
Securing DNS Services through System Self Cleansing and  
Hardware Enhancements

 

Yih Huang, David Arsenault, and Arun Sood 
Department of Computer Science and Center for Image Analysis 

George Mason University, Fairfax, VA 22030 
{huangyih, darsenau, asood}@cs.gmu.edu 

 
 
Abstract -- Domain Name Systems (DNS) provide the 
mapping between easily-remembered host names and 
their IP addresses.  Popular DNS implementations 
however contain vulnerabilities that are exploited by 
frequent, targeted attacks. The software vulnerabilities 
of DNS together with the constant innovation and 
morphing of cyber attack techniques necessitate the 
consideration of the worst case scenarios: there will be 
successful but undetected attacks against DNS servers. 

In this work1 we develop a secure DNS architecture 
that contains the damage of successful, undetected 
attacks.  This formidable end is achieved by constantly 
cleansing the servers and rotating the role of individual 
servers.  Moreover, the server rotation process itself is 
protected against corruption by hardware.  We will show 
the advantages of our design in the following areas: (1) 
protection of the DNS master file and cryptographic 
keys, (2) incorruptible intrusion tolerance, (3) high 
availability, and (4) scalability, the support of using of 
high degrees of hardware/server redundancy to improve 
both system security and service dependability.  Due to 
the critical importance of DNS, such a dependable and 
intrusion-resilient design contributes significantly to the 
overall security of the Internet. 

I. INTRODUCTION 
As part of the Internet infrastructures, the Domain 

Name System (DNS) is essentially a distributed 
database that maps easily-remembered host names to 
their numerical IP addresses [1]. Each name server 
maintains the domain name information regarding a 
subspace, or a zone, in the DNS name space. The 
domain names and IP addresses pertaining to a zone 
are stored in a master file, maintained by the primary 
name server of that zone. Each zone also has one or 
more secondary name servers, which periodically 
synchronize local DNS data with the master file. 
Secondary name servers respond to DNS queries but 
are not involved in maintaining the master file.  DNS 
also supports the dynamic updates of domain names so 
that new domains can be added or the attributes of 
existing domains can be changed in a near real-time 

                                                        
1  This research is part of the Critical Infrastructure 
Protection Project funded by the National Institute of 
Standards and Technology. 

manner [2].  Because of the critical importance of 
DNS, many sites deploy dedicated backup servers 
which take over DNS services in face of the failures of 
online servers. 

DNS was later enhanced with DNS Security 
Extensions (DNSSEC) to provide data origin 
authentication [3].   With DNSSEC, each zone is 
equipped with (at least) a pair of public and private 
keys.  The private key is used to digitally sign DNS 
data.  Clients verify the origin of received DNS data 
by checking accompanying signatures using the public 
key.  The integrity of the approach depends on the 
secrecy of the private keys. 

Unfortunately DNS/DNSSEC implementations 
contain vulnerabilities and have been the target of 
numerous exploits and attacks [4,5,6,7].  Indeed, the 
SANS (SysAdmin, Audit, Network, Security) Institute 
places BIND, the most popular DNS/DNSSEC 
implementation, as the number one among the top 10 
vulnerabilities to Unix systems [7].  The situation is 
exacerbated by the constant innovation and evolution 
of network attack techniques.  This trend and the 
critical importance of DNS lend consequence to the 
concept of intrusion tolerance: a highly dependable 
DNS system must fend off or at least limit the losses 
caused by successful undetected attacks, providing 
uninterrupted services in face of such attacks. 

In prior work [8,9,10], we have developed the 
framework of Self-Cleansing Intrusion Tolerance, or 
SCIT, which constantly rotates and cleanses online 
servers in a server cluster, regardless of whether an 
intrusion is detected or not.  In particular, we 
presented in [10] our earlier designs and prototyping 
experiences of SCIT-enabled DNS servers.  In [11], we 
presented SCIT/HES (HES for Hardware Enhanced 
Security), which uses simple hardware enhancements 
to provide incorruptibility guarantees, or SCIT 
Primitives.   

The primary contribution of this paper is the 
application of the SCIT/HES framework to DNS.  
Specifically, we present a second generation of SCIT 
DNS architecture, named DNS-HES (DNS with 



Hardware Enhanced Security), that improves DNS 
security in the following areas. 
• Protection of the zone master file and private keys 

— the zone master file and DNSSEC private keys 
are never exposed to the public Internet and 
therefore are not subject to remote attacks.  With 
many, if not all, DNS/DNSSEC implementations, 
the master file and some private keys must be kept 
online to support secure dynamic domain name 
updates.  These requirements are nullified by the 
DNS-HES architecture. 

• High availability — the graceful handling of server 
failures.   

• Incorruptible intrusion tolerance — the operations 
of SCIT-HES cannot be compromised by remote 
attacks.  There could still be successful, undetected 
attacks on online servers.  However, DNS-HES 
will continue to contain their effects by server 
rotation and cleansing. 

• Scalability — the support of using of high degrees 
of hardware/server redundancy to improve both 
system security and dependability. 

We point out that the first two advantages above are 
also supported by our previous SCIT DNS design [10].  
The additional properties of incorruptibility and 
scalability are derived from the new design presented 
in this paper. 

The remainder of the paper is organized as follows.  
The concept of SCIT/HES is reviewed in Section II.  
We present in Section III the architecture of the DNS-
HES and in Section IV the server rotation algorithm of 
DNS-HES.  In Section V, we discuss the ramifications 
of DNS-HES on hardware redundancy, service 
availability, and system security. We give related work 
in Section VI and conclusion in Section VII. 

II. SCIT/HES OVERVIEW 
A SCIT cluster comprises a set of interconnected 

servers that cooperatively provide a predefined 
service.  Any server in the cluster periodically 
switches between two modes: online servicing clients 
(which are outside the cluster) and offline for 
cleansing.  A central controller is used to manage 
server rotations and role assignments [11].  (In 
implementations, the controller could also be an off-
the-shelf server; the name suggests its use not its 
construction.) A high-level view of a SCIT/HES server 
cluster is depicted in Figure 1.  

When a server moves from the online mode to the 
cleansing mode, it reloads the operating system, 
service software and data from trusted media, followed 
by system auditing and recovery procedures. The 
trusted media can be any non-writable media or 
writable media combined with digital signatures to 

verify the integrity of data.  The reason for periodic 
cleansing is to force an online server to return to a 
known, clean state, whether an intrusion is detected or 
not.  The underlying assumption is that there will be 
attacks that are sophisticated and stealthy enough to 
penetrate even the best security measures and evade 
the most advanced intrusion detection systems.   

 
Fig. 1: A High-level View of SCIT/HES 

In SCIT/HES, the central controller also maintains 
the cluster communication configuration shown in 
Figure 2, where the controller keeps two-way 
communication paths with cleansing servers but only 
one-way paths to reach online servers.   Consequently, 
an online server or any node outside the cluster can 
reach neither the controller nor those servers in 
cleansing.  Online servers of course must have two-
way communications with clients outside the cluster.  
We emphasize that the arrows in Figure 2 represent 
permissible communications; they do not mandate 
dedicated communication channels. 

Due to server rotations, the configuration shown in 
Figure 2 is dynamic.  Communication paths must be 
cut and reconnected when servers switch between 
different modes.  In SCIT/HES, the central controller 
also manages the connection and disconnection of 
communication paths.  Simple on/off switches are 
introduced to achieve this end.  The uses of these 
devices in the DNS-HES cluster will be discussed in 
the next section.  

Our previous SCIT-DNS design is based on a 
distributed control scheme using software that runs on 
each machine [10].  Even with the best security 
designs and programming practices, software-based 
solutions are inevitably subject to ingenious attacks 
(and always will be).  In the next section, we present a 
design that employs simple on/off switches to isolate 
SCIT operations from external influence.  We will 
argue that the resultant DNS-HES architecture 
achieves the incorruptibility of intrusion tolerance.  

SCIT/HES 
  Cluster 

Offline 

Online Central 
Controller 



III. DNS-HES CLUSTER 
A DNS-HES cluster comprises N≥4 identical DNS 

servers running in the configuration shown in Figure 
3.  It is for use in a DNS zone to provide domain 
names in the zone to the rest of the Internet. A DNS-
HES cluster makes available two servers for servicing 
clients on the Internet (labeled P for Primary and S for 
Secondary in the figure).  It advertises two IP 
addresses, a primary name server address and a 
secondary name server address.  The generalization to 
support a tertiary DNS server is omitted; its design and 
functionality are similar to those of the secondary 
server.   

At any point in time only one of the servers will be 
operating in one of the following four modes: (1) 
Mode P: Primary DNS, communicating with clients 
using the primary IP address, (2) Mode S: Secondary 
DNS, communicating with clients using the secondary 
IP address, (3) Mode C: Offline for self-cleansing with 
no public IP address, and (4) Mode B: Backend server, 
processing pending dynamic DNS updates in the 
background with no public IP address.  At any time, 
there is one primary, one secondary and one backend 
server.  The three servers are said to be on-duty. The 
present primary and secondary servers are said to be 
online. The remaining N− 3 servers in the cluster will 
be in cleansing.  They are essentially redundant, 
backup servers.   If the number of cleansing server is 
small (e.g., N − 3 = 1 or 2), the level of redundancy is 
in line with those of many important DNS sites where 
each online DNS server has a dedicated backup server.  
Furthermore, DNS-HES provides the options of using 
higher degrees of redundancy to improve both security 
and service availability. 

 
Fig. 3: DNS-HES Cluster 

Also shown in Figure 3 are three backend storages: 
a Master storage (named after its primary contents, the 
DNS master file) and two Online storages.  The 

Master storage also stores the DNSSEC private keys.  
It cannot be accessed by any server that is presently 
online.  An Online storage is used to temporarily store 
requests for dynamic DNS updates and must be 
accessible by the online primary server.  Backend 
stores can be implemented as NFS servers or storage 
devices attached to storage area networks (such as 
iSCSI hard drives).  They are considered part of the 
intranet, and a network connection is required for a 
server to access a backend store.   

In addition to resolving the IP addresses of domain 
names, a primary server also accepts the requests of 
dynamic domain name updates.  In DNS-HES the 
processing of these requests is delegated to the 
backend server, as illustrated in Figure 4.  In Figure 
4(a), incoming requests are stored in Online storage α, 
where α is either 0 or 1.  We use β to denote “the 
other” Online storage.  After a new primary is rotated 
online, as in the case of Figure 4(b), it stores new 
requests of dynamic updates on Online storage β, 
whereas the backend server processes pending 
requests in Online storage α, left by the previous 
primary server in Figure 4(a).  After a second primary 
rotation, the configuration returns to Figure 4(a).  We 
note that the Master storage is inaccessible from the 
public Internet in either configuration.  We also point 
out that rotations of the backend server do not change 
the use of online storages.  The change depicted in 
Figure 4 is triggered by only the rotation of the 
primary. 

 
Fig. 4: Processing dynamic DNS requests;  P′ in (b) 
emphasizes that a different server is now the primary 

To service DNS data to the Internet, a primary or 
secondary DNS server has to download a copy of the 
master file from Master storage to their local file 
systems.  In this arrangement, local copies of the 
master file on online servers are exposed to remote 

Master P′ B
Online α 

Online β 

(a). New requests stored in Online α; 
processing pending requests from Online β 

(b). After a rotation of the primary,  
new requests stored in Online β; 

processing pending requests from Online α

PBMaster

Online α 

Online β Pending requests 

New
requests 

Pending requests 

One or 
more 

server in 
cleansing 
(Mode C) Central 

Controller 

P

S

B Master 

Online 0 

Online 1 

Clients 

Clients 

Network  
Link 

Electrical/Optical 
Signal Line 

New
requests



interferences (for instance, a local copy could be 
tampered with or removed entirely by a successful 
attacker).  The master copy, stored in the Master 
storage, nevertheless is never exposed.  Dynamic DNS 
updates are performed on the master copy by the 
backend server, which is not connected to the Internet 
either.  Private keys used to sign dynamic domain 
name changes are also stored in the Master storage and 
accessed only by the backend server.  The DNS master 
file and the DNSSEC private keys are in this way 
shielded from direct cyber attacks. 

It can be argued that the backend server and the 
Master storage are still subject to indirect attacks, 
whereby an attacker sends to the primary server 
dynamic DNS update requests specifically formatted 
to trigger vulnerabilities in the software running on the 
backend server.  While this observation is correct, the 
consequences can easily be handled as follows.  First 
we point out that the secrecy of the DNSSEC private 
keys are never jeopardized, for a backend server, 
compromised or not, does not have the communication 
paths required to send information back to the attacker.  
The attacker however may attempt to corrupt the DNS 
master file, residing on the Master storage (for 
instance, the attacker may attempt to delete the master 
file entirely).  This attack can be easily prevented by 
storing the master file in obscure locations in the file 
system.  In general, it is impossible to probe the 
configuration of the backend server from the public 
Internet due to the lack of communication paths, and 
therefore attacks against the server must be based on 
assumed, common-practice configurations.  While we 
acknowledge the weakness of security by obscurity in 
general applications, it is perfectly suitable to the 
defenses of the backend server due to the impossibility 
of probing.  In fact, the software running on the 
backend server can be compiled in a way that 
produces uncommon memory layouts, preventing 
attacks from taking over the software in the first place.  

In SCIT/HES, the central controller also manages 
the communication paths of servers.  The setup 
between the controller and an individual server is 
depicted in Figure 5. In the figure (and in Figure 3 as 
well), we use solid lines to represent network links for 
TCP/IP message exchanges (such as Ethernet wires) 
and dashed lines to represent wires/fibers that conduct 
electrical/optical control signals.  Specifically, the 
controller uses six control signals to enforce the 
operation modes of each server in the cluster.  Among 
the six signals, the reset signal to a server forces the 
server to reboot.  The remaining five signals to the 
server manage the communication configuration of the 
server.  The five signals are discussed below. 

1. The SW-M signal controls the connection of the 
server to the Master storage. 

 Fig. 5:  The hardware enhancements in DNS-HES between 
the central controller and an individual server. 

2. The SW-I signal controls the connection of the 
server to the public Internet. 

3. The SW-CC signal controls the connection of the 
server to the central controller. 

4. The SW-i signal, where i is either 0 or 1 controls 
the connection of the server to Online storage i. 

As an example, the controller uses the signals in 
Figure 5 to enforce the communication configuration 
of a cleansing server depicted in Figure 6, where the 
server has network paths connecting to only the 
central controller.  As we will see later, one use of the 
path is for the controller to communicate the 
role/identity of the server when it is ready to take on a 
duty.  By the same token, the secondary name server 
will be connected to the Internet and disconnected 
from the rest of the cluster. 

 
Fig. 6:  a cleansing server has access to only the central 

controller 

Master

Online 1 Online 0

Central
Controller 

Internet 

SW-M 
SW-I 

SW-CC 

SW-0 
SW-1 

Reset 

Master

Online 1 Online 0

Clients
on the 

Internet 

Central
Controller 

Network Switch Server 



Implied in Figure 5 are five local area networks 
within a DNS-HES cluster (in the figure, each LAN is 
represented by its switch/hub, depicted as a hexagon).  
For instance, there is a LAN dedicated to the Master 
storage.  Any server disconnected from that LAN has 
no access to the Master storage.  The same applies to 
the LANs that connect to the central controller, the 
public Internet, and the two online storages.   

IV. SERVER ROLE ROTATIONS 
In a DNS-HES cluster, there are three types of 

server role rotations.  A Primary Swap brings the 
present primary DNS server offline for cleansing and 
rotates a clean server online to be the new primary.  A 
Secondary Swap brings the present secondary DNS 
server offline for cleansing and rotates a clean server 
online as the new secondary. A Backend Swap resets 
the present backend server for cleansing and 
designates a clean server to be the new backend server.   

Consider a DNS-HES cluster with 4 servers, 
servers 0, 1, 2, and 3. Assume that the cluster starts 
with the configuration (P,S,B,C), where server 0 is the 
primary (P), server 1 the secondary (S), server 2 the 
backend (B), and server 3 in cleansing (C).   If the first 
rotation is a Primary Swap, then the system enters 
configuration (C,S,B,P).  Further assuming that the 
next rotation is a Backend Swap, the system 
subsequently enters configuration (B,S,C,P). 

The central controller uses a rotation pattern to 
determine the sequence of role swaps.  For instance 
the rotation pattern ‘PSB’ dictates that the system 
cycles through a Primary Swap, a Secondary Swap, 
and a Backend Swap.  As a second example, the 
rotation pattern ‘PSPB’ dictates that the system cycles 
through a Primary Swap, a Secondary Swap, a 
Primary Swap, and a Backend Swap.  For reasons to 
be explained later, PSPB is chosen as the default 
rotation pattern. 

We are now ready to present the routines invoked 
by the central controller to carry out the three types of 
role swaps.  Due to its simplicity, we start the 
discussion with the Secondary Swap routine, shown in 
Figure 7.  In its first 3 steps, the Secondary Swap 
routine disconnects the present cleansing server from 
the Internet, resets the server, and establishes the 
network path from the server to the central controller.  
The server is now in cleansing and will be able to 
inform the controller of the completion of its self 
cleansing.  Next the routine brings the designated 
clean server c online as the new secondary DNS 
server.  To perform its new role, server c needs an up-
to-date copy of the zone’s master file.  In Step 4, the 
controller establishes the network path for server c to 
reach Master storage.  In Steps 5 and 6, it sends a 
message to server c to convey its new role and waits 

for c to complete downloading the master file.  Steps 7 
and 8 disconnect the network paths from server c to 
the Master storage and the controller.  The network 
path for server c to connect to the public Internet is 
connected in Step 9, and server c formally becomes 
the secondary DNS server in Step 10. 

 
Fig. 7:  The Secondary-Swap routine, which rotates a new 

secondary DNS server online 

  Shown in Figure 8 is the Backend Swap routine, 
which the central controller invokes to designate a 
clean server c as the new backend server.  Recall that a 
backend server processes the pending requests of 
dynamic DNS updates from one of the online storages 
and updates the master file stored in the Master 
storage accordingly.  In the routine, the present 
backend is assumed using Online storage α, where α 
is either 0 or 1.  In Steps 1 and 2, the central controller 
disconnects the present backbend’s access to the 
Master storage and Online storage α.  In Steps 3 and 4, 
the controller resets the present backend and 
reestablishes the connection between the server and 
the controller.  The backend server is now in 
cleansing.  To set up server c as the new backend, the 
controller sends a role message in Step 5, and 
subsequently in Step 6 cuts its network connection to 
server c.  In Steps 7 and 8, the controller establishes 
for server c the access to Master storage and Online 
storage α.  Server c is declared the backend server in 
Step 9.  

We now examine the Primary Swap routine, shown 
in Figure 9.  The central controller invokes the routine 
in order to rotate a clean server c online to replace the 
present primary server.  Recall from Figure 4 that 

Routine Secondary-Swap (c) 
Parameters: 

c: ID of a cleansed server designated to 
become the new secondary server 

Global Variables: 
S: ID of the present secondary DNS server 

Steps: 
// Bring server S offline for cleansing 

1. Signal “off” to SW-I[S]; 
2. Signal Reset[S];  
3. Signal “on” to SW-CC[S]; 

// Bring server c online as the new secondary 
4. Signal “on” to SW-M[c]; 
5. Send message “Role Secondary” to server c; 
6. Wait for c to download the master file; 
7. Signal “off” to SW-M[c]; 
8. Signal “off” to SW-CC[c]; 
9. Signal “on” to SW-I[c]; 

10. Set S to c; 



bringing a new primary name server online causes 
changes in the uses of online storages.  Instead of 
using the same online storage to store incoming 
requests of DNS updates as the previous primary, the 
new primary switches to “the other” online storage.  In 
the routine, the online storage used by the present (and 
soon to be replaced) primary server is denoted Online 
storage α and the other one is denoted Online storage 
β.  In Steps 1 and 2, the controller disconnects the 
present primary from the Internet and cuts its access to 
Online storage α.  The server is reset to enter the 
cleansing mode in Step 3, and its network path to the 
controller is reestablished in Step 4. 

 
Fig. 8: The Backend-Swap routine 

Starting from Step 5, the Primary Swap routine 
brings the clean server c online as the new primary.  In 
Step 5, the controller establishes the network path for 
server c to reach the Master storage.  In Steps 6 and 7, 
it conveys to server c its new role and waits for c to 
download the master file.  Subsequently in Steps 8 and 
9, server c is disconnected from the Master storage and 
the central controller, respectively.  Server c is 
connected to Online storage β in Step 10 and to the 
public Internet in Step 11.  It is declared the primary 
name server in Step 12 and will store incoming 
requests of dynamic DNS updates in Online storage β. 

Again recall from Figure 4 that a Primary Swap 
affects the networking configuration of the backend 
server.  As seen in Figure 4, the backend server 
processes pending dynamic DNS updates from Online 
storage β before the swap and must change to Online 

storage α after the swap.  Such are the effects of Steps 
13 and 14 in Figure 9. 

 
Fig. 9: The Primary-Swap routine 

We present in Figure 10 the Central Control 
routine executed by the central controller.  The routine 
initially assigns server 0 as the primary server, server 1 
as the secondary, and server 2 as the backend.  The 
online storage used by the initial primary is Online 
storage 0.  The steps whereby servers enter their 
respective initial roles have been omitted in the 
presentation.  The routine then enters an infinite loop 
where it waits for the completion of cleansing of any 
off-duty server.  Once a ready clean server is found, 
the routine determines the type of the next role swap 
according to a pre-configured rotation pattern and 
subsequently invokes the corresponding role-swapping 
routine.  We note that the Central Control routine does 
not depends on a fixed number of servers in the 
cluster.  The routine to the contrary allows new servers 
to be added to the cluster or faulty servers to be 
removed from the cluster without reconfigurations. 

Routine Primary-Swap (c) 
Parameters: 

c: ID of a clean server; to become the primary 
Global Variables: 

P: ID of the present primary 
B: ID of the present backup server 
α in [0,1]: the online storage that has been 
used by the present primary P. 

Local Variable: 
β in [0,1] : the inverse of α (that is, the other 
Online storage) 

Steps: 
// Bring server P offline for cleansing 

1. Signal “off” to SW-I[P]; 
2. Signal “off” to SW-α[P]; 
3. Signal Reset[P];  
4. Signal “on” to SW-CC[P]; 
 // Bring server c online as the new primary 
5. Signal “on” to SW-M[c]; 
6. Send message “Role Primary” to server c; 
7. Wait for c to download the master file; 
8. Signal “off” to SW-M[c]; 
9. Signal “off” to SW-CC[c]; 

10. Signal “on” to SW-β[c]; 
11. Signal “on” to SW-I[c]; 
12. Set P to c; 
// Switch backend B from Online storage β to α 

13. Signal “off” to SW-β[P]; 
14. Signal “on” to SW-α[P]; 

Routine Backend-Swap (c) 
Parameters: 

c: ID of a clean server designated to 
become the new backend server 

Global Variables: 
B: ID of the present backend server 
α in [0,1]: the offline storage used by the 

present backend server B. 
Steps: 

// Bring server B offline for cleansing 
1. Signal “off” to SW-M[B]; 
2. Signal “off” to SW-α[B]; 
3. Signal Reset[B];  
4. Signal “on” to SW-CC[P]; 

// Set up server c as the new backend 
5. Send message “Role Backend” to c. 
6. Signal “off” to SW-CC[c]; 
7. Signal “on” to SW-M[c]; 
8. Signal “on” to SW-α[c]; 
9. Set B to c; 



The implications of this feature are discussed in 
Section V. 

 
Fig. 10: The Central-Control routine 

To conclude this section, we point out that in all of 
the above routines, the central controller exchanges 
TCP/IP messages with a server only after the 
controller has rebooted the server and has 
disconnected the server’s connections to the public 
Internet and the rest of the cluster.   The controller in 
this way cannot be reached from the online servers or 
the public Internet, and consequently server rotations 
cannot be subverted by remote attacks. 

V. REDUNDANCY, AVAILABILITY AND SECURITY 
Although DNS-HES is not specifically designed 

for fault tolerance, it does handle some failures 
gracefully due to the use of hardware redundancy.  Let 
us examine what happens when server failures occur.   
If a server failure is caused by intrusion events or 
software errors, then the server will eventually be reset 
and cleansed.  In this way, DNS-HES succeeds in 
handling “soft” failures.   

In the case of hardware failures, the sever will be 
reset by the controller at some point but most likely 
cannot bootstrap the operating system or complete the 
cleansing procedure due to hardware dysfunctions.  
The consequence is that the server will not report to 
the central controller “cleansing completed” and thus 
will not be available for service.  With N ≥ 4 servers, 
the cluster continues to provide DNS services in face 

of N−3 “hard” failures.  In the worst case of N−3  
failures, server rotations stop, for the controller cannot 
find ready clean servers.  The DNS service however is 
still provided by the remaining, on-duty servers, 
although dynamic DNS updates will not be reflected 
until rotations resume.  As one can see, the availability 
of the system increases with the degree of 
server/hardware redundancy.  This aspect of DNS-
HES is similar to many fault tolerance designs. 

With DNS-HES, however, increasing the degree of 
redundancy also improves security.  To illustrate this, 
assume that the self-cleansing procedure takes 10 
minutes to complete (our previous SCIT prototypes 
indicate that this is a conservative assumption).  With 
one cleansing server, the controller waits for 10 
minutes for the server to complete cleansing, which 
equates to a server swap every 10 minutes (see Figure 
10). With two spare servers, the controller is expected 
to find a clean machine in 5 minutes, doubling the rate 
of server rotations and reducing online servers’ 
exposure to the Internet to half.  In the case of 
successful breaches on the online servers, the window 
of a breach is also reduced by half.  Even shorter 
rotation times and even stronger security can be 
achieved by introducing more servers to the cluster. 

An interesting way to contrast DNS-HES with 
high-availability computing is this: In high-availability 
systems, hardware redundancy exists in the form of 
backup servers [12,13]. By its nature, a backup is idle 
most of the times. Its computing power is wasted 
unless the online server fails.  With SCIT, redundancy 
exists in the form of servers in cleansing.  This design 
in effect puts spare computing powers to good use, 
such as self cleansing, system auditing, and intrusion 
recovery, for the sake of strengthening system security. 

Due to its prominent role in DNS, the primary 
name server is generally considered most critical in 
security.  Thus it is desirable to subject the primary 
server to more frequent rotations.  Assume again that 
the central controller finds a ready clean server every 
10 minutes in a four-server DNS-HES cluster.  The 
‘PSB’ rotation pattern results in the present primary to 
be replaced within 30 minutes.  The time is reduced to 
20 minutes by the rotation pattern “PSPB;” hence its 
being chosen as the default.  The time can be further 
reduced with more spare servers. 

VI. RELATED WORK 
Our assumption that undetected intrusions are 

inevitable and must be treated as an inherent problem 
of clusters is similar to that of Recovery Oriented 
Computing, which considers software and human 
errors as the norm and handles them by isolation and 
redundancy [14].   

Routine Central-Control () 
Global Variables: 

P: ID of the present primary DNS server 
S: ID of the present secondary DNS server 
B: ID of the present backend server 
α in [0,1]: the offline storage used by the 

present primary DNS server. 
Initializations: 

P=0, S=1, B=2; 
α =0; 

Loop the following steps forever: 
Wait for “any” cleansing server to complete 

cleansing.  Call the server c. 
Determine the type of the next server switch 

according to the rotation pattern. 
For a Primary Swap:  

Call Primary-Swap(c). 
Invert α. 

For a Secondary Swap: 
Call Secondary-Swap(c). 

For a Backend Swap 
Call Backend-Swap (c). 



Simple forms of server rotations have previously 
been employed in high-availability systems, where 
backup servers rotate online to ensure uninterrupted 
service in face of primary server failures 
[12,13,15,16].  SCIT systems share many design 
challenges with high-availability systems, such as the 
seamless server transitions and sharing of server 
identities (IP and/or hardware addresses).   Examples 
of high-availability systems include DNS servers, NFS 
servers, authentication services, firewalls, IPsec 
gateways, and virtual private network gateways. 

We point out that in many server clusters the term 
“server rotation” often refers to “rotating online 
servers in servicing arriving clients,” typically for the 
purpose of workload sharing.  Such rotations are not 
related to the work presented here.  On the other hand, 
our server rotation and self-cleansing processes can be 
considered as a special form of software rejuvenation 
[17,18,19,20] for use by server clusters.   

VII. CONCLUSION 
We have presented a DNS cluster design that 

constantly rotates server roles and performs system 
cleansing in order to contain undetected intrusion.  
Our DNS-HES design uses simple hardware 
enhancements to physically isolate severs in cleansing 
from remote attacks.  The same kind of protection 
through isolation also extends to critical data, 
including the DNS zone master file and DNSSEC 
private keys.  While successful and undetected 
intrusions cannot be ruled out (probably never will 
be), intrusion tolerance mechanisms of DNS-HES 
work to guarantee a baseline integrity and the 
continuum of DNS services.  Because of the critical 
importance of DNS and its well-known vulnerabilities 
to attacks, a dependable and intrusion-resilient DNS 
design such as DNS-HES contributes significantly to 
the overall security of the Internet. 

REFERENCES 
[1] P. Mockapetris, “Domain names  Concepts and 

Facilities,”  Internet RFC 1034, November 1987. 
[2] P. Vixie (editor), S. Thomson, Y. Rekhter, and J. 

Bound, "Dynamic Updates in the Domain Name 
System,"  Internet RFC 2136, April 1997. 

[3] D. Eastlake.  “Domain Name System Security 
Extensions,”  Internet RFC 2535, March 1999. 

[4] P. Vixie, “DNS and BIND security issues,” in Proc. of 
the 5th Usenix Security Symposium. Salt Lake City, 
UT, 1995. 

[5] Bellovin, S. M. Using domain name system for system 
break-ins. In Proceedings of the 5th Usenix UNIX 
Security Symposium. Salt Lake City, UT, 1995. 

[6] See DNS and BIND related advisories and incident 
notes published by CERT Coordination Center at 
http://www.cert.org. 

[7] The Twenty Most Critical Internet Security 
Vulnerabilities, available at http://www.sans.org/top20. 

[8] Yih Huang and Arun Sood, “Self-Cleansing Systems 
for Intrusion Containment,” Proceedings of Workshop 
on Self-Healing, Adaptive, and Self-Managed Systems 
(SHAMAN), New York City, June 2002. 

[9] Yih Huang, Arun Sood, and Ravi K. Bhaskar, 
“Countering Web Defacing Attacks with System Self-
Cleansing,” Proceedings of 7th Word Multiconference 
on Systemics, Cybernetics and Informatics, pp. 12—
16, Orlando, Florida, July 2003. 

[10] Yih Huang, David Arsenault, and Arun Sood, “SCIT-
DNS: Critical Infrastructure Protection through Secure 
DNS Server Dynamic Updates,” presented at the 
Trusted Internet Workshop Conference, Bangalore, 
India, December 2004. (Also to appear in Journal of 
High Speed Networking) 

[11] Yih Huang, David Arsenault, and Arun Sood, 
“Incorruptible System Self Cleansing for Intrusion 
Tolerance,” accepted to appear in Workshop on 
Information Assurance, 2006. 

[12] Peter S. Weygant, Clusters for High Availability, 
Prentice Hall, 1996. 

[13] High-Availability Linux Project. www.linux-ha.org. 
[14] Brown, A. and D. A. Patterson. “Embracing Failure: A 

Case for Recovery-Oriented Computing (ROC),” High 
Performance Transaction Processing Symposium, 
Asilomar, CA, October 2001. 

[15] Steve Blackmon and John Nguyen, “High-Availability 
File Server with Heartbeat,” System Admin, the Journal 
for UNIX Systems Administrators, vol. 10, no. 9, 
September 2001.  

[16] R. Rabbat, T. McNeal and T. Burke, “A High-
Availability Clustering Architecture with Data 
Integrity Guarantees,” Proc. of IEEE International 
Conference on Cluster Computing, 178–182, (Newport 
Beach, CA) Oct., 2001. 

[17] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, 
“Software Rejuvenation: Analysis, Module and 
Application,” In Proc. of the 25th Intl. Symposium on 
Fault Tolerant Computing, pp. 381—390, Pasadena, 
CA, June, 1995. 

[18] William Yurcik and David Doss, "Achieving Fault-
Tolerant Software with Rejuvenation and 
Reconfiguration," IEEE Software, July/August 2001, 
pp. 48-52.  

[19] K. Vaidyanathan, R. E. Harper, S. W. Hunter, K. S. 
Trivedi, "Analysis and Implementation of Software 
Rejuvenation in Cluster Systems," in Proc. of the Joint 
Intl. Conference on Measurement and Modeling of 
Computer Systems, ACM SIGMETRICS 
2001/Performance 2001, Cambridge, MA, June 2001. 

[20] Khin Mi Mi Aung, Kiejin Park, and Jong Sou Park, "A 
Rejuvenation Methodology of Cluster Recovery," 
Cluster-Sec, 2005. 


