
Incorruptible Self-Cleansing Intrusion Tolerance 
and Its Application to DNS Security 

Yih Huang, David Arsenault, and Arun Sood 
Department of Computer Science and Center for Image Analysis

George Mason University, Fairfax, VA 22030 
{huangyih, darsenau, asood}@cs.gmu.edu

  

Abstract— Despite the increased focus on security, 
critical information systems remain vulnerable to cyber 
attacks. The trend lends importance to the concept of 
intrusion tolerance: there is a high probability that systems 
will be successfully attacked and a critical system must fend 
off or at least limit the damage caused by unknown and/or 
undetected attacks. 
In prior work, we developed a Self-Cleansing Intrusion 
Tolerance (SCIT) architecture that achieves the above goal 
by constantly cleansing the servers and rotating the role of 
individual servers.  In this paper1, we show that SCIT 
operations can be incorruptibly enforced with hardware 
enhancements. We then present an incorruptible SCIT 
design for use by one of the most critical infrastructures of 
the Internet, the domain name systems.  We will show the 
advantages of our designs in the following areas: (1) 
incorruptible intrusion tolerance, (2) high availability, (3) 
scalability, the support for using high degrees of 
hardware/server redundancy to improve both system 
security and service dependability, and (4) in the case of 
SCIT-based DNSSEC, protection of the DNS master file and 
cryptographic keys.  It is our belief that incorruptible 
intrusion tolerance as presented here constitutes a new, 
effective layer of system defense for critical information 
systems. 

Index Terms— computer security, self-cleansing system, 
intrusion tolerance, domain name system 

I. INTRODUCTION

A.  Motivations of SCIT 

Networks and the systems that run on them have 
become essential to the operation of business enterprises, 
functioning of the global economy, and the defense of the 
nation.  Yet these critical information systems remain 
vulnerable even with the recently increased focus on 
security [1].  The problem stems in large part from the 
constant innovation and evolution of attack techniques.  
The increasing sophistication and incessant morphing of 

                                                          
1

This research is part of the Critical Infrastructure Protection Project 
funded by the National Institute of Standards and Technology.  The 
paper is based on “Securing DNS Services through System Self 
Cleansing and Hardware Enhancements,” by Yih Huang, David 
Arsenault, and Arun Sood, which appeared in Proceeding First 
International Conference on Availability, Reliability, and Security 
(AReS 2006), Vienna, Austria. 

cyber attacks lend importance to the concept of intrusion 
tolerance: a critical system must fend off or at least limit
the damages caused by unknown and/or undetected 
attacks. 

An unknown attack is an attack based on new 
vulnerabilities, exploits and/or attack techniques that are 
yet unknown to the public. An undetected attack is a 
successful attack that evades intrusion detection 
mechanisms long enough to cause significant losses.  The 
two concepts are related but not identical: while an 
unknown attack has greater opportunities to evade 
detection, an undetected attack could be based on 
previously known attack techniques.  The two combined 
represents the “unknown unknowns” faced by today’s 
critical information systems in cyber warfare.   

Our response to these formidable challenges is Self-
Cleansing Intrusion Tolerance, or SCIT.  The underlying 
assumption is that all software is malleable and intrusion 
detection cannot absolutely detect all system breaches.  It 
follows that a server that has been online and exposed to 
attacks must be assumed compromised.  Consequently, an 
online server must be periodically cleansed to restore it to 
a known clean state, regardless of whether an intrusion is 
detected or not.  In [2,3,4,5,6,7] we presented our designs 
of SCIT-enabled firewalls, web servers, and DNS servers.    

B.  Domain Name Systems 

As part of the Internet infrastructures, the Domain 
Name System (DNS) is essentially a distributed database 
that maps easily-remembered host names to their 
numerical IP addresses [8]. Each name server maintains 
the domain name information regarding a subspace, or a 
zone, in the DNS name space. The domain names and IP 
addresses pertaining to a zone are stored in a master file, 
maintained by the primary name server of that zone. Each 
zone also has one or more secondary name servers, which 
periodically synchronize local DNS data with the master 
file. Secondary name servers respond to DNS queries but 
are not involved in maintaining the master file.  DNS also 
supports the dynamic updates of domain names so that 
new domains can be added or the attributes of existing 
domains can be changed in a near real-time manner [9].  
Because of the critical importance of DNS, many sites 
deploy dedicated backup servers which take over DNS 
services in face of online server failures. 

JOURNAL OF NETWORKS, VOL. 1, NO. 5, SEPTEMBER/OCTOBER 2006 21

© 2006 ACADEMY PUBLISHER



DNS was later enhanced with DNS Security 
Extensions (DNSSEC) to provide data origin 
authentication [10].   With DNSSEC, each zone is 
equipped with (at least) a pair of public and private keys.  
The private key is used to digitally sign DNS data.  
Clients verify the origin of received DNS data by 
checking accompanying signatures using the public key.  
The integrity of the approach depends on the secrecy of 
the private keys. 

Unfortunately DNS/DNSSEC implementations contain 
vulnerabilities and have been the target of numerous 
exploits and attacks [11,12,13].  Indeed, the SANS 
(SysAdmin, Audit, Network, Security) Institute places 
BIND, the most popular DNS/DNSSEC implementation, 
as the number one among the top 10 vulnerabilities to 
Unix systems [14].  

C. Contributions 

The focus of this paper is on a hardware driven 
implementation of SCIT.  This is distinct by the primarily 
software approaches in [2,3,4].  The effectiveness of 
SCIT depends on fast self-cleansing cycles, thus 
restricting would-be attackers to short time windows to 
breach the system before restoration through self-
cleansing.  In response, an attacker may target SCIT itself 
in an attempt to defeat this last line of system defense. 

In this paper we investigate the survivability of SCIT 
under unknown and/or undetected attacks and present 
hardware solutions to enforce several incorruptible 
properties of SCIT operations, called SCIT Primitives. 
We call the new generation of the SCIT framework 
SCIT/HES (for Hardware Enhanced Security).  We then 
apply SCIT/HES to DNS services, resulting in the DNS-
HES (DNS with Hardware Enhanced Security) 
architecture.  Our design improves the security of critical, 
infrastructure servers in the following areas. 

• High availability — the graceful handling of server 
failures.   

• Scalability — the support of high degrees of 
hardware/server redundancy to improve both 
system security and availability. 

• Incorruptible intrusion tolerance — the operations 
of SCIT/HES cannot be compromised by remote 
attacks.  There could still be successful, undetected 
attacks on online servers.  However, SCIT/HES will 
continue to limit the resulting effects and losses by 
server rotation and cleansing. 

• Protection of the zone master file and private keys
in the case of DNS-HES — the zone master file and 
DNSSEC private keys are never exposed to the 
public Internet and therefore are not subject to 
remote attacks.  With many, if not all, DNS and 
DNSSEC implementations, the master file and 
some private keys must be kept online to support 
secure dynamic domain name updates.  These 
requirements are nullified by the DNS-HES 
architecture. 

We point out that the first two advantages above are 
also supported by our previous, software-based SCIT 
designs [2,3,4].  The additional properties of 

incorruptibility and scalability of SCIT/HES (and DNS-
HES in particular) are derived from the new designs
presented in this paper, which in turn is based on concise 
and preliminary results published in [5,6]. 

It must be emphasized that SCIT systems (including 
the hardware-enhanced designs presented here) do not 
exclude the use of intrusion prevention and detection 
technologies, but rather add another layer of defense, 
extending the idea of "defense-in-depth" through periodic 
system cleansing.   

The remainder of the paper is organized as follows.  
We give related work in Section II and review SCIT 
basics in Section III.  We present the SCIT/HES 
framework in Section IV.  Specifically we list a set of 
criteria, called SCIT Primitives, which collectively ensure 
the incorruptibility of server rotation and cleansing 
cycles, and in the same section describe the hardware 
enhancements to SCIT in order to enforce said primitives.  
As an example, we apply SCIT/HES in Section V to the 
DNS service and present the architecture of DNS-HES 
clusters. We give in Section VI the DNS server rotation 
algorithms for use by DNS-HES.  In Section VII, we 
discuss the ramifications of SCIT/HES on hardware 
redundancy, service availability, and system security.  
We give concluding remarks in Section VIII. 

II. RELATED WORK

Our assumption that undetected intrusions are 
inevitable and must be treated as an inherent problem of 
clusters is similar to that of Recovery Oriented 
Computing, which considers software and human errors 
as the norm and handles them by isolation and 
redundancy [15].   

Simple forms of server rotations have previously been 
employed in high-availability systems, where backup 
servers rotate online to ensure uninterrupted service in 
face of primary server failures [16,17,18,19].  SCIT 
systems share many design challenges with high-
availability systems, such as the seamless server 
transitions and sharing of server identities (IP and/or 
hardware addresses).   Examples of high-availability 
systems include DNS servers, NFS servers, 
authentication services, firewalls, IPsec gateways, and 
virtual private network gateways.  The methodology 
presented in this paper can be used to protect these 
servers. 

We point out that in many server clusters the term 
“server rotation” often refers to “rotating online servers in 
servicing arriving clients,” typically for the purpose of 
workload sharing.  Such rotations are not related to the 
work presented here.  On the other hand, our server 
rotation and self-cleansing processes can be considered as 
a special form of software rejuvenation [20,21,22,23] for 
use by server clusters.   

III. SCIT REVIEW

A SCIT cluster comprises a set of interconnected 
servers that cooperatively provide a predefined service.  
Any server in the cluster periodically switches between 
two modes: online servicing clients (which are outside 

22 JOURNAL OF NETWORKS, VOL. 1, NO. 5, SEPTEMBER/OCTOBER 2006

© 2006 ACADEMY PUBLISHER



the cluster) and offline for cleansing.  Either a central 
controller or a distributed control mechanisms using a 
Cluster Communication Protocol (CCP) can be used to 
coordinate server mode rotations [4].  A high level view 
of SCIT cluster operations is depicted in Fig. 1.  

Part of the rotation process is to bring online servers 
offline.  Next, the system is rebooted to initiate cleansing 
procedures in order to return to a well-defined clean state.  
At a minimum such a state includes system binaries, 
system configuration files, critical utilities, service 
binaries (BIND binaries, Apache binaries, etc.), and 
service configuration files.  Many services may include 
(part of) application data as well.  For SCIT DNS servers, 
for instance, the clean state also covers the DNS master 
file and cryptography keys.  For the SCIT web servers, 
the clean state covers static HTML pages and web scripts.   
In many applications, audit functions can also be 
performed on offline servers. 

IV. HARDWARE ENFORCED INCORRUPTIBILITY 

When considering unknown and undetected attacks, 
one must assume that the self-cleansing process is also 
subject to attacks.  It is indeed possible to interfere with 
the operations of SCIT.  To interfere with the self-
cleansing process after rebooting, an attacker could install 
Trojan horse copies of system/cleansing utilities, hack 
startup tasks/processes, or even tamper with the 
bootstrapping procedure of the operating system.  The 
successful completion of cleansing does not guarantee the 
assumption of a desired online service either.  The server 
could already have been under attack while cleansing, 
and going online inevitably involves communications, 
giving opportunities for unpredicted breaches.  Lastly, if 
an online server has been taken over by attackers, the 
process of counting down to the next rebooting could be 
interrupted, stopping SCIT cleansing cycles all together. 

A. SCIT Primitives 

In the following we present a set of properties, or 
primitives, so that if a given SCIT cluster satisfies these 
properties, then it is said to be SCIT incorruptible.  In the 
discussion an exposed node refers to an online server 
inside the SCIT cluster or any computer/server outside 
the cluster.  Among the primitives below, Primitives P1 
to P4 apply to all SCIT designs while Primitive P5 
applies to only those with a central controller. 

P1. Inevitability of periodic server cleansing. A 
server will be rebooted and subsequently cleansed 
within a predetermined2 length of time. 

P2. No communications from exposed nodes to 
cleansing servers.  Consequently, a cleansing 
server is not subject to remote attacks.  Notice that 
we do not disallow cleansing nodes to send 
messages/signals to exposed nodes. 

P3. Completion of cleansing. The cleansing procedure 
will be completed so that system is in a predefined 
clean state. 

P4. Guaranteed role assumption.  A newly cleansed 
server will assume a designated online role/identity. 

P5. No communications from exposed nodes to the 
central controller.  It is thus impossible to attack 
the central server at any time.  Again, we allow the 
controller to send messages/signals to exposed 
nodes. 

Not all SCIT designs satisfy these demanding 
requirements.  In fact, with the assumption that software 
is eventually corruptible, an entirely software-based SCIT 
system cannot satisfy all the primitives and therefore is 
subject to compromises in its own operations. Next, we 
present a SCIT framework that is incorruptible as defined 
above through the use of simple hardware enhancements. 

B. Hardware Enhancements 

The SCIT primitives are best achieved by isolation.  A 
server is completely shielded from external influence if it 
is “physically” cut off and if it does not process data left 
by online servers.  To achieve cutting-off in an 
incorruptible way, simple hardware devices, such as on-
off switches, are employed.  We refer to the resulting 
framework as SCIT/HES (for Hardware Enhanced 
Security). 

In SCIT/HES, a central controller is used to manage 
server rotations and role assignments.  (In 
implementations, the controller could also be an off-the-
shelf server box; the name suggests its use not its 
construction)  It also maintains the communication 
configuration, shown in Fig. 2, where the controller keeps 
two-way communication paths with clean servers but 

                                                          
2
 For additional protection the server cleansing time could be random 

and change in each cycle.  The time length in Primitive P1 is the longest 
cleansing cycle allowed. 

Online
servers;

potentially
compromised

Figure 1. A high-level view of SCIT cluster operations 

Server Mode 
Rotation 

Offline 
servers; in 

self-cleansing 

Clients

Clients

ClientsSCIT/HES 
Cluster 

Offline 

Online Central 
Controller 

Figure 2.  Communication configuration of SCIT/HES 

JOURNAL OF NETWORKS, VOL. 1, NO. 5, SEPTEMBER/OCTOBER 2006 23

© 2006 ACADEMY PUBLISHER



only one-way paths to reach online servers.   
Consequently, an online server or any node outside the 
cluster (the exposed nodes) can reach neither the 
controller nor those servers in cleansing.  Online servers 
of course must have two-way communications with 
clients outside the cluster.  We emphasize that the arrows 
in Fig. 2 represent permissible directions in 
communication; they do not mandate dedicated 
communication channels. 

Due to server rotations, the configuration of a 
SCIT/HES cluster is dynamic.  Communication paths 
must be cut and reestablished when servers switch 
between online and offline modes.  In SCIT/HES, the 
central controller also manages communication paths.  
The setup between the controller and an individual server 
is presented in Fig. 3. In the figure, we use solid lines to 
represent network links for TCP/IP message exchanges 
(such as Ethernet cables) and dashed lines to represent 
wires/fibers that conduct electromagnetic control signals. 

As seen in Fig. 3(a), the controller has two signal lines 
to reach each server: a reset line and a toggle line.  A 
reset signal forces the server to reboot.  The toggle signal 
controls two switches that are always in opposite states.  
A toggle signal followed by a reset switches the online 
server in Fig. 3(a) to the offline mode in Fig. 3(b).  As 
such, a server can either receive incoming messages from 
outside (and thus is subject to attacks) or send messages 
to the controller, but never both at the same time.  Clean 
servers receive inputs from only the central controller.  
Primitives P2 and P5 are thus fulfilled. 

With the central controller shielded from any form of 
external influence and in charge of periodically resetting 
servers, Primitive P1 is fulfilled. 

Primitive P3 concerns the bootstrapping and cleansing 
procedures used by SCIT servers after receiving reset 
signals.  A simple way to enforce Primitive P3 is that the 
entire system uses read-only storage for system state.  For 
instance, all system components and service software are 
stored on a CD-ROM.  In this case, rebooting and loading 
the system from the CD-ROM is the entire cleansing 
process; afterward the system is in a known clean state.  

This solution has potential performance problems, due to 
the slowness of optical drives.  Also, many services 
require the predefined “system state” to cover (some) 
data.   

A more flexible approach is to bootstrap a server from 
a read-only device. However the application data and the 
binaries that the server needs to perform its online 
functions are stored in a write-able storage, called the 
root hard drive.  When the server enters an online mode, 
it switches to the hard drive as the root file system.  The 
self-cleansing procedure checks the integrity of the root 
hard drive and restores it to a clean state if corruptions are 
detected. In the self-cleansing mode, all executables (the 
kernel, utilities, system check tools, etc.) are retrieved 
from the read-only device.  We notice that before a server 
goes online, it cannot be reached by exposed nodes and 
all its configurations and binaries are from read-only 
storage; hence the fulfillment of Primitive P3.   

Lastly, it is the (never exposed) central controller that 
assigns a role to a newly cleansed server.  While 
receiving directions of its new role from the controller, 
the server is still disconnected from exposed nodes. The 
process of role assumption is not subject to external 
influence, and Primitive P4 is fulfilled. 

V. DNS-HES CLUSTER

In this section, we apply the SCIT/HES frame work to 
one of the most critical infrastructure services of the 
Internet, DNS.  In our design, a DNS-HES cluster 
comprises N≥4 identical DNS servers running in the 
configuration shown in Fig. 4.  It is for use in a DNS zone 
to provide domain names in the zone to the rest of the 
Internet. A DNS-HES cluster makes available two servers 
for servicing clients on the Internet (labeled P for Primary 
and S for Secondary in the figure).  It advertises two IP 
addresses, a primary name server address and a secondary 
name server address.  The generalization to support a 
tertiary DNS server is omitted; its design and 
functionality are similar to those of the secondary server.   

At any point in time only one of the servers will be 
operating in one of the following four modes: (1) Mode 
P: Primary DNS, communicating with clients using the 
primary IP address, (2) Mode S: Secondary DNS, 

Central
Controller 

Central
Controller 

Reset

Toggle

Clients

Clients

(a) a server presently online 

(b) the server after a toggle signal and 
a reset signal; now offline 

Figure 3.  The hardware enhancements in SCIT/HES 

One or 
more 

server in 
cleansing 
(Mode C) Central 

Controller 

P 

S 

BMaster

Online 0

Online 1

Clients 

Clients 

Network  
Link 

Electrical/Optical 
Signal Line 

Figure 4. DNS-HES Cluster 

24 JOURNAL OF NETWORKS, VOL. 1, NO. 5, SEPTEMBER/OCTOBER 2006

© 2006 ACADEMY PUBLISHER



communicating with clients using the secondary IP 
address, (3) Mode C: Offline for self-cleansing with no 
public IP address, and (4) Mode B: Backend server, 
processing pending dynamic DNS updates in the 
background with no public IP address.  At any time, there 
is one primary, one secondary and one backend server.  
The three servers are said to be on-duty. The present 
primary and secondary servers are said to be online. The 
remaining N−3 servers in the cluster will be in cleansing.  
They are essentially redundant, backup servers.  If the 
number of cleansing server is small (e.g., N−3=1 or 2), 
the level of redundancy is in line with those of many 
important DNS sites where each online DNS server has a 
dedicated backup server.  DNS-HES provides the options 
of using higher degrees of redundancy to improve both 
security and service availability.

Also shown in Fig. 4 are three backend storages: a 
Master storage (named after its primary contents, the 
DNS master file) and two Online storages.  The Master 
storage also stores the DNSSEC private keys.  It cannot 
be accessed by any server that is presently online.  An 
Online storage is used to temporarily store requests for 
dynamic DNS updates and must be accessible by the 
online primary server.  Backend stores can be 
implemented as NFS servers or storage devices attached 
to storage area networks (such as iSCSI hard drives).  
They are considered part of the intranet, and a network 
connection is required for a server to access a backend 
store.   

In addition to resolving the IP addresses of domain 
names, a primary server also accepts the requests of 
dynamic domain name updates.  In DNS-HES the 
processing of these requests is delegated to the backend 
server, as illustrated in Fig. 5.  In Fig. 5(a), incoming 
requests are stored in Online storage α, where α is either 
0 or 1.  We use β to denote “the other” Online storage.  
After a new primary is rotated online, as in the case of 
Fig. 5(b), it stores new requests of dynamic updates on 
Online storage β, whereas the backend server processes 
pending requests in Online storage α, left by the previous 
primary server in Fig. 5(a).  After a second primary 

rotation, the configuration returns to Fig. 5(a).  We note 
that the Master storage is inaccessible from the public 
Internet in either configuration.  We also point out that 
rotations of the backend server do not change the use of 
online storages.  The change depicted in Fig. 5 is 
triggered by only the rotation of the primary. 

To service DNS data to the Internet, a primary or 
secondary DNS server has to download a copy of the 
master file from Master storage to their local file systems.  
In this arrangement, local copies of the master file on 
online servers are exposed to remote interferences (for 
instance, a local copy could be tampered with or removed 
entirely by a successful attacker).  The master copy, 
stored in the Master storage, nevertheless is never 
exposed.  Dynamic DNS updates are performed on the 
master copy by the backend server, which is not 
connected to the Internet either.  Private keys used to sign 
dynamic domain name changes are also stored in the 
Master storage and accessed only by the backend server.  
The DNS master file and the DNSSEC private keys are in 
this way shielded from direct cyber attacks. 

It can be argued that the backend server and the Master 
storage are still subject to indirect attacks, whereby an 
attacker sends to the primary server dynamic DNS update 
requests specifically formatted to trigger vulnerabilities in 
the software running on the backend server.  While this 
observation is correct, the consequences can easily be 
handled as follows.  First we point out that the secrecy of 
the DNSSEC private keys are never jeopardized, for a 
backend server, compromised or not, does not have the 
communication paths required to send information back 
to the attacker.  The attacker however may attempt to 
corrupt the DNS master file, residing on the Master 
storage (for instance, the attacker may attempt to delete 
the master file entirely).  This attack can be easily 
prevented by storing the master file in obscure locations 
in the file system.  In general, it is impossible to probe the 
configuration of the backend server from the public 
Internet due to the lack of communication paths, and 
therefore attacks against the server must be based on 
assumed, common-practice configurations.  While we 
acknowledge the weakness of security by obscurity in 
general applications, it is perfectly suitable to the 
defenses of the backend server due to the impossibility of 
probing.  In fact, the software running on the backend 
server can be compiled in a way that produces uncommon 
memory layouts, preventing attacks from taking over the 
software in the first place.  

In DNS-HES, the setup between the controller and an 
individual server is depicted in Fig. 6. In the figure (and 
in Fig. 3 as well), we use solid lines to represent network 
links for TCP/IP message exchanges (such as Ethernet 
wires) and dashed lines to represent wires/fibers that 
conduct electrical/optical control signals.  Specifically, 
the controller uses six control signals to enforce the 
operation modes of each server in the cluster.  Among the 
six signals, the reset signal to a server forces the server to 
reboot.  The remaining five signals to the server manage 
the communication configuration of the server.  The five 
signals are discussed below. 

Master P′B 
Online α

Online β

(a) New requests stored in Online α; processing 
pending requests from Online β

(b) After a rotation of the primary,  
new requests stored in Online β; 

processing pending requests from Online α

P B Master

Online α

Online βPending requests 

New
requests

Pending requests 

New
requests

Figure 5.  Processing dynamic DNS requests;  P′ in (b) 
emphasizes that a different server is now the primary 

JOURNAL OF NETWORKS, VOL. 1, NO. 5, SEPTEMBER/OCTOBER 2006 25

© 2006 ACADEMY PUBLISHER



1. The SW-M signal controls the connection of the 
server to the Master storage. 

2. The SW-I signal controls the connection of the 
server to the public Internet. 

3. The SW-CC signal controls the connection of 
the server to the central controller. 

4. The SW-i signal, where i is either 0 or 1 controls 
the connection of the server to Online storage i. 

As an example, the controller uses the signals in Fig. 6 
to enforce the communication configuration of a 
cleansing server depicted in Fig. 7, where the server has 
network paths connecting to only the central controller.   
As we will see later, one use of the path is for the 
controller to communicate the role/identity of the server 
when it is ready to take on a duty.  By the same token, the 
primary name server will be connected to the Internet and 
one of the Online storage, but disconnected from the rest 
of the cluster (see Fig. 8). 

Implied in Fig. 6 are five local area networks within a 
DNS-HES cluster (in the figure, each LAN is represented 

by its switch/hub, depicted as a hexagon).  For instance, 
there is a LAN dedicated to the Master storage.  Any 
server disconnected from that LAN has no access to the 
Master storage.  The same applies to the LANs that 
connect to the central controller, the public Internet, and 
the two online storages.   

VI. DNS SERVER ROTATIONS

In a DNS-HES cluster, there are three types of server 
role rotations.  A Primary Swap brings the present 
primary DNS server offline for cleansing and rotates a 
clean server online to be the new primary.  A Secondary 
Swap brings the present secondary DNS server offline for 
cleansing and rotates a clean server online as the new 
secondary. A Backend Swap resets the present backend 
server for cleansing and designates a clean server to be 
the new backend server.   

Consider a DNS-HES cluster with 4 servers, servers 0, 
1, 2, and 3. Assume that the cluster starts with the 
configuration (P,S,B,C), where server 0 is the primary 
(P), server 1 the secondary (S), server 2 the backend (B), 
and server 3 in cleansing (C).   If the first rotation is a 
Primary Swap, then the system enters configuration 
(C,S,B,P).  Further assuming that the next rotation is a 
Backend Swap, the system subsequently enters 
configuration (B,S,C,P). 

The central controller uses a rotation pattern to 
determine the sequence of role swaps.  For instance the 
rotation pattern ‘PSB’ dictates that the system cycles 
through a Primary Swap, a Secondary Swap, and a 
Backend Swap.  As a second example, the rotation 
pattern ‘PSPB’ dictates that the system cycles through a 
Primary Swap, a Secondary Swap, a Primary Swap, and a 
Backend Swap.  For reasons to be explained later, PSPB 
is chosen as the default rotation pattern. 

We are now ready to present the routines invoked by 
the central controller to carry out the three types of role 
swaps.  Due to its simplicity, we start the discussion with 
the Secondary Swap routine, shown in Fig. 9.  In its first 
3 steps, the Secondary Swap routine disconnects the 
present secondary DNS server from the Internet, resets 
the server, and establishes the network path from the 
server to the central controller.  The server is now in 

SW-M 
SW-I 

SW-CC 

SW-0 
SW-1 

Reset 

Master

Online 1 Online 0

Clients 
from the 
Internet 

Central 
Controller 

Network Switch Server 

Figure 6.  The hardware enhancements in DNS-HES between the 
central controller and an individual server. 

Master

Online 1 Online 0

Central 
Controller 

Internet 

Figure 7.  A cleansing server has access to only the central 
controller

Master

Online 1 Online 0

Central 
Controller 

Internet 

Figure 8.  The primary server has access to only the public 
Internet and one of the Online storage (Online 1 in this example)

P

26 JOURNAL OF NETWORKS, VOL. 1, NO. 5, SEPTEMBER/OCTOBER 2006

© 2006 ACADEMY PUBLISHER



cleansing and will be able to inform the controller of the 
completion of its self cleansing.  Next the routine brings 
the designated clean server c online as the new secondary 
server.  To perform its new role, server c needs an up-to-
date copy of the zone’s master file.  (This is strictly 
speaking unnecessary, for a secondary name server must 
periodically synchronize its local DNS data with the 
primary server.  Having the data readily available the 
moment it goes online improves performance however.) 

 In Step 4 of Fig. 9, the controller establishes the 
network path for server c to reach Master storage.  In 
Steps 5 and 6, it sends a message to server c to convey its 
new role and waits for c to complete downloading the 
master file.  Steps 7 and 8 disconnect the network paths 
from server c to the Master storage and the controller.  
The network path for server c to connect to the public 
Internet is connected in Step 9, and server c formally 
becomes the secondary DNS server in Step 10. 

Shown in Fig. 10 is the Backend Swap routine, which 
the central controller invokes to designate a clean server c
as the new backend server.  Recall that a backend server 
processes the pending requests of dynamic DNS updates 
from one of the online storages and updates the master 
file stored in Master storage accordingly.  In the routine, 
the present backend is assumed using Online storage α, 
where α is either 0 or 1.  In Steps 1 and 2, the central 
controller disconnects the present backbend’s access to 
Master storage and Online storage α.  In Steps 3 and 4, 
the controller resets the backend server and reestablishes 
the connection between the server and the controller.  The 
backend server is now in cleansing.  To set up server c as 
the new backend, the controller sends a role message in 
Step 5, and subsequently in Step 6 cuts its network 
connection to server c (implied in Step 5 are the 
exchanges of acknowledgements for reliability before the 
disconnection in Step 6).  In Steps 7 and 8, the controller 

establishes for server c the access to Master storage and 
Online storage α.  Server c is declared the backend server 
in Step 9.  

We now examine the Primary Swap routine, shown in 
Fig. 11.  The central controller invokes the routine in 
order to rotate a clean server c online to replace the 
present primary server.  Recall from Fig. 5 that bringing a 
new primary name server online causes changes in the 
uses of online storages.  Instead of using the same online 
storage to store incoming requests of DNS updates as the 
previous primary, the new primary switches to “the 
other” online storage.  In the routine, the online storage 
used by the present (and soon to be replaced) primary 
server is denoted Online storage α and the other one is 
denoted Online storage β.  In Steps 1 and 2, the controller 
disconnects the present primary from the Internet and 
cuts its access to Online storage α.  The server is reset to 
enter the cleansing mode in Step 3, and its network path 
to the controller is reestablished in Step 4. 

Starting from Step 5, the Primary Swap routine brings 
the clean server c online as the new primary.  In Step 5, 
the controller establishes the network path for server c to 
reach Master storage.  In Steps 6 and 7, it conveys to 
server c its new role and waits for c to download the 
master file.  Subsequently in Steps 8 and 9, server c is 
disconnected from the Master storage and the central 
controller, respectively.  Server c is connected to Online 
storage β in Step 10 and to the public Internet in Step 11.  
It is declared the primary name server in Step 12 and will 
store incoming requests of dynamic DNS updates in 
Online storage β. 

Again recall from Fig. 5 that a Primary Swap affects 
the networking configuration of the backend server.  As 
seen in Fig. 5, the backend server processes pending 
dynamic DNS updates from Online storage β before the 

Routine Secondary-Swap (c)
Parameters: 

c: ID of a cleansed server designated to 
become the new secondary server 

Global Variables: 
S: ID of the present secondary DNS server 

Steps: 
// Bring server S offline for cleansing 

1. Signal “off” to SW-I[S]; 
2. Signal Reset[S];  
3. Signal “on” to SW-CC[S]; 

// Bring server c online as the new secondary 
4. Signal “on” to SW-M[c]; 
5. Send message “Role Secondary” to server c; 
6. Wait for c to download the master file; 
7. Signal “off” to SW-M[c]; 
8. Signal “off” to SW-CC[c]; 
9. Signal “on” to SW-I[c]; 

10. Set S to c; 

Figure 9.  The Secondary-Swap routine, which rotates a new 
secondary DNS server online 

Figure 10.  The Backend-Swap routine 

Routine Backend-Swap (c)
Parameters: 

c: ID of a clean server designated to 
become the new backend server 

Global Variables: 
B: ID of the present backend server 
α in [0,1]: the offline storage used by the 

present backend server B. 
Steps: 

// Bring server B offline for cleansing 
1. Signal “off” to SW-M[B]; 
2. Signal “off” to SW-α[B]; 
3. Signal Reset[B];  
4. Signal “on” to SW-CC[P]; 

// Set up server c as the new backend 
5. Send message “Role Backend” to c. 
6. Signal “off” to SW-CC[c]; 
7. Signal “on” to SW-M[c]; 
8. Signal “on” to SW-α[c]; 
9. Set B to c; 

JOURNAL OF NETWORKS, VOL. 1, NO. 5, SEPTEMBER/OCTOBER 2006 27

© 2006 ACADEMY PUBLISHER



swap and must change to Online storage α after the swap.  
Such are the effects of Steps 13 and 14 in Fig. 11.

We present in Fig. 12 the Central Control routine 
executed by the central controller.  The routine initially 
assigns server 0 as the primary server, server 1 as the 
secondary, and server 2 as the backend.  Other servers in 
the cluster are in the clean mode.  The online storage used 
by the initial primary is Online storage 0.  The steps 
whereby servers enter their respective initial roles are 
straightforward and have been omitted in the 
presentation.  The routine then enters an infinite loop 
where it waits for the completion of cleansing of any off-
duty server.  Once a ready clean server is found, the 
routine determines the type of the next role swap 
according to a pre-configured rotation pattern and 
subsequently invokes the corresponding role-swapping 
routine.  We note that the Central Control routine does 
not depends on a fixed number of servers in the cluster.  
The routine to the contrary allows new servers to be 
added to the cluster or faulty servers to be removed from 
the cluster without reconfigurations. The implications of 
this feature are discussed in Section VII. 

To conclude this section, we point out that in all of the 
above routines, the central controller exchanges TCP/IP 
messages with a server only after the controller has 
rebooted the server and has disconnected the server’s 
connections to the public Internet and the rest of the 

cluster.   The controller in this way cannot be reached 
from the online servers or the public Internet, and 
consequently server rotations cannot be subverted by 
remote attacks. 

VII. REDUNDANCY, AVAILABILITY AND SECURITY

Although SCIT/HES is not specifically designed for 
fault tolerance, it does handle some failures gracefully 
due to the use of hardware redundancy.  Let us examine 
what happens when server failures occur.  There are two 
possibilities.  (1) If a server failure is caused by intrusion 
events or software errors, then the server will eventually 
be reset and cleansed.  In this way, SCIT/HES succeeds 
in handling “soft” failures.  (2) In the case of hardware 
failures, the sever will be reset by the controller at some 
point but cannot bootstrap the operating system or 
complete the cleansing procedure due to hardware 
dysfunctions.  The consequence is that the server will not 
report to the central controller “cleansing completed” and 
thus will not be available for service.   

Consider the case of DNS-HES.  With N≥4 servers, the 
cluster continues to provide DNS services in face of N−3 
“hard” failures.  In the worst case of N−3 failures, server 
rotations stop, for the controller cannot find ready clean 
servers.  The DNS service however is still provided by 
the remaining, on-duty servers, although dynamic DNS 
updates will not be reflected until rotations resume.  In 
this way, the availability of the system increases with the 
degree of server/hardware redundancy.  This aspect of 
SCIT/HES is similar to many fault tolerance designs. 

With SCIT/HES, however, increasing the degree of 
redundancy also improves security.  To illustrate this, 
assume that the self-cleansing procedure takes 10 minutes 
to complete (our previous SCIT prototypes indicate that 
this is a conservative assumption).  With one cleansing 

Routine Primary-Swap (c) 
Parameters: 

c: ID of a clean server; to become the primary 
Global Variables: 

P: ID of the present primary 
B: ID of the present backup server 
α in [0,1]: the online storage that has been 
used by the present primary P. 

Local Variable: 
β in [0,1] : the inverse of α (that is, the other 
Online storage) 

Steps: 
// Bring server P offline for cleansing 

1. Signal “off” to SW-I[P]; 
2. Signal “off” to SW-α[P]; 
3. Signal Reset[P];  
4. Signal “on” to SW-CC[P]; 

// Bring server c online as the new primary 
5. Signal “on” to SW-M[c]; 
6. Send message “Role Primary” to server c; 
7. Wait for c to download the master file; 
8. Signal “off” to SW-M[c]; 
9. Signal “off” to SW-CC[c]; 

10. Signal “on” to SW-β[c]; 
11. Signal “on” to SW-I[c]; 
12. Set P to c; 

// Switch backend B from Online storage β to α
13. Signal “off” to SW-β[P]; 
14. Signal “on” to SW-α[P]; 

Figure 11.  The Primary-Swap routine 

Routine Central-Control () 
Global Variables: 

P: ID of the present primary DNS server 
S: ID of the present secondary DNS server 
B: ID of the present backend server 
α in [0,1]: the offline storage used by the 

present primary DNS server. 
Initializations: 

P=0, S=1, B=2; 
α =0; 

Loop the following steps forever: 
Wait for “any” cleansing server to complete 

cleansing.  Call the server c. 
Determine the type of the next server switch 

according to the rotation pattern. 
For a Primary Swap:  

Call Primary-Swap(c). 
Invert α. 

For a Secondary Swap: 
Call Secondary-Swap(c). 

For a Backend Swap 
Call Backend-Swap (c). 

Figure 12. The Central-Control routine 

28 JOURNAL OF NETWORKS, VOL. 1, NO. 5, SEPTEMBER/OCTOBER 2006

© 2006 ACADEMY PUBLISHER



server, the controller waits for 10 minutes for the server 
to complete cleansing, which equates to a server swap 
every 10 minutes (see Fig. 12).  With two spare servers, 
the controller is expected to find a clean machine in 5 
minutes, doubling the rate of server rotations and 
reducing online servers’ exposure to the Internet to half.  
In the case of successful breaches on the online servers, 
the window of a breach is also reduced by half.  Even 
shorter rotation times and even stronger security can be 
achieved by introducing more servers to the cluster. 

An interesting way to contrast SCIT with high-
availability computing is this: In high-availability 
systems, hardware redundancy exists in the form of 
backup servers [16,17].  By its nature, a backup is idle 
most of the times.  Its computing power is wasted unless 
the online server fails.  With SCIT, redundancy exists in 
the form of servers in cleansing.  This design in effect 
puts spare computing power to good use, such as self 
cleansing, system auditing, and intrusion recovery, for the 
sake of strengthening system security. 

Due to its prominent role in DNS, the primary name 
server is generally considered most critical in DNS
security.  Thus it is desirable to subject the primary server 
to more frequent rotations; hence the selection of “PSPB” 
as the default rotation pattern in DNS-HES.   

VIII. CONCLUSION

We have shown that with simple hardware 
enhancements strategically placed in a server cluster, it is 
possible to build intrusion tolerance mechanisms that 
cannot be corrupted.  We have presented a SCIT/HES 
DNS cluster as an application of this framework.  
Precisely, we have shown that the processes of server 
rotation and cleansing are never “exposed” by physical 
isolation and thus not subject to remote attacks.  In the 
case of DNS-HES, moreover, the same kind of protection 
through isolation also extends to critical data, including 
the DNS zone master file and DNSSEC private keys.  
While successful and undetected intrusions cannot be 
ruled out (probably never will be), intrusion tolerance 
mechanisms of SCIT/HES works to guarantee a baseline 
integrity and the continuum of services.  It is our belief 
that incorruptible intrusion tolerance solutions such as the 
one presented here constitute a new, effective layer of 
defense for critical information systems against 
undetected and unknown attacks, the unknown unknowns 
in computer system security. 

REFERENCES

[1] President's Information Technology Advisory Committee 
(PITAC), Cyber Security: A Crisis of Prioritization, 
February 2005. Available at www.nitrd.gov. 

[2] Yih Huang and Arun Sood, “Self-Cleansing Systems for 
Intrusion Containment,” Proceedings of Workshop on Self-
Healing, Adaptive, and Self-Managed Systems 
(SHAMAN), New York City, June 2002.   

[3] Yih Huang, Arun Sood, and Ravi K. Bhaskar, “Countering 
Web Defacing Attacks with System Self-Cleansing,” 
Proceedings of 7th Word Multiconference on Systemics, 
Cybernetics and Informatics, pp. 12—16, Orlando, Florida, 
July 2003 .  

[4] Yih Huang, David Arsenault, and Arun Sood, “SCIT-DNS: 
Critical Infrastructure Protection through Secure DNS 
Server Dynamic Updates,” presented at the Trusted 
Internet Workshop Conference, Bangalore, India, 
December 2004. (Extended version in Journal of High 
Speed Networking, Vol. 15, No. 1, 2006) 

[5] Yih Huang, David Arsenault, and Arun Sood, “Securing 
DNS Services through System Self Cleansing and 
Hardware Enhancements,” Proceeding First International 
Conference on Availability, Reliability, and Security 
(AReS 2006), Vienna, Austria.  

[6] Yih Huang, David Arsenault, and Arun Sood, 
“Incorruptible System Self Cleansing for Intrusion 
Tolerance,” Proceedings Workshop on Information 
Assurance 2006, Phoenix, Arizona, April 2006. 

[7] Yih Huang, David Arsenault, and Arun Sood, "Closing 
Cluster Attack Windows through Server Redundancy and 
Rotations" Proceedings of the Second International 
Workshop on Cluster Security (Cluster-Sec06), Singapore, 
May 2006.  

[8] P. Mockapetris, “Domain names ⎯ Concepts and 
Facilities,”  Internet RFC 1034, November 1987. 

[9] P. Vixie (editor), S. Thomson, Y. Rekhter, and J. Bound, 
"Dynamic Updates in the Domain Name System,"  Internet 
RFC 2136, April 1997. 

[10] D. Eastlake.  “Domain Name System Security Extensions,”  
Internet RFC 2535, March 1999. 

[11] P. Vixie, “DNS and BIND security issues,” in Proc. of the 
5th Usenix Security Symposium. Salt Lake City, UT, 1995. 

[12] Bellovin, S. M. Using domain name system for system 
break-ins. In Proceedings of the 5th Usenix UNIX Security 
Symposium. Salt Lake City, UT, 1995. 

[13] See DNS and BIND related advisories and incident notes 
published by CERT Coordination Center at 
http://www.cert.org. 

[14] The Twenty Most Critical Internet Security Vulnerabilities, 
available at http://www.sans.org/top20. 

[15] Brown, A. and D. A. Patterson. “Embracing Failure: A 
Case for Recovery-Oriented Computing (ROC),” High 
Performance Transaction Processing Symposium, 
Asilomar, CA, October 2001. 

[16] Peter S. Weygant, Clusters for High Availability, Prentice 
Hall, 1996. 

[17] High-Availability Linux Project. www.linux-ha.org. 
[18] Steve Blackmon and John Nguyen, “High-Availability File 

Server with Heartbeat,” System Admin, the Journal for 
UNIX Systems Administrators, vol. 10, no. 9, September 
2001.  

[19] R. Rabbat, T. McNeal and T. Burke, “A High-Availability 
Clustering Architecture with Data Integrity Guarantees,” 
Proc. of IEEE International Conference on Cluster 
Computing, 178–182, (Newport Beach, CA) Oct., 2001.

[20] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, 
“Software Rejuvenation: Analysis, Module and 
Application,” In Proc. of the 25th Intl. Symposium on 
Fault Tolerant Computing, pp. 381—390, Pasadena, CA, 
June, 1995. 

[21] William Yurcik and David Doss, "Achieving Fault-
Tolerant Software with Rejuvenation and 
Reconfiguration," IEEE Software, July/August 2001, pp. 
48-52.  

[22] K. Vaidyanathan, R. E. Harper, S. W. Hunter, K. S. 
Trivedi, "Analysis and Implementation of Software 
Rejuvenation in Cluster Systems," in Proc. of the Joint Intl. 
Conference on Measurement and Modeling of Computer 
Systems, ACM SIGMETRICS 2001/Performance 2001, 
Cambridge, MA, June 2001. 

JOURNAL OF NETWORKS, VOL. 1, NO. 5, SEPTEMBER/OCTOBER 2006 29

© 2006 ACADEMY PUBLISHER



[23] Khin Mi Mi Aung, Kiejin Park, and Jong Sou Park, "A 
Rejuvenation Methodology of Cluster Recovery," Cluster-
Sec, 2005. 

  

Yih Huang received the B.S. degree and M.S. degree in 
Computer Science and Information Engineering from Feng-
Chia University, Taiwan (Republic of China), in 1985 and 1987 
respectively.  He received the Ph.D. degree in Computer 
Science from Michigan State University in 1998.  
He is the Research Professor of Computer Science in the 
Department of Computer Science at George Mason University, 
Fairfax, VA.  His research has been supported by DARPA, 
National Institute of Standards and Technology and private industry.  
His research interests include computer networking protocols, 
computer/network security, parallel and distributed processing, 
and micro-processor architectures.

Arun K. Sood received the B.Tech degree from the Indian 
Institute of Technology (IIT), Delhi, in 1966, and the M.S. and 
Ph.D. degrees in Electrical Engineering from Carnegie Mellon 
University, Pittsburgh, PA, in 1967 and 1971, respectively. 
He is the Professor of Computer Science in the Department of 
Computer  Science at George Mason University, Fairfax, VA, 
and the Director of the Laboratory for Interdisciplinary 
Computer Science. He has held academic positions at Wayne 
State University, Detroit, MI, Louisiana State University, Baton 
Rouge, and IIT, Delhi. His research has been supported by the 
Office of Naval Research, National Imagery and Mapping 
Agency, National Science Foundation, U.S. Army Belvoir 
RD&E Center, U. S. Army TACOM, U.S. Department of 
Transportation, and private industry. He was awarded grants by 
NATO to organize and direct advance study institutes in 
relational database machine architecture and active perception 
and robot vision. His research interests are in computer security, 
image and multimedia computing, signal processing, parallel 
and distributed processing, performance modeling and 
evaluation, simulation and modeling, and optimization. 

30 JOURNAL OF NETWORKS, VOL. 1, NO. 5, SEPTEMBER/OCTOBER 2006

© 2006 ACADEMY PUBLISHER


