

Designing SCIT Architecture Pattern in a

Cloud-based Environment

Quyen L. Nguyen and Arun Sood

International Cyber Center and Department of Computer Science
George Mason University, Fairfax, VA 22030

{qnguyeng@gmu.edu, asood@gmu.edu}

Abstract—Cloud Computing has gained momentum in the IT

world, due to its inherent elasticity that allows flexible on-

demand computing resources such as CPU time, memory and

storage size. However, Cloud security is a challenge. In this

paper, we leverage Cloud services to design C-SCIT (Cloud-

based Self-Cleansing Intrusion Tolerant) scheme that can provide

enhanced intrusion tolerance to applications and services

deployed in the Cloud. Challenges and issues of such an approach

are analyzed against the traditional implementation, which relies

solely on servers internal to an organization. We will show how

we can control and adapt the design to satisfy different levels of

intrusion tolerance.

Keywords – SCIT; Intrusion Tolerance; Cloud Computing,

Intercloud.

I. INTRODUCTION

Cloud Computing has gained momentum in the IT world,
due to its inherent elasticity that allows flexible on-demand
computing resources such as CPU time, memory and storage
size. Indeed, more and more organizations are moving their
applications to the clouds, or use clouds for infrastructure and
platform services. But, along with the increasing adoption of
this new paradigm with its multi-tenancy of storage and
computing resources, come the concerns about security,
including data confidentiality, integrity, and availability.

Given the distributed nature of cloud services to be
provided over networks and open protocols, there is no
guarantee that cloud services are not vulnerable to malicious
attacks. This vulnerability persists despite the many prevention
and detection measures deployed by cloud vendors to protect
their assets and business services. The bad news is that
security attacks have become more and more sophisticated.
Therefore, a system cannot rely solely on intrusion prevention
and detection for its security protection, but should have
intrusion tolerance systems (ITS) as part of the solution for the
cloud computing environment.

The main contribution of this paper is to design a Cloud-
based Self-Cleansing Intrusion Tolerance (C-SCIT), a
recovery-based intrusion tolerance scheme leveraging Cloud
services from multiple vendors. Since our approach utilizes
multiple Cloud providers for computing resources as well as
storage resources and enhances the security of applications
and services, it could be considered as a service in the
Intercloud layer [6]. Challenges and issues of such an
approach are compared against the traditional implementation,

which relies solely on servers internal to an organization. We
will also show how we can control and adapt the design to
satisfy different levels of resilient. The current SCIT
implementation utilizes redundancy and internet exposure
management to enhance system security, Diversity has been
recognized to be a potential factor to enhance security, but has
not been attempted because of cost considerations. In this
regard, C-SCIT exploits the diversity property that is inherent
to the Intercloud environment to further augment the resilience
of the system’s intrusion tolerance.

This paper is organized as follows. Section II provides
related research in two areas of Intercloud and recovery-based
intrusion tolerance. Section III contains an overview of SCIT
architecture [9], which will be augmented in later sections to
yield a dependable cloud architecture. System components for
a Cloud-based SCIT (C-SCIT) are described in Section IV. C-
SCIT procedures are in Section V. In Section VI, we show how
C-SCIT can provide desired levels of intrusion tolerance.
Section VII illustrates some possible implementations of C-
SCIT procedures using commercially available Cloud Services
APIs. The paper ends with a conclusion and discussion of
future work in Section VIII.

II. RELATED WORK

There are two types of related work. On the Cloud side, the
notion of a service in the Intercloud was mentioned in
[4,5,6,7,8]. A lot of research has been published on Cloud
Storage, in the multi-tenancy environment offered by Cloud
Computing. Abu-Libdey et al. [1] proposed a scheme of
Redundant Array of Cloud Storage (RACS) to circumvent the
issue of vendor lock-in. The proposal can be viewed as an
abstraction of RAID (Redundant Array of Independent Disks)
principle. With RACS, digital objects are replicated and
distributed among multiple Cloud Storage providers such that
the objects can be reconstituted based on just a subset of these
providers. Therefore, the data owner does not have to rely on
any single vendor to retrieve or rebuild the data.

Cachin et al. [7] have developed theories and protocols in
the Intercloud to ensure the integrity, and confidentiality of
data stored in Clouds.

The concept of Cloud Federation and market-oriented
Cloud services exchange was promoted in [6] in order to
facilitate buying-and-selling of Cloud services and resources
rapidly and maybe systematically.

Bessani et al. [5] proposed to use a synthesis of protocols
including Byzantine Fault Tolerance, and secret sharing
protocols operated in the “cloud-of-clouds” to solve the
problem of Cloud Storage dependability.

On the intrusion tolerance side, there have been schemes
based on the recovery mechanism. Sousa et al. [13] proposed a
system that optimizes efficiency and survivability by having a
hybrid solution combining periodic system rejuvenation with
“reactive recovery”. This recovery is triggered when the
perceived threat goes beyond a tolerable threshold that can
affect the correct working of the system. In the same vein, the
FOREVER service consists of removing faults via proactive
reconfiguration implemented by robust underlying
components [14]. Reise et al. [12] reported their
implementation of proactive recovery on Hypervisor
virtualization. In this paper, we want to extend the traditional
SCIT described in [9] to the Cloud environment. To the best of
our knowledge, there has not been a recovery-based intrusion
tolerance system designed to leverage the characteristics of
Cloud Computing.

III. SCIT ARCHITECTURE PATTERN

A. High Level Description.

SCIT architecture has as the goal to protect applications
and services against malicious faults. SCIT employs a
recovery-based mechanism. This mechanism consists of
automatic and periodic cleansing of the servers, applications
and services on a virtualized or non-virtualized platform. Not
only does the periodic cleansing provide almost continuous
clean environment for the servers and applications, but by
restricting the exposure window of a server replica, we can
limit the success rate of malicious attacks. Major components
of SCIT pattern are depicted in Figure 1. At the core is the
Central Controller managing and controlling all the SCIT
nodes to be protected. The nodes are usually grouped into
clusters, each of which contains servers with identical
functionalities. Diversity of these servers can be employed to
further reduce the likelihood of malicious exploitations. For
example, we can have a group of web servers, one running on
Linux, another on Windows, and a third one on Mac OS. Each
node within a cluster of similar nodes is directed by the
Controller to constantly go through the following orderly
lifecycle:

 Live Spare state, which is a known good state but

offline,

 Active state of duration Wo, where the server

becomes online to accept and process incoming

requests,

 Grace Period state of duration Wg, where the server

stops accepting new transaction requests and

completes processing of requests still in the queue,

 Inactive state, where the server is offline and
undergoes the restoration cleansing to a known good
state.

The time period of the rotation through the four states above
depends on the cleansing time, which is specific to an
application or service. In Figure 1, Node 1 is in Active state,
Node 2 in Live Spare state, and Node n in Inactive state.

The Controller must be deployed on a physical host
separate from the one(s) used to deploy the nodes in order to
avoid a data path from the applications back to the Controller,
thus any compromise made to the application nodes cannot
propagate to the Controller. Furthermore, in the current SCIT
pattern, the link from the Controller to the online node is
unidirectional. But, the links from the Controller to the offline
nodes are bidirectional to allow the Controller to check the
status of the offline nodes during the cleansing process. Note
that the Controller has full control over switching these links
from one-way to two-way and vice-versa.

C
E

N
T

R
A

L

C
O

N
T

R
O

L
L

E
R

Online

Node 1

Offline

Node 2

Offline

Node n

One-way

Secure

Link
Client

Two-way

Secure

Link

Request/

Response

Stop

Signal

Start

Signal

Cleansing

Signal

…
…

…
..

Two-way

Secure

Link

Figure 1. SCIT Architecture Components.

B. SCIT Parameters

Mean Time to Security Failure. In our previous work [10],
we have derived a lower bound for the Mean Time to Security
Failure (MTTSF) as shown in expression (1) below:

MTTSF ≥ F λ μ (Wo), where

 (1).

In (1), h=(h0, h1, h2) is the vector composed of mean
sojourn times in each of the states - Good, Vulnerable, and
Attacked respectively; λ is the attack rate and μ is the average
residence time in the server. It is clear from (1) that MTTSF
can be made to depend solely on the online window Wo.
Moreover, we have shown in [10] that as the online window
decreases, the intrusion tolerance expressed by MTTSF

increases, i.e. the system is more intrusion tolerant.
S-Reliability of service or an application was introduced in

[11] to characterize the quality of service, i.e. application

functions reliably without the impact of malicious attacks.

IV. CLOUD-BASED APPROACH

In the previous section, we presented the SCIT mechanism
that provides intrusion tolerance to applications and services. If
we abstract out that mechanism to the level of architecture for
recovery-based intrusion tolerance, then we can design and
implement the architecture by extending it to Cloud-based
environment.

A. System Overview

A C-SCIT system has four major entities: Central Controller,

Proxy, SCIT Local Controllers, and Application Nodes.

The Application Nodes are application replicas that have to be

protected by C-SCIT, such as Web Server, or Web

Application. Each Node is assigned to run in a domain on the

computing platforms of the Cloud Providers. We can envision

having one Node per Cloud, and the number of Nodes depends

on the level of intrusion tolerance required by the user’s

application. The clean image of the Application Node must be

safely stored locally in the Cloud Storage. We have a copy of

the image in each Cloud instead of a centralized location so as

to have it close to the Application Node, thus avoiding large

data transfer for each cleansing cycle.

Each Application Node is managed by a SCIT Local

Controller. A Local Controller is responsible for maintaining

the clean image for the Node, and directing its associated

Node through the four states of Life Spare, Active, Grace

Period, and Inactive. Maintaining the image includes keeping

it in a protected area, along with the capability to compute the

checksum of the image based on the algorithm dictated by the

Central Controller. The link between an Application Node and

a SCIT Local Controller is unidirectional from the latter to the

former so that any compromise to the Application cannot

affect the Local Controller. The existence of Local Controllers

aims at limiting the amount of messages and data to be

exchanged between the Nodes and the Central Controller over

the WAN during C-SCIT operations.

The Central Controller coordinates the cleansing procedure by

initiating an operational message to the SCIT Local

Controllers running in a virtualized platform at each Cloud

Service Provider. This control includes the assurance that the

images of the Application/Service instances are pristine.

Preferably, the Central Controller is deployed in an

environment/domain outside of the Cloud environments where

the Application Instances and SCIT Local Controllers reside.

The Controller’s domain can be on the customer’s premise or

a third-party Cloud.

Application

Node

Cloud 2

Application

Node

Cloud 3

Central Controller

Local

Controller

Application

Node

Cloud 1

Proxy

UserUser

Local

Controller

Local

Controller

Figure 2. System Architecture of C-SCIT.

Finally, the Proxy has the task of interfacing directly with

application end-users and mediating requests and responses

between the end-users and the active Application Node. Note

that an end-user can be a human or another system. It could

also be a service participating in a composite application in a

Service-Oriented Architecture (SOA) system. In Figure 2, the

unidirectional link between the Central Controller and the

Proxy was not shown to avoid making the figure too busy. It is

clear that the design of C-SCIT added the new entity of SCIT

Local Controller and the delegation of some of the duties from

the Central Controller to the Local Controllers.

B. Central Controller Components

In order to manage the set of SCIT Local Controllers and

indirectly the Application Nodes, the Central Controller needs

the following components:

 Service Registry storing information about the

applications and services to be managed and protected,

including their images with checksums, their IT-QoS

requirements, and operational parameters such as the

exposure windows.

 Algorithm Modules computing the operational parameters

based on the desired levels of intrusion tolerance.

C. Advantages

While C-SCIT fulfills the self-cleansing as specified by the

SCIT architecture, C-SCIT brings additional advantages in

terms of dependability and intrusion tolerance thanks to the

characteristics of the Cloud Computing paradigm.

Geographical Distribution. Since the Application Nodes are

dispersed to different Cloud vendors, whose data centers are

most likely to be geographically distributed, C-SCIT benefits

from this feature, which conceptually enhances its

dependability, especially against natural disaster, power

outage, or weather storm. Actually, even some individual

Cloud providers such as Amazon have offered the option to

allow an application to deliver content from different

geographical sites [2].

Diversity. Another benefit is that C-SCIT enjoys some

diversity from having Nodes among various Clouds. Indeed, it

is probable that two Clouds would have dissimilar computing

platforms, including OS and virtual machine products, so that

one can always select vendors with diverse environments.

Speculatively, this diversity may decrease the success rate of

malicious attacks, except in the case of a concerted DDoS

attack.

Flexible Resource Utilization. Assuming that some Service

Level Agreement (SLA) has been negotiated with Cloud

vendors for C-SCIT, flexibility and “pay-as-you-go” model for

resource utilization are useful for C-SCIT in its adaptive

support for satisfying Intrusion Tolerance QoS (IT-QoS), as

we will show in a later section. The notion of IT-QoS was

introduced in [11] to help the design and implementation of

intrusion tolerance characteristics for services.

D. Challenges

Given the benefits discussed above, what are the challenges in

realizing C-SCIT due to Cloud-based environment?

Connection Security. SCIT pattern requires that the

communication between Central Controller and Nodes be

trusted to prevent any breach of the Controller. This can be

achieved easily if the Controller and Nodes are collocated and

within the confine of a well protected network. Another

option to use a hardware solution was described in [9]. In the

case of C-SCIT, the connection between a SCIT Local

Controller and its managed Node can be made secure since

they are also co-located within one Cloud’s data center. For

the connection between the Central Controller and the SCIT

Local Controllers, a secure Virtual Private Network link must

be established to ensure that signals and messages cannot be

tampered.

Connection Reliability. The other challenge of C-SCIT is that

connection between the Central Controller and the SCIT Local

Controllers communicate with each other over a network

connection, most likely a WAN, which is susceptible to

failure. This failure will affect the requirement that C-SCIT

has to provide some guarantee with respect to MTTSF (Mean

Time to Security Failure), availability and S-Reliability. In this

paper, we assume that there is an SLA specifying the

connection reliability. Without this assumption, retry protocol

needs to be devised to respond to this challenge.

Image Integrity. Since the cleansing procedure depends on the

application image, we need a scheme to ensure its integrity.

This image will change over time, due to patches and upgrades

made to the application. Image updates will be triggered by

the Central Controller sending a signal to every SCIT Local

Controller managing the same application. The Central

Controller keeps the checksum of the application’s image in

its “safe store”, which is part of the Service Registry.

V. C-SCIT PROCEDURES

C-SCIT has two main procedures to perform self-cleansing of

the applications and services. The cleansing procedure is

applied to an Application Node after its Grace Period expires.

The Activation procedure will switch the Live-Spare Node to

the Online mode.

A. Assumptions

We made two assumptions: a) The Service Registry is a

trusted repository of all the application images; b) The

connection link between the Central Controller and the Local

Controllers in the Clouds is reliable. If assumption a) is not

valid as in the case where the Controller and its components

are deployed in a separate Cloud, then a more complex

scheme has to be designed. Should assumption b) fail to hold,

either a retry scheme or a scheme that switches the cleansing

procedure to another Application Node has to be instituted.

B. Cleansing Procedure

The procedure described below assumes that the Service

Registry is fully trusted, only accessible by the Central

Controller, and maintains the authoritative image copy of the

application/service (Figure 3). Before authorizing the SCIT

Local Controller to load the pristine image on the Application

Node, the Central Controller verifies whether the checksum

computed by the Local Controller matches with the one stored

in the Service Registry (steps 1-2). If the two checksums

match (step 3), then the Central Controller gives a go ahead

with loading the image via authorizeLoadImage(). If the two

checksums don’t match, the Central Controller will transfer a

new image using transferImage() (step 4), then repeat the

checksum verification process as above. Verifying the

checksum of the image stored locally in the Cloud Storage of

the Application Node is necessary to make sure of the image’s

integrity before the loading.

<<subsystem>>

:Central Controller

<<agent>>

:Local Controller 1

<<application>>

:Application Node 1

1:

computeImageChecksum()

3: [checksum matched]

authorizeLoadImage()

5: [checksum matched]

loadImage()

4: [checksum not matched]

transferImage()

<<component>>

:Service Registry

2:

getChecksum()

Figure 3. C-SCIT Cleansing Procedure Diagram.

C. Activation Procedure

The Activation procedure in C-SCIT shown in Figure 4 below

consists of the following steps:

Step 1. When the time comes to initiate the procedure, the

Central Controller sends two messages in parallel to two SCIT

Local Controllers: a deactivate() message to the Local

Controller managing the currently active Application Node,

and an activate() message to the one associated with the live-

spare Application Node. In the above diagram, the active pair

is (SCIT Local Controller 1, Application Node 1) and the live-

spare one is (SCIT Local Controller 2, Application Node 2).

Step 2. The SCIT Local Controllers turn around and sends the

appropriate orders to their managed Nodes. In the above

example, SCIT Local Controller 1 deactivates Node 1, while

SCIT Local Controller 2 activates Node 2.

Step 3. Upon receiving the ready() messages from both Nodes,

the Central Controller requests the Proxy to replace the

currently active Node with the newly active Node.

Note that at the beginning when there is no active Node, there

is only one step that is to activate the first Live Spare Node.

<<subsystem>>

:Central Controller

<<agent>>

:Local Controller 2

<<application>>

:Application Node 2

1.1:

[state=offline-

spare] activate()

<<subsystem>>

:Proxy

<<agent>>

:Local Controller 1

<<application>>

:Application Node 1

1.2:

[state=online]

deactivate()

2.1: ready()

2.2: ready()

3.1: activate()

3.2: deactivate()

4: swap(Instance 1,

Instance 2)

5.1: connect()

5.2: disconnect()

Figure 4. C-SCIT Activation Procedure Diagram.

VI. PROVIDING IT-QOS LEVELS

A. Impact on SCIT Parameters

Unlike in the implementation where Controller and Nodes are
co-located in a data center, the distributed nature of C-SCIT
will incur some network latency. So, this latency has to be
factored in the evaluation of the cleansing time Tcleansing.
Let C = {C1, …, Cp} be the set of available Clouds. For the
purpose of C-SCIT, each Cloud Ci is characterized by the
image loading time (tload), communication latency (tcom),
checksum verification time (tverify), probability that checksum
test fails (Pcf), and maybe correction time (tcorrect). The latter is
incurred only when the image stored for the to-be-cleansed
Node fails the checksum test, and the image needs to be re-
transferred to the problematic Cloud as shown in step 4 of
Figure 4. Thus, we can write:
 Ci = (ti,load, ti,com, ti,verify, ti,correct, Pi,cf) (2).

Cleansing Time. Given the above procedure depicted in Figure
3, the average cleansing time for an Application Node in C-
SCIT is:
 ti,cleansing = ti,load + ti,com + ti,verify + Pi,cf * ti,correct (3).
Then, the overall cleansing time for C-SCIT system becomes:
 Tcleansing = max { ti,cleansing ; for i = 1, .., n}. (4).
Note that the complexity degree of evaluating Tcorrect is a
function of the complexity of the correction scheme,
especially when assumptions about Service Registry’s security
and connection link’s reliability mentioned in the Cleansing
Procedure section don’t hold.
Activation Time. From Figure 4, we need to define the time
spent by the Activation process, as it involves a few messages.
Normally, this activation time is small compared to Tcleansing.
The overall activation time will be the maximum of all
activation times:
Tactivation = max { ti,activation } for i = 1, .., n. (5).
Number of Pairs. More pairs (Local Controller, Application
Node) would be required as:

 The smaller the exposure window Wo is, the faster is the
rotation cycle;

 The cleansing time Tcleansing has an adverse effect on the
rotation cycle, i.e. the longer it takes to restore a node, the
longer is the rotation cycle.

Based on this, we arrive at the expression for the number of
Nodes N that is needed to provide an exposure window of
value Wo:

 (6).

If we let Wg = Wo, then (2) becomes:

2 (7).

For example, if the average Tcleansing is equal to 12 min and
Tactivation = 2 min, and we want Wo = 3 min in order to achieve a
certain level for MTTSF, then the C-SCIT Intercloud requires
N = 7 pairs. Unlike the enterprise environment where the
maximum of Application Nodes is constrained by the
hardware configuration of the physical hosts that have been
procured, the Cloud environment offers much more elasticity
in terms spawning more or less virtual machines for
Application Nodes and Local Controllers.

B. C-SCIT Operation

In this section, we will examine how C-SCIT operates to

satisfy a desired MTTSF for an application or service. Based

on the analytical results obtained in [13] that MTTSF can be

tuned by varying the exposure window W0, the function

calculateConfig() returns W0 and the number of Nodes

necessary to maintain the given level of MTTSF. Figure 5

summarizes the main steps of C-SCIT operational activity

embodied in the function C-SCIT-Operate(). In the scheme

presented below, C denotes the set of Clouds with which C-

SCIT has established SLAs. The queue Qg is built out of a

subset of C. At one point in time, only the Clouds in Qg are

utilized by the Central Controller. Queue Qs contains the

Clouds with the pair of loaded Application Node and Local

Controller. First, the scheme calculates the number of Nodes

N and value of exposure window Wo (line 1). Then, N Clouds

are reserved in Qg for C-SCIT operation (line 2). Two threads

for cleansing and activation will be instantiated (lines 3-4);

they follow the procedures described in section V-A and V-B

respectively. Two different timers are used to signal these two

threads for when to initiate the actions of cleansing and

activation. The values of these timers take into account

Tcleansing and Tactivation.

C-SCIT-Operate()

Input

 m: MTTSF value;

 C={C1,..,Cp}: set of available Clouds;

 λ and μ: average rate of attacks and attack residence

respectively;

1. (W0, N) ← calculateConfig(m, C);

2. Build queue Qg with first N Clouds taken from C;

3. Fork a thread and invoke cleanse(Qg);

4. Fork a thread and invoke activate(Qg);

calculateConfig(m, C)

5. Compute Tcleansing using (4).

6. Compute Tactivation using (5).

7. Solve equation F(2w) = m for w, where F is the

expression given by (1). Let Wsol be the solution.

8. Wo ← Wsol;

9. Wg ← Wsol;

10. Compute N using (7);

11. return (Wo, N);

cleanse(Qg)

12. While TRUE

13. Ci ← dequeue(Qg);

14. Perform cleansing steps of Ci as in section V-A.

15. enqueue(Qs, Ci);

16. Wait(timer1);

17. EndWhile

activate(Qg)

18. While TRUE

19. Ca ← currently active Cloud;

20. Cs ← dequeue(Qs);

21. If Cs = null

22. return error;

23. EndIf

24. If Ca = null

25. Then

26. Activate Cs;

27. Else

28. Perform activation steps as in section V-B. This

includes Ca and Cs;

29. EndIf

30. Wait(timer2);

31. EndWhile

Figure 5. C-SCIT Operation Scheme.

When there is a need to increase or decrease the desired

MTTSF, the above scheme can be augmented to reconfigure

C-SCIT. For instance, if there is an alert that the attack rate is

increasing, and more intrusion intolerance is required, the

reconfiguration scheme can be invoked. Indeed, the

augmented scheme consists of killing the current threads for

cleansing and activating, and call C-SCIT-Operate(). This will

trigger a recalculation in line 1, and spawn new threads with

the newly computed values for number of Nodes and exposure

window. Since Cloud-based environment can potentially and

elastically provision largely variable number of virtual

machines and domains, adding more Application Nodes to

queue Qg or releasing unused Clouds should not pose any

problem, as in the case of an enterprise data center.

VII. USAGE OF COMMERCIAL CLOUD SERVICE API SETS

As a proof of concept, we surveyed the APIs of Amazon Web

Services (AWS) [2] and Windows Azure [15] to determine

whether the commercially available Cloud Services provide

sufficient tools allowing us to implement the proposed C-

SCIT. Study results are promising. For example, the function

deactivate() issued by a Local Controller to an Application

Node can be implemented by the command ec2-terminate-

instances or the RESTFul web service StopInstances for AWS

and the Delete Hosted Service for Windows Azure. Bringing

up an Application Node via the function activate() can be

achieved by invoking the AWS StartInstances web service and

Microsoft’s Create Hosted Service. Communication between

the Central and Local Controllers can be made secure since

Cloud Services provide a system for key management to

protect message and data exchange, as we have assumed

earlier. A prototype will be planned to be built to demonstrate

the validity of our assumptions and the feasibility of our

proposed design.

VIII. CONCLUSION AND FUTURE WORK

Motivated by the increasing adoption of Cloud Computing,
and the need to make services intrusion tolerant in the Cloud
environment, we have proposed a Cloud-based approach in
designing SCIT, a recovery-based intrusion tolerance
mechanism. The proposed implementation would provide
enhanced availability and resilience of the services deployed
in the Cloud. Thanks to inherent nature of Cloud Computing,
this approach brings additional benefits of elastic redundancy

and diversity to the traditional SCIT architecture. The
elasticity allows SCIT to easily adapt to reconfigure itself and
adapt to new required levels of intrusion tolerance expressed
via values of MTTSF for instance, without being constrained
by the fixed hardware configuration as in a pure enterprise
environment, while multi-cloud diversity hardened the
solution against repeated and/or concerted malicious attacks.

In this paper, we have made the assumption of
dependability for the connection between the Central
Controller and the partnering Clouds. Enhancements such as
retries will need to be made by adding more steps in the
Cleansing and Activation procedures to ensure dependable
operation of C-SCIT. As the performance of retries may risk
hindering the operationability of C-SCIT scheme, experiments
will have to be performed to further show that these
enhancements are possible.

REFERENCES

[1] Hussam Abu-Libdeh, Lonnie Princehouse, Hakim Weatherspoon.

“RACS: A Case for Cloud Storage Diversity”. Proceedings of the 1st

ACM symposium on Cloud computing, 2010.
[2] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/.

[3] Michael Armbrust et al. “A View of Cloud Computing”.

Communications of the ACM, Volume 53, No 4, April 2010.
[4] David Bernstein and Deepak Vij. “Intercloud Security Considerations”.

2nd IEEE International Conference on Cloud Computing Technology

and Science, 2010.
[5] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando Andre,

and Paulo Sousa. “DepSky: Dependable and Secure Storage in a Cloud-

of-Clouds”. EuroSys’11, April 10-13, 2011, Salzburg, Austria. http://
www.di.fc.ul.pt/~mpc/pubs/eurosys219-bessani.pdf. [02/28/2011].

[6] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Calheiros.” InterCloud:

Utility-Oriented Federation of Cloud Computing Environments for
Scaling of Application Services”. ICA3PP 2010, Part I, LNCS 6081, pp.

13–31, 2010.

[7] Christian Cachin, Robert Haas, and Marko Vukolic. “Dependable
Storage in the Intercloud”.

http://domino.research.ibm.com/library/cyberdig.nsf/papers/630549C46

339936C852577C200291E78. [02/27/2011].
[8] R. Buyya, Yeo Chee, and S. Venugopal. “Market-Oriented Cloud

Computing: Vision, Hype, and Reality for Delivering IT Services as

Computing Utilities”. 10th International Conference on High
Performance Computing and Communications, 2008. HPCC ’08. Sep.

25-27, 2008.

[9] Yih Huang, David Arsenault and Arun Sood. “Closing Cluster Attack
Windows Through Server Redundancy and Rotations”. Sixth IEEE

International Symposium on Cluster Computing and the Grid

Workshops, May 16-19, 2006, Singapore.
[10] Quyen Nguyen and Arun Sood. “Quantitative Approach to Tuning of a

Time-Based Intrusion-Tolerant System Architecture”. WRAITS 2009,

Lisbon, Portugal. http://wraits09.di.fc.ul.pt/wraits09paper2.pdf. [05/17/
2010].

[11] Quyen Nguyen and Arun Sood. “Realizing S-Reliability for Services via

Recovery-driven Intrusion Tolerance Mechanism”. 2010 International
Conference on Dependable Systems and Networks Workshops (DSN-

W), Chicago, Illinois. Jun 28-Jul 1, 2010.

[12] Hans P. Reiser et al. “Hypervisor-Based Efficient Proactive Recovery”.

Proceedings of the 26th IEEE International Symposium on Reliable

Distributed Systems, 2007.
[13] Paulo Sousa, Alysson Neves Bessani, Miguel Correia, Nuno Ferreira

Neves, Paulo Verissimo. “Resilient Intrusion Tolerance through

Proactive and Reactive Recovery”. 13th IEEE International Symposium
on Pacific Rim Dependable Computing, 2007.

[14] Paulo Sousa et al. “The FOREVER Service for Fault/Intrusion

Removal”. WRAITS 2008, Glasgow, Scotland.

[15] Windows Azure. http://www.microsoft.com/en-

us/cloud/developer/resource.aspx?resourceId=introducing-windows-

azure. [03/11/2011]

http://aws.amazon.com/ec2/
http://www.di.fc.ul.pt/~mpc/pubs/eurosys219-bessani.pdf
http://domino.research.ibm.com/library/cyberdig.nsf/papers/630549C46339936C852577C200291E78
http://domino.research.ibm.com/library/cyberdig.nsf/papers/630549C46339936C852577C200291E78
http://wraits09.di.fc.ul.pt/wraits09paper2.pdf
http://www.microsoft.com/en-us/cloud/developer/resource.aspx?resourceId=introducing-windows-azure
http://www.microsoft.com/en-us/cloud/developer/resource.aspx?resourceId=introducing-windows-azure
http://www.microsoft.com/en-us/cloud/developer/resource.aspx?resourceId=introducing-windows-azure

