(D))
q(D) = ~aupmG(R(D) x S(D))

We observe that 7r,08ahA,(R(D) X S(D)) = a,ox(R(D)) X asu,(S(D)). 0

PROPOSITION 2. The constraints in R’ x S’ are satisfied by every database
instance that satisfies the constraints in R ’ and S I.

PROOF. Assume first that r and s are validity constraints. Let (ai, . . . , uk)
be a tuple from q(D). Since q(D) = r(D) X s(D), there is an integer j such that
(al, - * -, . a;) is a tuple m r(D) and (aj+l, . . . , uk) is a tuple in s(D). Since r(D)
and s(D) are valid, (ai, . . . , oj) is also in r(W) and (aj+l, . . . , ak) is also in
s(W). Since q(W) = r(W) X S(W), (Ul, . . . , Uj, Uj+l, . . . , ak) is a tuple in q(W).
Hence q is valid in D. Similarly, if r and s are completeness constraints. Cl

Definition 2. Assume that R’ is a meta-relation that defines integrity con-
straints on R. Let X denote a primitive selection predicate (i.e., either R(Bc, or
RleR,!). The selection from R’ by predicate X, denoted aA(is defined as
follows. Consider first the case X = Riec, and let r be a validity (completeness)
meta-tuple from R’,

r = (rl, . . . , ri, . . . , rm).

Denote by p the selection predicate expressed by ri3. If ri is suffixed by *, then
aA includes the validity (completeness) meta-tuple:

q = (rl, . . . , rl, . . . , r,),

where r,! represents X A P. Consider now the case X = RiORj, and let r be a
validity (completeness) meta-tuple from R ‘,

r = (rl, . . . , ri, . . . , rj, . . . , r,).

Denote by p the selection predicate expressed by ri and rj. If ri and rj are both
suffixed by *, then aA includes the validity (completeness) meta-tuple:

q = (rl, . . . , r-E, . . . , r/, . . . , rm),

where r,! and rj represent X A p.

PROPOSITION 3. Let r and q be as in Definition 2, let D be an instance of this
database, and let r(D) and q(D) denote, respectively, the relations defined by r and
q. Then q(D) = uhr(D).

PROOF. Let (Y denote the projected attributes of r. Then r(D) and q(D) can be
expressed as the following selection-projection expressions:

r(D) = T,u,(R(D))
q(D) = ~mu,/dR(D)). cl

3 If ri is blank, then /I is true.

ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

Integrity = Validity + Completeness 495

We observe that if the predicate X is on attributes in CY, then TT,u,,,~(R(D)) =
n~,~,(R(D)).

PROPOSITION 4. The constraints in aA are satisfied by every instance of this
database that satisfies the constraints in R’.

PROOF. Assume first that r is a validity constraint. Let (al, . . . , ak) be a tuple
from q(D). Then, since q(D) = air(D), (al, . . . ,ak) is also in r(D) and it satis-
fies X. Since r(D) is valid, (aI, . . . , a&) is also in r(W). Since it satisfies X and
4(W) = w(W), (al, . . . , ak) is also in q(W). Hence, q is valid in D; similarly, if
r is a completeness constraint. 0

Definition 3. Assume that R’ is a meta-relation that defines integrity con-
straints on R. The projection of R’ that removes its i’th attribute, denoted
7rTRmR,.(R’), is defined as follows. For every validity (completeness) meta-tuple r
from R’,

r = h, . . . , rA

if ri is LI (possibly suffixed with *), then rR-R,(R’) includes the validity (com-
pleteness) meta-tuple:

4 = h . . . , ri-1, ri+l, . . . , rd.

PROPOSITION 5. Let r and q be as in Definition 3, let D be an instance of this
database, and let r(D) and q(D) denote, respectively, the relations defined by the
meta-tuples r and q. Then q(D) = aReRi(r(D)).*

PROOF. Let X denote the selection predicate of r, let a! denote the projected
attributes of r, and let /3 = R - Rio Then r(D) and q(D) can be expressed as the
following selection-projection expressions:

r(D) = r,n(R(D))
q(D) = ~awdR(D)).

We observe that if the ith attribute of R does not participate in the predicate X,
then 7r,aAr8(R(D)) = 7~~7r,a~(R(D)).

PROPOSITION 6. The constraints in aR-Ri(R’) are satisfied by every instance of
this database that satisfies the constraints in R’.

PROOF. Assume first that r is a validity constraint. Let (al, . . . , ak) be a tuple
from q(D). Assume first that Ri is removed by r. Then, since q(D) = 7rR-Ri(r(D)),
(al, . . . , ak) is also in r(D). Since r(D) is valid, (aI, . . . , ak) is also in r(W). Since
9(W) = n-&-W)), h-h, . . . , ak) is also in q(W). Assume now that Ri is not
removed by r. Then, since q(D) = 7rTRVR,(r(D)), there is a constant a’ and an
integer j, such that (a,, . . . , aj, a’, ai+*, . . . , ak) is a tuple in r(D). Since r(D) is
valid, (al, . . . , aj, u’, aj+l, . . . , ak) is also in r(W). Since q(W) = X&.&r(W)),
kh, . * - f uj, aj+l, - - * 3 uk) is a tuple in q(W). Hence q is valid in D. Similarly, if r
is a completeness constraint.

’ In general, we define r,(R) as a projection on those attributes in 01 that are in R. Thus, if attribute
R; had already been removed, a projection on R - R; has no effect.

ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

496 l Amihai Motro

Briefly, the selection and projection operations behave as follows: selection
requires the attributes it selects to be in the projection attributes of the meta-
tuple; and projection requires the attribute it removes not to be in the selection
attributes of the meta-tuple. This behavior can also be justified intuitively, as
follows.

Consider first the selection operation. Assume a database scheme with one
relation scheme R = (A, B), and let R(D) and R(W) be as follows: R(D) R(W)

Assume the validity constraint u = (*, b), where b 1 2. D satisfies u, because
u(D) = (x, y), while u(W) = (x, y, z). However, the constraint u’ = (*, b), where
b I 4, is not valid, because u’(D) = (x, y], while u’(W) = {z). Hence, it is not
true that any selection from a valid view generates a valid view. Even though the
selection b 2 2 defined a valid view, further selection did not retain this validity.
This is because the validity of u did not cover the values of attribute B!

Next, consider the projection operation. Assume the same database scheme
with the following instances:

R(D) R(W)

Assume the same validity constraint u = (*, b), where b 2 2. D satisfies u, because
u(D) = (x, y), while u(W) = (x, y, z). While it is true that every projection of a
valid view generates a valid view, if the projection removes attribute B, it is
impossible to express the new view with the remaining attributes!

Propositions 2,4 and 6 guarantee that the three algebraic operations for meta-
relations generate views that “preserve” validity and completeness. More accu-
rately, when the same algebraic expression in these operations is applied to a set
of relations and to their corresponding meta-relations, the resulting meta-relation
expresses constraints on the resulting relation that are satisfied by every database
instance that satisfies the constraints expressed in the meta-relations. Noting
that any conjunctive query may be implemented with Cartesian products of two
relations, selections by a primitive predicate, and projections that remove a single
attribute, the foregoing results are stated formally in the following theorem.

THEOREM. Assume a database scheme 9, validity constraints ‘TT, and complete-
ness constraints %?. Let Q be a conjunctive query against this database. Let S be
the relational algebra expression that implements Q. Let S’ be the relational algebra
ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

Integrity = Validity + Completeness 497

expression obtained from S by substituting every reference to R with a reference to
R ‘. S operates on the actual database relations to yield the answer A. S’ operates
on the meta-relations to yield the meta-relation A’ of constraints on A. Then, the
constraints in A’ are satisfied by every database instance that satisfies the con-
straints in Y and Z?.

The theorem guarantees that meta-tuples in A’ are views of A that are either
valid or complete. However, some meta-tuples may still contain references to
meta-tuples outside A’, and are therefore not expressible entirely within A ‘.
Such views are avoided if S’ is modified so that all Cartesian products are
performed first, and their result is pruned to retain only those meta-tuples that
do not contain references to other meta-tuples. Also, as we explain below, it is
advantageous to perform selections before projections. Altogether, S’ is trans-
formed to a sequence of Cartesian products, followed by selections, and ending
with projections. This simple strategy for implementing conjunctive queries is
not necessarily optimal. However, we note that the optimality is not so essential
for meta-relations, because they are relatively small. For the actual relations,
where optimality is essential, a different strategy may be implemented.

6.2 Refinements

The theorem guarantees that the method for generating integrity constraints is
sound, but it does not guarantee that it is complete. That is, this method generates
views of the result that indeed have integrity, but does not necessarily generate
all such views.5 A method that would guarantee completeness would undoubtedly
be of a different complexity altogether. However, for our purpose here, to improve
the quality of database answers, completeness is not an absolute requirement.
Yet, with several simple refinements, it can be improved to generate additional
desirable views. Three such refinements are sketched below.

When an attribute of R’ is removed, all the meta-tuples that restrict this
attribute (with a variable or a constant) are discarded. Consequently, some views
may be lost. For example, assume that Q is a Cartesian product of R and S,
followed by a projection that removes all the attributes of S. Obviously, Q is
equivalent to R, and A’ should retain all the meta-tuples of R’. However, these
meta-tuples may be discarded by the projection, if they contain restrictions in
the attributes contributed by S’. To handle this situation we may extend the
Cartesian product of meta-relations to include also these two tuples:

q1 = h, . . . , rm, U, . . . , U)
q-2 = (U, . . . , Ll, Sl, . . :, s,).

These tuples define all previous constraints on R and S as constraints on the
Cartesian product of R and S.

During selection, certain constraints may be cleared from the selected meta-
tuple (e.g., a variable or a constant is replaced by U). If the selection predicate X
implies the constraint predicate p (i.e., the view is broader than the query), then
considering the semantics of the resulting relation, the new view should not

’ This logical completeness should not be confused with database completeness, which is the topic of
this article.

ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

498 l Amihai Motro

restrict this attribute any more. For example, recall the meta-tuple V3, which
asserts the validity of the view “nonstop flights from Los Angeles to New York.”
Consider now the selection (T ORIG,N=LOSANGELES(~~~~~~). The semantics of the result-
ing relation are no longer “flights” but “flights originating in Los Angeles.”
Hence, on this new relation, the view “nonstop flights to New York” is valid.
Clearing selection constraints ensures that more meta-tuples will “survive” future
projections.

Clearly, the selection operation requires the most effort. The operation itself
requires conjoining p, the predicate expressed in the meta-tuple, with X, the
predicate expressed in the query. And the above refinement is possible only if it
can be determined that h implies p. (Of course, if it is determined first that X
implies p, then p is cleared and it is not necessary to generate their conjunction.)
Often, these tasks are quite simple, as in the above example, where X and p are
identical. At other times it may require consulting relation COMPARISON, and
possibly modifying it. Particular implementations may choose to perform these
tasks only for certain types of X and p. In such cases, when other types are
involved, the relevant meta-tuple must not be selected. Note that the only other
time when relation COMPARISON is used is when the views in A’ are described to
the user.

Finally, with a simple procedure, it is often possible to infer additional con-
straints from constraints that are stored in the same meta-relation. For example,
assume that CARRIER' has two meta-tuples, (*, *, Ll) and (*, U, *). A query that
selects both NATIONALITY and FLEET will not select any of these meta-tuples.
However, it can be shown that in this case (*, *, *) is also a constraint on
CARRIER, and this meta-tuple would have been selected by the same query. Let r
and s be meta-tuples in relation R ‘, such that either both belong to validity
constraints or both belong to completeness constraints, but both do not belong
to the same constraint. Assume that the views defined by r and s can participate
in a lossless join (for example, both views include the key of this relation). We
define their self-join with a meta-tuple q, as follows: qi is the disjunction of the
constraints defined in ri and si, and it is suffixed by * if both ri or si are suffixed
by *. It can be shown that self-joins are also constraints on R. Note that self-
joins need not be generated for every query; once generated, they should be stored
with the original view definitions, until these definitions are modified.

7. EXAMPLES

As a first example, consider the database of Figure 5 and the query “details of
flights via domestic carriers originating in Los Angeles.” For clarity, this query
will be processed in five steps:

(1) Perform the Cartesian product of FLIGHT and CARRIER.
(2) Selectfromthe result FLIGHT.AIRLINE = CARRIER.AIRLINE.
(3) Remove from the result one of the attributes AIRLINE.
(4) Select from the result ORIGIN = Los ANGELES and NATIONALITY = USA.
(5) Remove from the result attributes ORIGIN, NATIONALITY and FLEET.

The first three steps correspond to a natural join between the two relations.
Their result is shown in Table I.
ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

Integrity = Validity + Completeness

Table I

l 499

IC
-

v4
v5
C7

FL-NO

AA-360
JA-400
BA-021
LY -006
TW-391
UA-366
VG-183

AIRLINE ORIGIN

AMERICAN Los ANGELES
JAL NEW YORK
BA BOSTON
EL AL Los ANGELES
TWA Los ANGELES
UNITED Los ANGELES
VARIG RIO DE JANEIRO

TWA*
* Los ANGELES*
* Los ANGELES*

DESTINATION

PHILADELPHIA
TOKYO
LONDON
TEL AVIV
NEW YORK
NEW YORK
CHICAGO

New York*
New York*

Table II

NATION FLT

USA 156
JAPAN 52
BRITAIN 44
ISRAEL 18
USA 195
USA 230
BRAZIL 42

USA:
USA*
USA*

IC FL-NO AIRLINE ORIGIN DESTINATION DEP-DAY ST NATION FLT

AA-360 AMERICAN Los ANGELES PHILADELPHIA SUNDAY 0 USA 156
TW-391 TWA Los ANGELES NEW YORK SUNDAY 0 USA 195
UA-366 UNITED Los ANGELES NEW YORK SUNDAY 1 USA 230

V6 * * * NEW YORK* o* *
C8* * t NEW YORK* *

Table III

IC FLIGHT-NO

AA-360
TW-391
UA-366

V7 *
c9 *

AIRLINE

AMERICAN
TWA
UNITED

*
*

DESTINATION

PHILADELPHIA
NEW YORK
NEW YORK

NEW YORK*
NEW YORK*

DEPART-DAY STOPS

SUNDAY 0
SUNDAY 0
SUNDAY 1

O*

V4 was obtained from Vl and V2; V5 was obtained from VI and V3; and C7
was obtained from C2 and C3. The fourth step now selects V5 and C7 (clearing
the appropriate fields). Its result is shown in Table II.

The projections retain both meta-tuples, and the final result is shown in
Table III.

These are the details of flights via domestic carriers originating in Los Angeles.
The meta-tuples indicate that the nonstop flights to New York (flight number
and airline) are guaranteed to be valid, and that all flights to New York (flight
number and airline) are included. Recalling the original six views, the validity
view in the final derivation is a view of the Cartesian product of the first and
third views, and the completeness view in the final derivation is a view of the
fifth view.

For a second example, consider the database of Figure 5, with one additional
constraint: There are no El Al flights that depart on Saturday. This constraint
may be specified with the following validity constraint that never includes true

ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

500 - Amihai Motro

Table IV

IC 1 FLIGHT-NO 1 DESTINATION

* I *

tuples: “Flights via El Al that depart on Saturday.” Such validity constraints
should be handled separately from other validity constraints, and we shall
use the indicator 1. An appropriate meta-tuple in relation FLIGHT would be:
(11, *, EL AL*, *, *, SATURDAY*, *).

Consider now the query “flight number and destination of flights via El Al
originating in Los Angeles that depart on Saturday.” The processing of this query
yields the relation shown in Table IV.

As there are no Saturday flights via El Al from Los Angeles, the result includes
no data tuples. However, the meta-tuple indicates that the query is indeed
unsatisfiable.

8. CONCLUSION

Current database systems cannot fully guarantee the integrity of the information
they deliver in response to queries. Only a limited kind of integrity is guaranteed,
and the user has no way of knowing precisely which portions of an answer are
“covered” under this guarantee and which are not.

To correct these limitations, this article presented a new model for integrity
of relational databases. The model establishes new criteria for database integrity,
called validity and completeness. It introduces new kinds of integrity constraints
to express validity and completeness of specific views, and it defines the validity
and completeness of answers issued by the database. The issue of maintaining
integrity in a dynamic environment was considered, and a particular kind of
integrity constraint that does not require human supervision was isolated. The
new model can represent a large subset of the traditional predicate calculus
constraints.

A specific mechanism was described that implements the principles of this
model. A simple, yet powerful, family of integrity constraints was isolated. For
this family, a representation was developed that stores the constraints in meta-
relations that mirror the actual relations. Relational algebra was then extended
to manipulate these meta-relations, so that the meta tuples in a resulting meta-
relation assert correctly the integrity of the data tuples in the resulting relation.
The main advantage of this representation is that the standard query evaluation
process yields, almost as a by-product, the information on the integrity or partial
integrity of the answer.

A prototype implementation of this mechanism is currently being developed.
This prototype is implemented as a pair of external interfaces to the database
system INGRES. One interface allows the database administrator to define and
modify integrity constraints. The other interface solicits QUEL queries from the
user, performs them on the meta-relations, and, in parallel, submits them to the
database system. The answer obtained from the database system is presented to
ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

integrity = Validity + Completeness 501

the user, along with a QUEL representation of its integrity, as obtained from the
meta-relations.

The new integrity model and the specific mechanism may be viewed as
independent research results. The mechanism offers a specific solution to the
following general problem (described in Section 6): Given a set of views Y and a
view V, what are the views of V that are views of Y? (and, in particular, is V
itself a view of V?). This problem appears in several other database areas, and
the mechanism described here can be applied to solve these problems, as well.
For example, given a set of views that a user is authorized to access, should a
particular query submitted by this user be authorized (and, if not, what portions
of the answer may be authorized?). On the other hand, the benefits of the new
integrity model may be realized with an altogether different mechanism.

There are several issues that require further investigation, and we mention
here three examples.

The specific integrity mechanism is simple and efficient, but has two limita-
tions. First, views and queries are currently limited to conjunctive formulas.
Here, we are investigating several extensions that will broaden the type of views
that can be handled; for example, allowing formulas with disjunctions or formulas
with aggregate functions. Second, the method for determining the integrity of
answers is not necessarily complete. Here also, we are investigating several
extensions that will generate additional definitions of views with integrity; for
example, by simply avoiding the final projections in S’, it should be possible to
retain the definitions of those views of the result that are expressed with
attributes that eventually are removed from the result.

In Section 3 we isolated a particular kind of integrity constraint that, like
traditional integrity constraints, can be enforced without human supervision.
How to enforce them efficiently is an issue that still needs to be investigated. For
example, it should be quite simple to detect whether a tuple that is about to be
added to a relation would violate any constraint that is expressed entirely within
this relation (i.e., without joins).

In general, the responsibility for enforcing integrity constraints lies with the
database administrator, and all integrity certifications that accompany answers
are founded on the assumption that all constraints are presently satisfied. In a
multi-user environment, it may be desirable to allow different users to contribute
validity and completeness constraints. It is possible to extend the model and the
mechanism to associate with each constraint the name of the user who contrib-
uted it. This may be done with another pseudo-attribute to be attached to meta-
tuples (like IC). Certifications would then be annotated with the name of the user
who contributed the constraints involved (e.g., “according to Smith, the following
view is valid . . .”). Similarly, it is possible that some integrity constraints are not
presently satisfied, because the database administrator (or the contributing user)
can only verify them periodically. It is possible to extend the model and the
mechanism to associate with each constraint the time at which it was last
verified. Again, this may be done with a pseudo-attribute. Certifications would
then be annotated with the time at which the constraints involved were last
verified (e.g., “as of lo-Dee-87 10:22, the following view is complete . . .“). An
interesting issue here is how to combine views that were contributed by different
users and verified at different times.

ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

502 . Amihai Motro

ACKNOWLEDGMENTS

The author is grateful to the Associate Editor and the reviewers for their helpful
suggestions.

REFERENCES

1. DATE, C. J. An Introduction to Database Systems, Volume I. 4th Ed. Addison Wesley, Reading,
Mass., 1986.

2. KORTH, H. F., AND SILBERSCHATZ, A. Database System Concepts. McGraw-Hill, New York,
1986.

3. LEVESQUE, H. J. The logic of incomplete databases. In On Conceptual Modelling: Perspectiues
from Artificial Intelligence Databases and Programming Languuges, J. Mylopoulos, M. L. Brodie,
and J. W. Schmidt, Eds., Springer-Verlag, Berlin, 1984, pp. 165-186.

4. MAIER, D. The Theory of Relational Databases. Computer Science Press, Rockville, Md., 1983.
5. MOTRO, A. Completeness information and its application to query processing. In Proceedings

of the 12th International Conference on Very Large Data Bases (Kyoto, Aug. 25-28, 1986),
pp. 170-178, VLDB Endowment (available from Morgan-Kaufmann, Los Altos, Calif., 1986).

6. MOTRO, A. SEAVE: A mechanism for verifying user presuppositions in query systems. ACM
Trans. Off. hf. Syst. 4, 4 (Oct. 1986), 312-330.

7. REITER, R. On closed world data bases. In Logic and Databases, H. Gallaire and J. Minker,
Eds., Plenum Press, New York 1978, pp. 55-76.

8. SunINGRES Manual Set. Release 5.0, Sun Microsystems, Mountain View, Calif., (Part Number
800-1644-Ol), 1987.

9. ULLMAN, J. D. Principles of Database Systems. Computer Science Press, Rockville, Md., 1982.
10. UNIFY Reference Manual. 3.0 edition, UNIFY Corp., Lake Oswego, Oreg., 1983.
11. ZLOOF, M. Query-by-Example: A database language. IBM Syst. J. 16,4 (Dec. 1977), 324-343.

Received August 1986; revised December 1987 and January 1989; accepted April 1989

ACM Transactions on Database Systems, Vol. 14, No. 4, December 1989.

