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Abstract—Cloud Computing has gained momentum in the IT 

world, due to its inherent elasticity that allows flexible on-

demand computing resources such as CPU time, memory and 

storage size. However, Cloud security is a challenge. In this 

paper, we leverage Cloud services to design C-SCIT (Cloud-

based Self-Cleansing Intrusion Tolerant) scheme that can provide 

enhanced intrusion tolerance to applications and services 

deployed in the Cloud. Challenges and issues of such an approach 

are analyzed against the traditional implementation, which relies 

solely on servers internal to an organization. We will show how 

we can control and adapt the design to satisfy different levels of 

intrusion tolerance. 

Keywords – SCIT; Intrusion Tolerance; Cloud Computing, 

Intercloud. 

I.  INTRODUCTION 

Cloud Computing has gained momentum in the IT world, 
due to its inherent elasticity that allows flexible on-demand 
computing resources such as CPU time, memory and storage 
size. Indeed, more and more organizations are moving their 
applications to the clouds, or use clouds for infrastructure and 
platform services. But, along with the increasing adoption of 
this new paradigm with its multi-tenancy of storage and 
computing resources, come the concerns about security, 
including data confidentiality, integrity, and availability.  

Given the distributed nature of cloud services to be 
provided over networks and open protocols, there is no 
guarantee that cloud services are not vulnerable to malicious 
attacks. This vulnerability persists despite the many prevention 
and detection measures deployed by cloud vendors to protect 
their assets and business services. The bad news is that 
security attacks have become more and more sophisticated. 
Therefore, a system cannot rely solely on intrusion prevention 
and detection for its security protection, but should have 
intrusion tolerance systems (ITS) as part of the solution for the 
cloud computing environment.    

The main contribution of this paper is to design a Cloud-
based Self-Cleansing Intrusion Tolerance (C-SCIT), a 
recovery-based intrusion tolerance scheme leveraging Cloud 
services from multiple vendors. Since our approach utilizes 
multiple Cloud providers for computing resources as well as 
storage resources and enhances the security of applications 
and services, it could be considered as a service in the 
Intercloud layer [6]. Challenges and issues of such an 
approach are compared against the traditional implementation, 

which relies solely on servers internal to an organization. We 
will also show how we can control and adapt the design to 
satisfy different levels of resilient. The current SCIT 
implementation utilizes redundancy and internet exposure 
management to enhance system security, Diversity has been 
recognized to be a potential factor to enhance security, but has 
not been attempted because of cost considerations. In this 
regard, C-SCIT exploits the diversity property that is inherent 
to the Intercloud environment to further augment the resilience 
of the system’s intrusion tolerance.  

This paper is organized as follows. Section II provides 
related research in two areas of Intercloud and recovery-based 
intrusion tolerance. Section III contains an overview of SCIT 
architecture [9], which will be augmented in later sections to 
yield a dependable cloud architecture. System components for 
a Cloud-based SCIT (C-SCIT) are described in Section IV. C-
SCIT procedures are in Section V. In Section VI, we show how 
C-SCIT can provide desired levels of intrusion tolerance. 
Section VII illustrates some possible implementations of C-
SCIT procedures using commercially available Cloud Services 
APIs. The paper ends with a conclusion and discussion of 
future work in Section VIII. 

II. RELATED WORK 

There are two types of related work. On the Cloud side, the 
notion of a service in the Intercloud was mentioned in 
[4,5,6,7,8]. A lot of research has been published on Cloud 
Storage, in the multi-tenancy environment offered by Cloud 
Computing. Abu-Libdey et al. [1] proposed a scheme of 
Redundant Array of Cloud Storage (RACS) to circumvent the 
issue of vendor lock-in. The proposal can be viewed as an 
abstraction of RAID (Redundant Array of Independent Disks) 
principle. With RACS, digital objects are replicated and 
distributed among multiple Cloud Storage providers such that 
the objects can be reconstituted based on just a subset of these 
providers. Therefore, the data owner does not have to rely on 
any single vendor to retrieve or rebuild the data.   

Cachin et al. [7] have developed theories and protocols in 
the Intercloud to ensure the integrity, and confidentiality of 
data stored in Clouds. 

The concept of Cloud Federation and market-oriented 
Cloud services exchange was promoted in [6] in order to 
facilitate buying-and-selling of Cloud services and resources 
rapidly and maybe systematically. 



 

 

 

Bessani et al. [5] proposed to use a synthesis of protocols 
including Byzantine Fault Tolerance, and secret sharing 
protocols operated in the “cloud-of-clouds” to solve the 
problem of Cloud Storage dependability. 

On the intrusion tolerance side, there have been schemes 
based on the recovery mechanism. Sousa et al. [13] proposed a 
system that optimizes efficiency and survivability by having a 
hybrid solution combining periodic system rejuvenation with 
“reactive recovery”. This recovery is triggered when the 
perceived threat goes beyond a tolerable threshold that can 
affect the correct working of the system. In the same vein, the 
FOREVER service consists of removing faults via proactive 
reconfiguration implemented by robust underlying 
components [14]. Reise et al. [12] reported their 
implementation of proactive recovery on Hypervisor 
virtualization. In this paper, we want to extend the traditional 
SCIT described in [9] to the Cloud environment. To the best of 
our knowledge, there has not been a recovery-based intrusion 
tolerance system designed to leverage the characteristics of 
Cloud Computing. 

III. SCIT ARCHITECTURE PATTERN 

A. High Level Description. 

SCIT architecture has as the goal to protect applications 
and services against malicious faults. SCIT employs a 
recovery-based mechanism. This mechanism consists of 
automatic and periodic cleansing of the servers, applications 
and services on a virtualized or non-virtualized platform. Not 
only does the periodic cleansing provide almost continuous 
clean environment for the servers and applications, but by 
restricting the exposure window of a server replica, we can 
limit the success rate of malicious attacks. Major components 
of SCIT pattern are depicted in Figure 1. At the core is the 
Central Controller managing and controlling all the SCIT 
nodes to be protected. The nodes are usually grouped into 
clusters, each of which contains servers with identical 
functionalities. Diversity of these servers can be employed to 
further reduce the likelihood of malicious exploitations. For 
example, we can have a group of web servers, one running on 
Linux, another on Windows, and a third one on Mac OS. Each 
node within a cluster of similar nodes is directed by the 
Controller to constantly go through the following orderly 
lifecycle: 

 Live Spare state, which is a known good state but 

offline, 

 Active state of duration Wo, where the server 

becomes online to accept and process incoming 

requests, 

 Grace Period state of duration Wg, where the server 

stops accepting new transaction requests and  

completes processing of requests still in the queue,  

 Inactive state, where the server is offline and 
undergoes the restoration cleansing to a known good 
state. 

The time period of the rotation through the four states above 
depends on the cleansing time, which is specific to an 
application or service. In Figure 1, Node 1 is in Active state, 
Node 2 in Live Spare state, and Node n in Inactive state. 

The Controller must be deployed on a physical host 
separate from the one(s) used to deploy the nodes in order to 
avoid a data path from the applications back to the Controller, 
thus any compromise made to the application nodes cannot 
propagate to the Controller. Furthermore, in the current SCIT 
pattern, the link from the Controller to the online node is 
unidirectional. But, the links from the Controller to the offline 
nodes are bidirectional to allow the Controller to check the 
status of the offline nodes during the cleansing process. Note 
that the Controller has full control over switching these links 
from one-way to two-way and vice-versa.  
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Figure 1. SCIT Architecture Components. 

B. SCIT Parameters 

Mean Time to Security Failure. In our previous work [10], 
we have derived a lower bound for the Mean Time to Security 
Failure (MTTSF) as shown in expression (1) below:  

MTTSF ≥ F λ μ (Wo), where 

                                                         (1). 

In (1), h=(h0, h1, h2) is the vector composed of mean 
sojourn times in each of the states - Good, Vulnerable, and 
Attacked respectively; λ is the attack rate and μ is the average 
residence time in the server. It is clear from (1) that MTTSF 
can be made to depend solely on the online window Wo. 
Moreover, we have shown in [10] that as the online window 
decreases, the intrusion tolerance expressed by MTTSF 

increases, i.e. the system is more intrusion tolerant. 
S-Reliability of service or an application was introduced in 

[11] to characterize the quality of service, i.e. application 

functions reliably without the impact of malicious attacks. 

IV. CLOUD-BASED APPROACH 

In the previous section, we presented the SCIT mechanism 
that provides intrusion tolerance to applications and services. If 
we abstract out that mechanism to the level of architecture for 
recovery-based intrusion tolerance, then we can design and 
implement the architecture by extending it to Cloud-based 
environment. 

A. System Overview 

A C-SCIT system has four major entities: Central Controller, 

Proxy, SCIT Local Controllers, and Application Nodes. 

The Application Nodes are application replicas that have to be 

protected by C-SCIT, such as Web Server, or Web 

Application. Each Node is assigned to run in a domain on the 

computing platforms of the Cloud Providers. We can envision 



 

 

 

having one Node per Cloud, and the number of Nodes depends 

on the level of intrusion tolerance required by the user’s 

application. The clean image of the Application Node must be 

safely stored locally in the Cloud Storage. We have a copy of 

the image in each Cloud instead of a centralized location so as 

to have it close to the Application Node, thus avoiding large 

data transfer for each cleansing cycle. 

Each Application Node is managed by a SCIT Local 

Controller. A Local Controller is responsible for maintaining 

the clean image for the Node, and directing its associated 

Node through the four states of Life Spare, Active, Grace 

Period, and Inactive. Maintaining the image includes keeping 

it in a protected area, along with the capability to compute the 

checksum of the image based on the algorithm dictated by the 

Central Controller. The link between an Application Node and 

a SCIT Local Controller is unidirectional from the latter to the 

former so that any compromise to the Application cannot 

affect the Local Controller. The existence of Local Controllers 

aims at limiting the amount of messages and data to be 

exchanged between the Nodes and the Central Controller over 

the WAN during C-SCIT operations. 

The Central Controller coordinates the cleansing procedure by 

initiating an operational message to the SCIT Local 

Controllers running in a virtualized platform at each Cloud 

Service Provider. This control includes the assurance that the 

images of the Application/Service instances are pristine. 

Preferably, the Central Controller is deployed in an 

environment/domain outside of the Cloud environments where 

the Application Instances and SCIT Local Controllers reside. 

The Controller’s domain can be on the customer’s premise or 

a third-party Cloud. 
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Figure 2. System Architecture of C-SCIT. 

 

Finally, the Proxy has the task of interfacing directly with 

application end-users and mediating requests and responses 

between the end-users and the active Application Node. Note 

that an end-user can be a human or another system. It could 

also be a service participating in a composite application in a 

Service-Oriented Architecture (SOA) system. In Figure 2, the 

unidirectional link between the Central Controller and the 

Proxy was not shown to avoid making the figure too busy. It is 

clear that the design of C-SCIT added the new entity of SCIT 

Local Controller and the delegation of some of the duties from 

the Central Controller to the Local Controllers. 

B. Central Controller Components 

In order to manage the set of SCIT Local Controllers and 

indirectly the Application Nodes, the Central Controller needs 

the following components: 

 Service Registry storing information about the 

applications and services to be managed and protected, 

including their images with checksums, their IT-QoS 

requirements, and operational parameters such as the 

exposure windows. 

 Algorithm Modules computing the operational parameters 

based on the desired levels of intrusion tolerance. 

C. Advantages 

While C-SCIT fulfills the self-cleansing as specified by the 

SCIT architecture, C-SCIT brings additional advantages in 

terms of dependability and intrusion tolerance thanks to the 

characteristics of the Cloud Computing paradigm. 

Geographical Distribution. Since the Application Nodes are 

dispersed to different Cloud vendors, whose data centers are 

most likely to be geographically distributed, C-SCIT benefits 

from this feature, which conceptually enhances its 

dependability, especially against natural disaster, power 

outage, or weather storm. Actually, even some individual 

Cloud providers such as Amazon have offered the option to 

allow an application to deliver content from different 

geographical sites [2]. 

Diversity. Another benefit is that C-SCIT enjoys some 

diversity from having Nodes among various Clouds. Indeed, it 

is probable that two Clouds would have dissimilar computing 

platforms, including OS and virtual machine products, so that 

one can always select vendors with diverse environments. 

Speculatively, this diversity may decrease the success rate of 

malicious attacks, except in the case of a concerted DDoS 

attack. 

Flexible Resource Utilization. Assuming that some Service 

Level Agreement (SLA) has been negotiated with Cloud 

vendors for C-SCIT, flexibility and “pay-as-you-go” model for 

resource utilization are useful for C-SCIT in its adaptive 

support for satisfying Intrusion Tolerance QoS (IT-QoS), as 

we will show in a later section. The notion of IT-QoS was 

introduced in [11] to help the design and implementation of 

intrusion tolerance characteristics for services.  

D. Challenges 

Given the benefits discussed above, what are the challenges in 

realizing C-SCIT due to Cloud-based environment? 

Connection Security. SCIT pattern requires that the 

communication between Central Controller and Nodes be 

trusted to prevent any breach of the Controller. This can be 

achieved easily if the Controller and Nodes are collocated and 

within the confine of a well protected network.  Another 



 

 

 

option to use a hardware solution was described in [9]. In the 

case of C-SCIT, the connection between a SCIT Local 

Controller and its managed Node can be made secure since 

they are also co-located within one Cloud’s data center. For 

the connection between the Central Controller and the SCIT 

Local Controllers, a secure Virtual Private Network link must 

be established to ensure that signals and messages cannot be 

tampered. 

Connection Reliability. The other challenge of C-SCIT is that 

connection between the Central Controller and the SCIT Local 

Controllers communicate with each other over a network 

connection, most likely a WAN, which is susceptible to 

failure. This failure will affect the requirement that C-SCIT 

has to provide some guarantee with respect to MTTSF (Mean 

Time to Security Failure), availability and S-Reliability. In this 

paper, we assume that there is an SLA specifying the 

connection reliability. Without this assumption, retry protocol 

needs to be devised to respond to this challenge. 

Image Integrity. Since the cleansing procedure depends on the 

application image, we need a scheme to ensure its integrity. 

This image will change over time, due to patches and upgrades 

made to the application. Image updates will be triggered by 

the Central Controller sending a signal to every SCIT Local 

Controller managing the same application. The Central 

Controller keeps the checksum of the application’s image in 

its “safe store”, which is part of the Service Registry. 

V. C-SCIT PROCEDURES 

C-SCIT has two main procedures to perform self-cleansing of 

the applications and services. The cleansing procedure is 

applied to an Application Node after its Grace Period expires. 

The Activation procedure will switch the Live-Spare Node to 

the Online mode. 

A. Assumptions 

We made two assumptions: a) The Service Registry is a 

trusted repository of all the application images; b) The 

connection link between the Central Controller and the Local 

Controllers in the Clouds is reliable. If assumption a) is not 

valid as in the case where the Controller and its components 

are deployed in a separate Cloud, then a more complex 

scheme has to be designed. Should assumption b) fail to hold, 

either a retry scheme or a scheme that switches the cleansing 

procedure to another Application Node has to be instituted. 

B. Cleansing Procedure 

The procedure described below assumes that the Service 

Registry is fully trusted, only accessible by the Central 

Controller, and maintains the authoritative image copy of the 

application/service (Figure 3). Before authorizing the SCIT 

Local Controller to load the pristine image on the Application 

Node, the Central Controller verifies whether the checksum 

computed by the Local Controller matches with the one stored 

in the Service Registry (steps 1-2). If the two checksums 

match (step 3), then the Central Controller gives a go ahead 

with loading the image via authorizeLoadImage(). If the two 

checksums don’t match, the Central Controller will transfer a 

new image using transferImage() (step 4), then repeat the 

checksum verification process as above. Verifying the 

checksum of the image stored locally in the Cloud Storage of 

the Application Node is necessary to make sure of the image’s 

integrity before the loading. 

 

<<subsystem>>

:Central Controller

<<agent>>

:Local Controller 1

<<application>>

:Application Node 1

1: 

computeImageChecksum()

3: [checksum matched] 

authorizeLoadImage()

5: [checksum matched]

loadImage()

4: [checksum not matched] 

transferImage()

<<component>>

:Service Registry

2: 

getChecksum()

 
Figure 3. C-SCIT Cleansing Procedure Diagram. 

C. Activation Procedure 

The Activation procedure in C-SCIT shown in Figure 4 below 

consists of the following steps: 

Step 1. When the time comes to initiate the procedure, the 

Central Controller sends two messages in parallel to two SCIT 

Local Controllers: a deactivate() message to the Local 

Controller managing the currently active Application Node, 

and an activate() message to the one associated with the live-

spare Application Node. In the above diagram, the active pair 

is (SCIT Local Controller 1, Application Node 1) and the live-

spare one is (SCIT Local Controller 2, Application Node 2). 

Step 2. The SCIT Local Controllers turn around and sends the 

appropriate orders to their managed Nodes. In the above 

example, SCIT Local Controller 1 deactivates Node 1, while 

SCIT Local Controller 2 activates Node 2.  

Step 3. Upon receiving the ready() messages from both Nodes, 

the Central Controller requests the Proxy to replace the 

currently active Node with the newly active Node. 

Note that at the beginning when there is no active Node, there 

is only one step that is to activate the first Live Spare Node. 

 

<<subsystem>>

:Central Controller

<<agent>>

:Local Controller 2

<<application>>

:Application Node 2

1.1: 

[state=offline-

spare] activate()

<<subsystem>>

:Proxy

<<agent>>

:Local Controller 1

<<application>>

:Application Node 1

1.2: 

[state=online] 

deactivate()

2.1: ready()

2.2: ready()

3.1: activate()

3.2: deactivate()

4: swap(Instance 1, 

Instance 2)

5.1: connect()

5.2: disconnect()

 
Figure 4. C-SCIT Activation Procedure Diagram. 



 

 

 

VI. PROVIDING IT-QOS LEVELS 

A. Impact on SCIT Parameters 

Unlike in the implementation where Controller and Nodes are 
co-located in a data center, the distributed nature of C-SCIT 
will incur some network latency. So, this latency has to be 
factored in the evaluation of the cleansing time Tcleansing. 
Let C = {C1, …, Cp} be the set of available Clouds. For the 
purpose of C-SCIT, each Cloud Ci is characterized by the 
image loading time (tload), communication latency (tcom), 
checksum verification time (tverify), probability that checksum 
test fails (Pcf), and maybe correction time (tcorrect). The latter is 
incurred only when the image stored for the to-be-cleansed 
Node fails the checksum test, and the image needs to be re-
transferred to the problematic Cloud as shown in step 4 of 
Figure 4. Thus, we can write: 
      Ci = (ti,load, ti,com, ti,verify, ti,correct, Pi,cf)                                 (2). 
 
Cleansing Time. Given the above procedure depicted in Figure 
3, the average cleansing time for an Application Node in C-
SCIT is: 
      ti,cleansing = ti,load + ti,com + ti,verify + Pi,cf * ti,correct         (3). 
Then, the overall cleansing time for C-SCIT system becomes: 
      Tcleansing = max { ti,cleansing ; for i = 1, .., n}.                     (4). 
Note that the complexity degree of evaluating Tcorrect is a 
function of the complexity of the correction scheme, 
especially when assumptions about Service Registry’s security 
and connection link’s reliability mentioned in the Cleansing 
Procedure section don’t hold. 
Activation Time. From Figure 4, we need to define the time 
spent by the Activation process, as it involves a few messages. 
Normally, this activation time is small compared to Tcleansing. 
The overall activation time will be the maximum of all 
activation times: 
Tactivation = max { ti,activation } for i = 1, .., n.                           (5). 
Number of Pairs. More pairs (Local Controller, Application 
Node) would be required as: 

 The smaller the exposure window Wo is, the faster is the 
rotation cycle; 

 The cleansing time Tcleansing has an adverse effect on the 
rotation cycle, i.e. the longer it takes to restore a node, the 
longer is the rotation cycle.  

Based on this, we arrive at the expression for the number of 
Nodes N that is needed to provide an exposure window of 
value Wo: 

                                                  (6).                                                             

If we let Wg = Wo, then (2) becomes: 

2                                                      (7). 

For example, if the average Tcleansing is equal to 12 min and 
Tactivation = 2 min, and we want Wo = 3 min in order to achieve a 
certain level for MTTSF, then the C-SCIT Intercloud requires 
N = 7 pairs. Unlike the enterprise environment where the 
maximum of Application Nodes is constrained by the 
hardware configuration of the physical hosts that have been 
procured, the Cloud environment offers much more elasticity 
in terms spawning more or less virtual machines for 
Application Nodes and Local Controllers.  

B. C-SCIT Operation 

In this section, we will examine how C-SCIT operates to 

satisfy a desired MTTSF for an application or service. Based 

on the analytical results obtained in [13] that MTTSF can be 

tuned by varying the exposure window W0, the function 

calculateConfig() returns W0 and the number of Nodes 

necessary to maintain the given level of MTTSF. Figure 5 

summarizes the main steps of C-SCIT operational activity 

embodied in the function C-SCIT-Operate(). In the scheme 

presented below, C denotes the set of Clouds with which C-

SCIT has established SLAs. The queue Qg is built out of a 

subset of C. At one point in time, only the Clouds in Qg are 

utilized by the Central Controller. Queue Qs contains the 

Clouds with the pair of loaded Application Node and Local 

Controller. First, the scheme calculates the number of Nodes 

N and value of exposure window Wo (line 1). Then, N Clouds 

are reserved in Qg for C-SCIT operation (line 2). Two threads 

for cleansing and activation will be instantiated (lines 3-4); 

they follow the procedures described in section V-A and V-B 

respectively. Two different timers are used to signal these two 

threads for when to initiate the actions of cleansing and 

activation.  The values of these timers take into account 

Tcleansing and Tactivation. 

 

C-SCIT-Operate() 

Input 

 m: MTTSF value; 

 C={C1,..,Cp}: set of available Clouds; 

 λ and μ: average rate of attacks and attack residence 

respectively; 

 

1. (W0, N) ← calculateConfig(m, C); 

2. Build queue Qg with first N Clouds taken from C; 

3. Fork a thread and invoke cleanse(Qg);  

4. Fork a thread and invoke activate(Qg); 

 

calculateConfig(m, C) 

5. Compute Tcleansing using (4). 

6. Compute Tactivation using (5). 

7. Solve equation F(2w) = m for w, where F is the 

expression given by (1). Let Wsol be the solution. 

8. Wo ← Wsol; 

9. Wg ← Wsol; 

10. Compute N using (7); 

11. return (Wo, N); 

 

cleanse(Qg) 

12. While TRUE 

13.    Ci ← dequeue(Qg); 

14.    Perform cleansing steps of Ci as in section V-A. 

15.    enqueue(Qs, Ci); 

16.    Wait(timer1); 

17. EndWhile 

 

activate(Qg) 

18. While TRUE 

19.    Ca ← currently active Cloud; 



 

 

 

20.    Cs ← dequeue(Qs); 

21.    If Cs = null 

22.       return error; 

23.    EndIf 

24.    If Ca = null  

25.    Then 

26.       Activate Cs; 

27.    Else 

28.       Perform activation steps as in section V-B. This     

includes Ca and Cs; 

29.    EndIf 

30.    Wait(timer2); 

31. EndWhile 

Figure 5.  C-SCIT Operation Scheme. 

When there is a need to increase or decrease the desired 

MTTSF, the above scheme can be augmented to reconfigure 

C-SCIT. For instance, if there is an alert that the attack rate is 

increasing, and more intrusion intolerance is required, the 

reconfiguration scheme can be invoked. Indeed, the 

augmented scheme consists of killing the current threads for 

cleansing and activating, and call C-SCIT-Operate(). This will 

trigger a recalculation in line 1, and spawn new threads with 

the newly computed values for number of Nodes and exposure 

window. Since Cloud-based environment can potentially and 

elastically provision largely variable number of virtual 

machines and domains, adding more Application Nodes to 

queue Qg or releasing unused Clouds should not pose any 

problem, as in the case of an enterprise data center.  

VII. USAGE OF COMMERCIAL CLOUD SERVICE API SETS 

As a proof of concept, we surveyed the APIs of Amazon Web 

Services (AWS) [2] and Windows Azure [15] to determine 

whether the commercially available Cloud Services provide 

sufficient tools allowing us to implement the proposed C-

SCIT. Study results are promising. For example, the function 

deactivate() issued by a Local Controller to an Application 

Node can be implemented by the command ec2-terminate-

instances or the RESTFul web service StopInstances for AWS 

and the Delete Hosted Service for Windows Azure. Bringing 

up an Application Node via the function activate() can be 

achieved by invoking the AWS StartInstances web service and 

Microsoft’s Create Hosted Service. Communication between 

the Central and Local Controllers can be made secure since 

Cloud Services provide a system for key management to 

protect message and data exchange, as we have assumed 

earlier. A prototype will be planned to be built to demonstrate 

the validity of our assumptions and the feasibility of our 

proposed design. 

VIII. CONCLUSION AND FUTURE WORK 

Motivated by the increasing adoption of Cloud Computing, 
and the need to make services intrusion tolerant in the Cloud 
environment, we have proposed a Cloud-based approach in 
designing SCIT, a recovery-based intrusion tolerance 
mechanism. The proposed implementation would provide 
enhanced availability and resilience of the services deployed 
in the Cloud. Thanks to inherent nature of Cloud Computing, 
this approach brings additional benefits of elastic redundancy 

and diversity to the traditional SCIT architecture. The 
elasticity allows SCIT to easily adapt to reconfigure itself and 
adapt to new required levels of intrusion tolerance expressed 
via values of MTTSF for instance, without being constrained 
by the fixed hardware configuration as in a pure enterprise 
environment, while multi-cloud diversity hardened the 
solution against repeated and/or concerted malicious attacks. 

In this paper, we have made the assumption of 
dependability for the connection between the Central 
Controller and the partnering Clouds. Enhancements such as 
retries will need to be made by adding more steps in the 
Cleansing and Activation procedures to ensure dependable 
operation of C-SCIT. As the performance of retries may risk 
hindering the operationability of C-SCIT scheme, experiments 
will have to be performed to further show that these 
enhancements are possible. 
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