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Abstract—Domain Name Systems (DNS) provide the mapping 
between easily remembered host names and their IP addresses. 
While domain name information is typically created and 
updated off-line, dynamic DNS updates allow clients to manage 
domain names online, in real time.  The current secure DNS 
standards (DNSSEC) require private keys to be kept online to 
sign dynamic updates, leaving private keys subject to network-
based attacks. 

In this work*, we develop a secure implementation 
framework of DNS servers that voids the above requirement.  
Our approach, called Self-Cleansing Intrusion Tolerance 
(SCIT), strengthens DNSSEC through hardware redundancy.  
Our system uses a highly integrated cluster of DNS servers that 
constantly rotates the role of individual servers,  handles one-
server failures gracefully, confines the damages of successful 
intrusion to a limited time, and digitally signs dynamic updates 
by a clean box (to be defined layer) using the DNS zone key 
while keeping the key offline at all times.  It is our belief that 
the availability and integrity of critical communications 
infrastructure, such as DNS, far outweigh the costs of hardware 
redundancy. 

In this paper, we present (1) the architecture of  SCIT 
DNS clusters that achieves the above goals, (2) a secure Cluster 
Coordination Protocol (CCP) that servers in the cluster use to 
coordinate role changes without ever opening a port, and (3) the 
designs of our ongoing SCIT DNS cluster prototype.  
Preliminary experiences of our prototype show that role 
rotation and self-cleansing cycles are in the range of minutes, 
restricting the damages of even undetected but successful 
attacks to short time windows. 

Index Terms—computer security, fault-tolerance,, information 
assurance, intrusion containment, self-cleansing systems 

I. INTRODUCTION 

As the world becomes ever more dependant on network-
based services for critical applications, particularly via 
TCP/IP networks, it is vital to protect DNS from attacks and 
failures.  Unfortunately, popular DNS implementations have 
been known to be the target of numerous vulnerabilities, 
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exploits and attacks, as reported in [1, 15] and by the Cert 
Coordination Center (www.cert.org). To achieve the 
protection level desired for critical services such as DNS, we 
apply an enhanced version of the Self-Cleansing Intrusion 
Tolerance (SCIT) architecture [6, 7]. We believe that the 
SCIT approach can improve the security of a large class of 
servers that form part of the critical computing and 
communication infrastructure.  In [6, 7] we present 
approaches for SCIT-based firewalls and web servers. 

The Domain Name System (DNS) is essentially a 
distributed database [11, 12]. Each name server maintains 
the domain name information regarding a subspace, or a 
zone, in the DNS name space. Several predefined properties, 
or resource records (RR), can be associated with a domain 
name. The most important is the “type A” RR, which 
contains the IP address of the domain. All the RRs pertaining 
to the domain names in a zone are stored in a master file, 
maintained by the primary name server of that zone. Each 
zone also has one or more secondary name server, which 
periodically synchronizes its local DNS file with the master 
file. Secondary name servers respond to DNS queries but are 
not involved in maintaining the master file. 

The DNS architecture was later enhanced with DNS 
Security Extensions (DNSSEC) to provide data origin 
authentication.   With DNSSEC, each zone is equipped with 
(at least) a pair of public and private keys. The public key is 
configured into every client in the zone through a safe 
channel (e.g., manually by administrators).  The private key 
is used to digitally sign RRs. The response to a DNS query 
includes the requested RRs and a “Sig RR,” the digital 
signature of the requested RRs. DNS clients verify the 
integrity and origin of received DNS data by checking 
accompanying signatures using the zone public key. 

The integrity of the above approach depends on the 
secrecy of the participating private keys, which is best 
maintained by keeping the private keys off-line.  In this way, 
even if a server is compromised, the hacker cannot procure 
the private key and temper with DNS data.   (The hacker 
however could still perform other mischief, such as deleting 
the master file as a denial of service attack or using the 
server as a jump pad to machines inside the intranet.)  It 
follows that signature computations must also be off-line.  
This perfectly suits those domain names created and 
managed manually via administrative procedures (one 



registers for a new domain name, fill out a form, pay a fee, 
etc.).  Offline signature computation however is 
incompatible with dynamic domain name updates, where 
RRs are updated in real time upon online requests from 
clients [13, 14, 16]. 

In the DNSSEC standards, signatures of dynamically 
updated RR are computed in one of the following two 
modes.  In Mode A, a per-server private key is used to sign 
dynamic updates. The corresponding public key is stored in 
a Key RR associated with the domain name of the server and 
obtained by client through DNS requests.  In this way, server 
compromises jeopardize only dynamically updated resource 
records.  However, server keys are considered not as 
authoritative as zone keys [14].  In Mode B, the zone private 
key is kept online and used to sign dynamic updates.  This 
leaves the key subject to exposure through network attacks.  
In the face of server compromises, the integrity of the entire 
master file is in question.  

In this paper, we present a DNS implementation 
framework that eliminates the above concerns. Our 
approach, called Self-Cleansing Intrusion Tolerance (SCIT), 
uses a cluster of servers and constantly rotates the role of 
each server.  At any point in time, a particular server may be 
the primary server, the secondary server, or in the process of 
rebooting and self-cleansing.  We will show the advantages 
of our design in three areas: (1) offline zone private keys to 
sign dynamic updates, (2) high availability, the graceful 
handling of one server failures, and (3) intrusion tolerance, 
the damage confinement and automatic system recovery in 
the face of breaches. 

The remainder of the paper is organized as follows.  The 
concept of SCIT is presented in Section II, and the 
architecture of our SCIT-DNS system presented in Section 
III.  In Section IV, we present the SCIT Cluster Coordination 
Protocol (SCIT-CCP), which servers use for role rotations.  
We detail our prototype design in Section V and conclude 
this work in Sections VI. 

II. SCIT OVERVIEW 
SCIT uses periodic restarting of the system which 

reloads the operating system, service software, and data from 
trusted media, followed by system auditing and recovery 
procedures. The trusted media can be any non-writable 
media or writable media combined with digital signatures to 
verify the integrity of data.  During the cleansing process a 
backup server is brought online to provide uninterrupted 
services.  In many aspects, SCIT is close to high-availability 
computing, which uses backup systems to ensure continued 
customer services in face of primary server failures [18, 4, 2, 
10].  With SCIT, null failure events are introduced to force 
periodic takeover by the backup server and the cleansing of 
the primary server. 

The reason for periodic cleansing is to force an online 
server to return to a known, clean state, regardless the 

detection of, or lack thereof, intrusion.  The underlying 
assumption is that there always are cyber attacks that are 
sophisticated and stealthy enough to penetrate even the best 
security measures and be beneath the radar of the most 
advanced intrusion detection systems.  While this “paranoid” 
attitude is obviously overkill for an average Joe’s PC, it is 
perfectly appropriate for critical infrastructures, such as 
DNS.  Just like a software tester’s job is to assume the 
existence of bugs and contrive to uncover them, SCIT 
assumes undetected security breaches in online systems and 
takes actions accordingly.  

In previous work, we have built a SCIT firewall 
prototype that constantly alternates between two identically 
configured firewall servers and a SCIT web server that 
alternate between two servers [6, 7].  In these prototypes, 
cleansing cycles are typically less than 10 minutes.  While 
occasional packet losses do occur during handovers, they 
cause little, if any, perceivable service disruption owing to 
the retransmission mechanisms of TCP/IP.  We notice that 
DNS provides retransmissions even when UDP is used.  

III. SCIT-DNS CLUSTER 
A SCIT cluster is a set of server boxes connected 

through one or more local area networks, working 
cooperatively and/or alternately to perform a set of 
predefined services.  Our DNS SCIT cluster consists of three 
identical DNS servers running in a DMZ configuration 
behind a firewall, as shown in Figure 1. 

 
Figure 1: SCIT-DNS Cluster 

The DNS zone running the cluster advertises two IP 
addresses of DNS servers, a primary name server address 
and a secondary name server address.  It also advertises two 
domain names for the primary and secondary servers, for 
instance ns1.demo.com and ns2.demo.com.  At the time of 
this writing, we do not support the optional tertiary DNS 
service. Generalizations to accommodate more than three 
servers are part of our ongoing work.  

Each of the three DNS servers in the cluster cycles 
through three operating states: (1) Primary DNS, (2) 
Secondary DNS, and (3) Offline for cleansing and integrity 
checking. At any point in time only one of the DNS servers 
will be operating in any one mode (see Figure 2).  When a 
server enters an operation mode, it assumes the identities 



required by that mode.  For instance, when a newly cleansed 
server becomes the primary, it claims the IP address and 
domain name of the primary name server.  (An IP address 
can be dynamically claimed by a machine with the VRRP 
protocol or Gratuitous ARP messages.)  DNS clients use 
either of the two server identities when communicating with 
cluster.  The server that assumes the identity specified in a 
query at time of receiving the query answers that query.  It is 
worth emphasizing that the bindings between DNS server 
domain names and respective IP addresses do not change.  
What will change is the machine that assumes each identity. 

Also shown in Figure 1 are backend storages, including 
an offline storage and three online storages.  The Offline 
Storage cannot be accessed by any server that is presently 
serving DNS clients in the public network. It is used to store 
the zone private key and the master file. An Online Storage 
is accessible by all servers, including those that are online.  It 
is used to temporarily store requests for dynamic DNS 
updates.  Backend storages can be implemented as NFS 
servers or storage devices attached to storage area networks.  
They are considered part of the intranet. To access data in 
backend storages, a server must first connect to the storage 
and later disconnect.  In implementation terms, connections 
can be, for example, SSH connections or NFS mounts.  We 
use SSH in our prototype design. 

 
Figure 2: Operating Mode Rotations 

To illustrate the interactions among the three servers and 
backend storages, we will go through a complete cycle of 
SCIT operation, using arrows to show the communications 
paths in each stage of operation. In Figure 3(a), Server 1 is 
the current primary server (labeled ‘P’ in the figure). It 
answers DNS queries and receives requests of dynamic 
updates from the Internet.  However, the processing of 
update requests is postponed. Rather these requests are 
merely stored in Online Storage 1. In the mean time, Server 
0 (labeled ‘C’) has just rebooted and Server 2 is the 
secondary (labeled ‘S’) and answers DNS queries.  As 
shown in the figure, Server 0 connects itself to Offline 
Storage and Online Storage 2.  It obtains the zone private 
key from Offline Storage, retrieves the pending update 
requests from Online Storage 2 (the reason of this particular 
online storage will become clear when the cycle completes), 
processes them according to DNSSEC, updates the master 

file in Offline Storage, and saves a copy of the newly 
updated master file in its local storage.  Server 0 then 
disconnects from Offline Storage and eliminates the zone 
private key from its local disks and memory. It is now ready 
to initiate a role rotation by exchanging control messages 
with other servers through the SCIT-CCP protocol, 
discussed in Section IV.  

In Figure 3(b) we show the configuration after the above 
role rotation, whereby Server 0 assumes the role of primary, 
Server 1 becomes the secondary and Server 2 reboots and 
restarts its lifecycle.  In this configuration, new requests of 
dynamic updates are stored in Online Storage 0 by Server 0.  
The newly rebooted and cleansed Server 2 processes 
pending updates (those received by the previous primary and 
stored in Online Storage 1, commits the updates to the 
master file in Offline Storage, and saves a copy of the master 
file locally, before it initiates a role rotation. 

 
Figure 3(a): Server 1 as the Primary 

 

 
Figure 3(b): Server 0 as the Primary 

In Figure 3(c) we show the configuration after the 
second rotation, whereby Server 2 becomes primary, Server 
0 becomes secondary and Server 1 restarts its lifecycle.  
Arriving update requests are now stored in Online Storage 2.  
After rebooting, Server 1 processes the pending updates in 
Online Storage 0 and updates the master file in Offline 
Storage.  Server 1 then initiates a role rotation, and the 
system returns to the configuration in Figure 3(a), where 



pending requests collected in this phase and stored in Online 
Storage 2 are processed by Server 0. 

 
Figure 3(c): Server 0 as the Primary 

We are now ready to present the lifecycle of SCIT DNS 
servers, starting from the first task immediately after 
rebooting.  In the Lifecycle of SCIT-DNS Server, all 
arithmetic is in modulus 3. 

Lifecycle of SCIT-DNS Server i, 0 ≤ i ≤ 2:  
1. Perform system integrity checking and, if necessary, 

recovery procedures.  This mainly involves checking the 
signatures of important system files and directories.   

2. Connect to the Offline Storage and retrieve the zone 
private key.  

3. Connect to Online Storage i-1 and process, according to 
RFC2136, the pending requests of dynamic updates 
stored there.  The master file is updated in the process 
and the signatures of affected RR recomputed using the 
zone private key. 

4. Make a copy of the newly updated master file in the 
local file system of Server i. 

5. Disconnect from both the Offline Storage and Online 
Storage i-1. 

6. Eliminate all traces of the zone private key by 
reinitializing disk blocks and memory pages used to 
store the key. 

7. Connect to Online Storage 1, for storage of incoming 
DNS dynamic updates when Server i becomes the 
Primary DNS server. 

8. Use the CCP ROTATE_ROLE message to initiate a role 
rotation and then claim the IP address of the primary 
server.  

9. Server i assumes the role of the Primary DNS server, 
which: answers DNS queries using its local copy of the 
master file, receives dynamic update requests and stores 
them in Online Storage i, and honors the Secondary 
DNS server’s requests for DNS data synchronizations. 

10. Upon receiving a ROTATE_ROLE CCP message, claim 
the IP address of the Secondary server.   

11. Server i assumes the role of the secondary server.  It will 
answer DNS queries but reject dynamic update requests.  

It synchronizes its local DNS data with the new primary 
in accordance with [12]. 

12. Upon receiving a GO_OFFLINE CCP message, reboot. 
 

We point out that in Figures 3(a) through 3(c) there are 
no communications paths from outside to Offline Storage at 
all times.  The zone private key is always offline. Neither is 
there any communications path from outside to the servers 
labeled ‘C’, those that have been newly cleansed but not yet 
gone online.  Without communication paths, it is (virtually) 
impossible to breach such servers from the public Internet. 
We say a server is clean if it has completed Steps 1 to 8 of a 
lifecycle.  

To conclude this section, we summarize the benefits of 
the SCIT-DNS cluster as follows: 

• Key Protection.  Zone private keys are kept offline even 
though they are used to sign dynamic updates, ensuring 
the highest level security for dynamically updated RR.  
Primary server compromises will not expose zone 
private key and do not degrade data origin 
authentication. 

• High availability.  The system gracefully handles the 
failure of one server.  In the presence of one server 
failure the system simply stops role rotations, because 
there will be no newly cleansed machine to send 
ROTATE_ROLE messages in Step 8 above.  Dynamic 
updates are however postponed until the third server is 
repaired and activate role rotation again. 

• Intrusion Tolerance.  Even if a hacker manages to 
breach a server, say the current primary, she can inflict 
damage only for limited time.  For instance, if the 
hacker deletes the online copy of the master file, stored 
in the primary server, services will be restored when the 
next primary server takes over.  Trojan horse programs 
can be detected and removed through system auditing 
after rebooting [HuSK03, HoDu98].  If the hacker 
means to use the server as a jump pad to the intranet, she 
loses her foothold in a short period of time. 

IV. CLUSTER COORDINATION PROTOCOL 

In this section we introduce the SCIT Cluster 
Coordination Protocol (SCIT-CCP) which manages the 
server role rotations within the SCIT-DNS cluster.  Figure 1 
illustrates the cluster architecture in which the protocol is 
designed to operate. 

SCIT-CCP is designed to enable the intra-cluster 
communication necessary to effect the server role rotations 
while at the same time not providing connections between 
the DNS servers in the cluster.  By not maintaining active 
connections between the servers in the cluster we do not 
keep any ports open other than those used for DNS 
transactions.  This virtually eliminates the possibility of an 
attacker gaining control of one server in the cluster and using 



it as a foothold to compromise other machines in the cluster.  
To communicate our cluster management messages without 
intra-cluster connections we turn to a novel technique called 
port knocking [9]. 

Port knocking provides the means to transport messages 
across closed ports.  A “port knock” is nothing more than an 
attempted connection to a port that is closed but is being 
monitored. By looking for predefined sequences of port 
knocks, servers can exchange critical control information 
without ever opening a port and exposing themselves to 
attacks. This mechanism is not used for data exchange. To 
use port knocking for our protocol’s transport mechanism we 
first choose a range of ports to use for communication; we 
reserve ports 28,000 though 28,100 for this purpose.   Secure 
implementations of port knocks should use per-machine 
firewalls, available on modern OS, to (1) block this port 
range and (2) suppress the sending of ICMP error messages 
to clients attempting to connect to these ports.  One way to 
see port knocking activities is through monitoring firewall 
log files.  

There are four messages defined in CCP (see Table 1).  
Each message is comprised of two identical knocks.  Further, 
ACKs at the message level not the individual packet/knock 
level since our messages are all only two packets long and 
do not require sequencing.  

Table 1 
SCIT-CPP Messages and Ports 

Message Type Dest. Port 

ROTATE_ROLE 28,010 

ACK_ROTATE_ROLE 28,011 

GO_OFFLINE 28,020 

ACK_GO_OFFLINE 28,021 

 
A knock in CCP is a TCP/SYN packet sent to a 

designated port on the receiving machine. The destination 
address of a knock is the IP address that is associated with 
the “role” of the intended receiver. The destination port 
number is determined by the type of the message as defined 
in Table 1. Besides the SYN flag, source address, destination 
address and destination port, other fields of the TCP/IP 
headers are not used.  

We now step through one cycle of the protocol at the 
message level to illustrate its operation within the DNS 
cluster.  Figure 4 depicts the CCP message exchanges.   

 
Figure 4:  CCP Steps  (a) – (h) 

The rotation cycle begins with the Clean (C) server 
coming online ready to takeover the role as the Primary DNS 
server.  The Clean server sends a ROTATE_ROLE message, 
Fig. 4, Step (a), to the current Primary (P) server which 
responds by sending back an ACK_ROTATE_ROLE 
message (Step (b)). Next, the Primary server sends a 
GO_OFFLINE message (Step (c)) to the current Secondary 
(S) server which replies with an ACK_GO_OFFLINE 
message (Step (d)). 

We see the first role change in Step (e) as the Secondary 
server immediately goes offline to begin the cleansing and 
integrity verification process.  With the Secondary role now 
open, the Primary server transitions into this role by 
acquiring the IP address for the Secondary DNS server by a 
gratuitous ARP announcement to the cluster subnet (Step 
(f)).  When the Clean (S) server sees the primary role 
vacated it broadcasts its own gratuitous ARP announcement 
to claim the IP address for the Primary DNS role (Step (g)).  
The final state transition (Step (h)) is the process of 
restarting the Offline (O) server followed by cleansing, 
integrity checking and master file updating.  The result of 
this transition is the new Clean (C) server; the rotation 
process now repeats. 

Lastly, the state transition diagrams for CCP knock 
processing are given in Figure 5. The diagrams in the figure 
illustrate the process used to send and process both the 
ROTATE_ROLE and the GO_OFFLINE messages. The “do 
action” box in the diagram refers to either the claiming of the 
IP address associated with a server role change or the 
restarting and cleansing process. Timeout lengths in the 
figure are those used in our own prototype.  They can be 
adjusted for different implementations.  In the next section 
we look at the specific implementation details for our 
prototype cluster which runs the SCIT-CCP protocol.  

 



 
 

Figure 5: SCIT-CCP State Transition Diagrams 

V. PROTOTYPE DESIGN 

In this section, we present the designs of our prototype 
implementation of the SCIT DNS architecture.  Each DNS 
server in Figure 1 is an Intel/Linux PC in the prototype.  The 
three servers are connected to a fast Ethernet switch which in 
turn is connected to a border router/firewall, also running 
Linux.  Two public, routable IP addresses are used, one for 
each of the two active DNS servers.  We use static NAT 
translation to provide a private, non-routable IP address for 
each of the DNS servers in the cluster.  Linux IPTABLES is 
used to perform address translation and packet filtering.  
When a server is assigned a new role in the cluster, either as 
Primary DNS or Secondary DNS, it claims the private IP 
address for that role using a gratuitous ARP announcement 
on the subnet.  The server lifecycle algorithm is coded in a 
shell script and executed immediately after booting. 

Coordination of server roles is accomplished using the 
SCIT-CCP protocol described in the previous section.  The 
processing of knocks, in accordance with Figure 5, is 
implemented in a SCIT-CCP daemon running on every 
server in the cluster.  Each server in the cluster also runs a 
local firewall independent of the firewall box in Figure 1. 
The SCIT-CPP daemon on a server receives incoming 
knocks through monitoring the log file produced by this 
local firewall.  

File integrity is monitored and maintained in our system 
through the use of Tripwire [8], which is a signature-based 
change detection package.  The package is used to digitally 
sign important system files and directories (/sbin, /usr/bin, 

and so on).  In Step 1 of the server lifecycle, these signatures 
are checked and in the cases of inconsistencies, 
corresponding files are recovered from a local read-only 
storage.  These tasks constitute the “self cleansing” of SCIT 
DNS systems. We point out that the copy of the master file 
on the primary server is not signed.  Corruption in this copy 
will be automatically corrected when the next primary server 
takes over – the new Primary will use a new copy obtained 
directly from Offline Storage (Step 4 of server Lifecycle).  

In our prototype we segregate the requests coming into 
the name server using a DNS wrapper program which 
borrows from the idea of Dr. Venema’s TCP Wrappers [17].  
The wrapper listens on port 53 (TCP/UDP) and acts as a 
proxy for named, a popular open-source implementation of 
DNS/DNSSEC.  It passes quires to named but stores 
incoming dynamic update data in a temporary file on the 
online storage machine associated with the Primary DNS 
server.  As discussed in Section 3, the updates are not 
incorporated into the master file until they are verified [14] 
during the next cleansing cycle. 

Each backend storage in Figure 1 is implemented as an 
Intel/Linux machine with local hard drives. The connection 
between a server and a backend storage machine is 
established as follows. A port knocking message is used to 
begin the process. Two knocks on port 28,030 on a backend 
storage machine opens a designated port for the server shell 
script to establish a SSH channel.  Such connections are used 
to give clean servers access to the master file in the offline 
storage and pending dynamic update requests stored in an 
online storage. The current primary server also establishes a 
connection to an offline storage to store incoming update 
requests. 

Lastly, we briefly discuss the limitations of the current 
protocol and prototype design with an eye toward our future 
research.  We have presented a cluster architecture that 
incorporates three servers in a round robin rotation scheme.  
In the future we will extend our cluster model to an arbitrary 
number of servers and may utilize rotational schemes other 
than straight round robin.  A potential enhancement to SCIT-
CPP includes the ability to carry data payloads for message 
origin authentication.  With the presence of payloads in CCP 
messages, error handling will also likely be needed.  We will 
also explore the potential value of building a SCIT cluster 
using pairs of SCIT servers as individual cluster nodes.  In 
such a configuration, each node in the cluster would be a 
pair of SCIT servers alternates roles between providing 
service and cleaning as in our prior work [6, 7]. 

VI. CONCLUSION 

The SCIT DNS cluster architecture provides high-
availability, intrusion tolerance, and guaranteed DNS 
integrity through periodic restarting, cleansing and integrity 
checking of each server in the cluster.  To achieve this we 
operate the cluster such that each server rotates through each 



role shown in Figure 2.  By limiting the time any server is 
running and exposed to the public Internet we limit the 
amount of exposure to potential attack in terms of time.  That 
is if an attacker is able to corrupt either the Primary or 
Secondary DNS server it will soon be restarted and cleaned, 
ejecting the hacker, and repairing any damage done to 
critical files.  We protect the integrity of the master file by 
segregating DNS dynamic updates from name resolution 
requests, storing the dynamic updates in a temporary storage 
until they can be verified and committed to the master file 
during the cleaning process.   

SCIT-DNS architecture augments the security afforded 
to DNS services over and above the DNSSEC 
enhancements. Through hardware redundancy, segregation 
of dynamic DNS updates, server role rotations, and the 
periodic cleansing process, SCIT DNS ensures high 
availability and master file data integrity even in the face of 
unknown or undetected attacks. A more resilient and reliable 
DNS service contributes significantly to the protection of 
network-based critical infrastructure systems. 
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