
SCIT-DNS: Critical Infrastructure Protection
through Secure DNS Server Dynamic Updates

Yih Huang, David Arsenault, and Arun Sood

Abstract—Domain Name Systems (DNS) provide the mapping
between easily remembered host names and their IP addresses.
While domain name information is typically created and
updated off-line, dynamic DNS updates allow clients to manage
domain names online, in real time. The current secure DNS
standards (DNSSEC) require private keys to be kept online to
sign dynamic updates, leaving private keys subject to network-
based attacks.

In this work*, we develop a secure implementation
framework of DNS servers that voids the above requirement.
Our approach, called Self-Cleansing Intrusion Tolerance
(SCIT), strengthens DNSSEC through hardware redundancy.
Our system uses a highly integrated cluster of DNS servers that
constantly rotates the role of individual servers, handles one-
server failures gracefully, confines the damages of successful
intrusion to a limited time, and digitally signs dynamic updates
by a clean box (to be defined layer) using the DNS zone key
while keeping the key offline at all times. It is our belief that
the availability and integrity of critical communications
infrastructure, such as DNS, far outweigh the costs of hardware
redundancy.

In this paper, we present (1) the architecture of SCIT
DNS clusters that achieves the above goals, (2) a secure Cluster
Coordination Protocol (CCP) that servers in the cluster use to
coordinate role changes without ever opening a port, and (3) the
designs of our ongoing SCIT DNS cluster prototype.
Preliminary experiences of our prototype show that role
rotation and self-cleansing cycles are in the range of minutes,
restricting the damages of even undetected but successful
attacks to short time windows.

Index Terms—computer security, fault-tolerance,, information
assurance, intrusion containment, self-cleansing systems

I. INTRODUCTION

As the world becomes ever more dependant on network-
based services for critical applications, particularly via
TCP/IP networks, it is vital to protect DNS from attacks and
failures. Unfortunately, popular DNS implementations have
been known to be the target of numerous vulnerabilities,

This research is part of the Critical Infrastructure Protection Project
funded by the National Institute of Standards and Technology
(NIST). The authors are with the Department of Computer Science
and the Center for Image Analysis, George Mason University,
Fairfax, VA. E-mail: {huangyih, darsenau, asood}@cs.gmu.edu.

exploits and attacks, as reported in [1, 15] and by the Cert
Coordination Center (www.cert.org). To achieve the
protection level desired for critical services such as DNS, we
apply an enhanced version of the Self-Cleansing Intrusion
Tolerance (SCIT) architecture [6, 7]. We believe that the
SCIT approach can improve the security of a large class of
servers that form part of the critical computing and
communication infrastructure. In [6, 7] we present
approaches for SCIT-based firewalls and web servers.

The Domain Name System (DNS) is essentially a
distributed database [11, 12]. Each name server maintains
the domain name information regarding a subspace, or a
zone, in the DNS name space. Several predefined properties,
or resource records (RR), can be associated with a domain
name. The most important is the “type A” RR, which
contains the IP address of the domain. All the RRs pertaining
to the domain names in a zone are stored in a master file,
maintained by the primary name server of that zone. Each
zone also has one or more secondary name server, which
periodically synchronizes its local DNS file with the master
file. Secondary name servers respond to DNS queries but are
not involved in maintaining the master file.

The DNS architecture was later enhanced with DNS
Security Extensions (DNSSEC) to provide data origin
authentication. With DNSSEC, each zone is equipped with
(at least) a pair of public and private keys. The public key is
configured into every client in the zone through a safe
channel (e.g., manually by administrators). The private key
is used to digitally sign RRs. The response to a DNS query
includes the requested RRs and a “Sig RR,” the digital
signature of the requested RRs. DNS clients verify the
integrity and origin of received DNS data by checking
accompanying signatures using the zone public key.

The integrity of the above approach depends on the
secrecy of the participating private keys, which is best
maintained by keeping the private keys off-line. In this way,
even if a server is compromised, the hacker cannot procure
the private key and temper with DNS data. (The hacker
however could still perform other mischief, such as deleting
the master file as a denial of service attack or using the
server as a jump pad to machines inside the intranet.) It
follows that signature computations must also be off-line.
This perfectly suits those domain names created and
managed manually via administrative procedures (one

registers for a new domain name, fill out a form, pay a fee,
etc.). Offline signature computation however is
incompatible with dynamic domain name updates, where
RRs are updated in real time upon online requests from
clients [13, 14, 16].

In the DNSSEC standards, signatures of dynamically
updated RR are computed in one of the following two
modes. In Mode A, a per-server private key is used to sign
dynamic updates. The corresponding public key is stored in
a Key RR associated with the domain name of the server and
obtained by client through DNS requests. In this way, server
compromises jeopardize only dynamically updated resource
records. However, server keys are considered not as
authoritative as zone keys [14]. In Mode B, the zone private
key is kept online and used to sign dynamic updates. This
leaves the key subject to exposure through network attacks.
In the face of server compromises, the integrity of the entire
master file is in question.

In this paper, we present a DNS implementation
framework that eliminates the above concerns. Our
approach, called Self-Cleansing Intrusion Tolerance (SCIT),
uses a cluster of servers and constantly rotates the role of
each server. At any point in time, a particular server may be
the primary server, the secondary server, or in the process of
rebooting and self-cleansing. We will show the advantages
of our design in three areas: (1) offline zone private keys to
sign dynamic updates, (2) high availability, the graceful
handling of one server failures, and (3) intrusion tolerance,
the damage confinement and automatic system recovery in
the face of breaches.

The remainder of the paper is organized as follows. The
concept of SCIT is presented in Section II, and the
architecture of our SCIT-DNS system presented in Section
III. In Section IV, we present the SCIT Cluster Coordination
Protocol (SCIT-CCP), which servers use for role rotations.
We detail our prototype design in Section V and conclude
this work in Sections VI.

II. SCIT OVERVIEW
SCIT uses periodic restarting of the system which

reloads the operating system, service software, and data from
trusted media, followed by system auditing and recovery
procedures. The trusted media can be any non-writable
media or writable media combined with digital signatures to
verify the integrity of data. During the cleansing process a
backup server is brought online to provide uninterrupted
services. In many aspects, SCIT is close to high-availability
computing, which uses backup systems to ensure continued
customer services in face of primary server failures [18, 4, 2,
10]. With SCIT, null failure events are introduced to force
periodic takeover by the backup server and the cleansing of
the primary server.

The reason for periodic cleansing is to force an online
server to return to a known, clean state, regardless the

detection of, or lack thereof, intrusion. The underlying
assumption is that there always are cyber attacks that are
sophisticated and stealthy enough to penetrate even the best
security measures and be beneath the radar of the most
advanced intrusion detection systems. While this “paranoid”
attitude is obviously overkill for an average Joe’s PC, it is
perfectly appropriate for critical infrastructures, such as
DNS. Just like a software tester’s job is to assume the
existence of bugs and contrive to uncover them, SCIT
assumes undetected security breaches in online systems and
takes actions accordingly.

In previous work, we have built a SCIT firewall
prototype that constantly alternates between two identically
configured firewall servers and a SCIT web server that
alternate between two servers [6, 7]. In these prototypes,
cleansing cycles are typically less than 10 minutes. While
occasional packet losses do occur during handovers, they
cause little, if any, perceivable service disruption owing to
the retransmission mechanisms of TCP/IP. We notice that
DNS provides retransmissions even when UDP is used.

III. SCIT-DNS CLUSTER
A SCIT cluster is a set of server boxes connected

through one or more local area networks, working
cooperatively and/or alternately to perform a set of
predefined services. Our DNS SCIT cluster consists of three
identical DNS servers running in a DMZ configuration
behind a firewall, as shown in Figure 1.

Figure 1: SCIT-DNS Cluster

The DNS zone running the cluster advertises two IP
addresses of DNS servers, a primary name server address
and a secondary name server address. It also advertises two
domain names for the primary and secondary servers, for
instance ns1.demo.com and ns2.demo.com. At the time of
this writing, we do not support the optional tertiary DNS
service. Generalizations to accommodate more than three
servers are part of our ongoing work.

Each of the three DNS servers in the cluster cycles
through three operating states: (1) Primary DNS, (2)
Secondary DNS, and (3) Offline for cleansing and integrity
checking. At any point in time only one of the DNS servers
will be operating in any one mode (see Figure 2). When a
server enters an operation mode, it assumes the identities

required by that mode. For instance, when a newly cleansed
server becomes the primary, it claims the IP address and
domain name of the primary name server. (An IP address
can be dynamically claimed by a machine with the VRRP
protocol or Gratuitous ARP messages.) DNS clients use
either of the two server identities when communicating with
cluster. The server that assumes the identity specified in a
query at time of receiving the query answers that query. It is
worth emphasizing that the bindings between DNS server
domain names and respective IP addresses do not change.
What will change is the machine that assumes each identity.

Also shown in Figure 1 are backend storages, including
an offline storage and three online storages. The Offline
Storage cannot be accessed by any server that is presently
serving DNS clients in the public network. It is used to store
the zone private key and the master file. An Online Storage
is accessible by all servers, including those that are online. It
is used to temporarily store requests for dynamic DNS
updates. Backend storages can be implemented as NFS
servers or storage devices attached to storage area networks.
They are considered part of the intranet. To access data in
backend storages, a server must first connect to the storage
and later disconnect. In implementation terms, connections
can be, for example, SSH connections or NFS mounts. We
use SSH in our prototype design.

Figure 2: Operating Mode Rotations

To illustrate the interactions among the three servers and
backend storages, we will go through a complete cycle of
SCIT operation, using arrows to show the communications
paths in each stage of operation. In Figure 3(a), Server 1 is
the current primary server (labeled ‘P’ in the figure). It
answers DNS queries and receives requests of dynamic
updates from the Internet. However, the processing of
update requests is postponed. Rather these requests are
merely stored in Online Storage 1. In the mean time, Server
0 (labeled ‘C’) has just rebooted and Server 2 is the
secondary (labeled ‘S’) and answers DNS queries. As
shown in the figure, Server 0 connects itself to Offline
Storage and Online Storage 2. It obtains the zone private
key from Offline Storage, retrieves the pending update
requests from Online Storage 2 (the reason of this particular
online storage will become clear when the cycle completes),
processes them according to DNSSEC, updates the master

file in Offline Storage, and saves a copy of the newly
updated master file in its local storage. Server 0 then
disconnects from Offline Storage and eliminates the zone
private key from its local disks and memory. It is now ready
to initiate a role rotation by exchanging control messages
with other servers through the SCIT-CCP protocol,
discussed in Section IV.

In Figure 3(b) we show the configuration after the above
role rotation, whereby Server 0 assumes the role of primary,
Server 1 becomes the secondary and Server 2 reboots and
restarts its lifecycle. In this configuration, new requests of
dynamic updates are stored in Online Storage 0 by Server 0.
The newly rebooted and cleansed Server 2 processes
pending updates (those received by the previous primary and
stored in Online Storage 1, commits the updates to the
master file in Offline Storage, and saves a copy of the master
file locally, before it initiates a role rotation.

Figure 3(a): Server 1 as the Primary

Figure 3(b): Server 0 as the Primary

In Figure 3(c) we show the configuration after the
second rotation, whereby Server 2 becomes primary, Server
0 becomes secondary and Server 1 restarts its lifecycle.
Arriving update requests are now stored in Online Storage 2.
After rebooting, Server 1 processes the pending updates in
Online Storage 0 and updates the master file in Offline
Storage. Server 1 then initiates a role rotation, and the
system returns to the configuration in Figure 3(a), where

pending requests collected in this phase and stored in Online
Storage 2 are processed by Server 0.

Figure 3(c): Server 0 as the Primary

We are now ready to present the lifecycle of SCIT DNS
servers, starting from the first task immediately after
rebooting. In the Lifecycle of SCIT-DNS Server, all
arithmetic is in modulus 3.

Lifecycle of SCIT-DNS Server i, 0 ≤ i ≤ 2:
1. Perform system integrity checking and, if necessary,

recovery procedures. This mainly involves checking the
signatures of important system files and directories.

2. Connect to the Offline Storage and retrieve the zone
private key.

3. Connect to Online Storage i-1 and process, according to
RFC2136, the pending requests of dynamic updates
stored there. The master file is updated in the process
and the signatures of affected RR recomputed using the
zone private key.

4. Make a copy of the newly updated master file in the
local file system of Server i.

5. Disconnect from both the Offline Storage and Online
Storage i-1.

6. Eliminate all traces of the zone private key by
reinitializing disk blocks and memory pages used to
store the key.

7. Connect to Online Storage 1, for storage of incoming
DNS dynamic updates when Server i becomes the
Primary DNS server.

8. Use the CCP ROTATE_ROLE message to initiate a role
rotation and then claim the IP address of the primary
server.

9. Server i assumes the role of the Primary DNS server,
which: answers DNS queries using its local copy of the
master file, receives dynamic update requests and stores
them in Online Storage i, and honors the Secondary
DNS server’s requests for DNS data synchronizations.

10. Upon receiving a ROTATE_ROLE CCP message, claim
the IP address of the Secondary server.

11. Server i assumes the role of the secondary server. It will
answer DNS queries but reject dynamic update requests.

It synchronizes its local DNS data with the new primary
in accordance with [12].

12. Upon receiving a GO_OFFLINE CCP message, reboot.

We point out that in Figures 3(a) through 3(c) there are
no communications paths from outside to Offline Storage at
all times. The zone private key is always offline. Neither is
there any communications path from outside to the servers
labeled ‘C’, those that have been newly cleansed but not yet
gone online. Without communication paths, it is (virtually)
impossible to breach such servers from the public Internet.
We say a server is clean if it has completed Steps 1 to 8 of a
lifecycle.

To conclude this section, we summarize the benefits of
the SCIT-DNS cluster as follows:

• Key Protection. Zone private keys are kept offline even
though they are used to sign dynamic updates, ensuring
the highest level security for dynamically updated RR.
Primary server compromises will not expose zone
private key and do not degrade data origin
authentication.

• High availability. The system gracefully handles the
failure of one server. In the presence of one server
failure the system simply stops role rotations, because
there will be no newly cleansed machine to send
ROTATE_ROLE messages in Step 8 above. Dynamic
updates are however postponed until the third server is
repaired and activate role rotation again.

• Intrusion Tolerance. Even if a hacker manages to
breach a server, say the current primary, she can inflict
damage only for limited time. For instance, if the
hacker deletes the online copy of the master file, stored
in the primary server, services will be restored when the
next primary server takes over. Trojan horse programs
can be detected and removed through system auditing
after rebooting [HuSK03, HoDu98]. If the hacker
means to use the server as a jump pad to the intranet, she
loses her foothold in a short period of time.

IV. CLUSTER COORDINATION PROTOCOL

In this section we introduce the SCIT Cluster
Coordination Protocol (SCIT-CCP) which manages the
server role rotations within the SCIT-DNS cluster. Figure 1
illustrates the cluster architecture in which the protocol is
designed to operate.

SCIT-CCP is designed to enable the intra-cluster
communication necessary to effect the server role rotations
while at the same time not providing connections between
the DNS servers in the cluster. By not maintaining active
connections between the servers in the cluster we do not
keep any ports open other than those used for DNS
transactions. This virtually eliminates the possibility of an
attacker gaining control of one server in the cluster and using

it as a foothold to compromise other machines in the cluster.
To communicate our cluster management messages without
intra-cluster connections we turn to a novel technique called
port knocking [9].

Port knocking provides the means to transport messages
across closed ports. A “port knock” is nothing more than an
attempted connection to a port that is closed but is being
monitored. By looking for predefined sequences of port
knocks, servers can exchange critical control information
without ever opening a port and exposing themselves to
attacks. This mechanism is not used for data exchange. To
use port knocking for our protocol’s transport mechanism we
first choose a range of ports to use for communication; we
reserve ports 28,000 though 28,100 for this purpose. Secure
implementations of port knocks should use per-machine
firewalls, available on modern OS, to (1) block this port
range and (2) suppress the sending of ICMP error messages
to clients attempting to connect to these ports. One way to
see port knocking activities is through monitoring firewall
log files.

There are four messages defined in CCP (see Table 1).
Each message is comprised of two identical knocks. Further,
ACKs at the message level not the individual packet/knock
level since our messages are all only two packets long and
do not require sequencing.

Table 1
SCIT-CPP Messages and Ports

Message Type Dest. Port

ROTATE_ROLE 28,010

ACK_ROTATE_ROLE 28,011

GO_OFFLINE 28,020

ACK_GO_OFFLINE 28,021

A knock in CCP is a TCP/SYN packet sent to a

designated port on the receiving machine. The destination
address of a knock is the IP address that is associated with
the “role” of the intended receiver. The destination port
number is determined by the type of the message as defined
in Table 1. Besides the SYN flag, source address, destination
address and destination port, other fields of the TCP/IP
headers are not used.

We now step through one cycle of the protocol at the
message level to illustrate its operation within the DNS
cluster. Figure 4 depicts the CCP message exchanges.

Figure 4: CCP Steps (a) – (h)

The rotation cycle begins with the Clean (C) server
coming online ready to takeover the role as the Primary DNS
server. The Clean server sends a ROTATE_ROLE message,
Fig. 4, Step (a), to the current Primary (P) server which
responds by sending back an ACK_ROTATE_ROLE
message (Step (b)). Next, the Primary server sends a
GO_OFFLINE message (Step (c)) to the current Secondary
(S) server which replies with an ACK_GO_OFFLINE
message (Step (d)).

We see the first role change in Step (e) as the Secondary
server immediately goes offline to begin the cleansing and
integrity verification process. With the Secondary role now
open, the Primary server transitions into this role by
acquiring the IP address for the Secondary DNS server by a
gratuitous ARP announcement to the cluster subnet (Step
(f)). When the Clean (S) server sees the primary role
vacated it broadcasts its own gratuitous ARP announcement
to claim the IP address for the Primary DNS role (Step (g)).
The final state transition (Step (h)) is the process of
restarting the Offline (O) server followed by cleansing,
integrity checking and master file updating. The result of
this transition is the new Clean (C) server; the rotation
process now repeats.

Lastly, the state transition diagrams for CCP knock
processing are given in Figure 5. The diagrams in the figure
illustrate the process used to send and process both the
ROTATE_ROLE and the GO_OFFLINE messages. The “do
action” box in the diagram refers to either the claiming of the
IP address associated with a server role change or the
restarting and cleansing process. Timeout lengths in the
figure are those used in our own prototype. They can be
adjusted for different implementations. In the next section
we look at the specific implementation details for our
prototype cluster which runs the SCIT-CCP protocol.

Figure 5: SCIT-CCP State Transition Diagrams

V. PROTOTYPE DESIGN

In this section, we present the designs of our prototype
implementation of the SCIT DNS architecture. Each DNS
server in Figure 1 is an Intel/Linux PC in the prototype. The
three servers are connected to a fast Ethernet switch which in
turn is connected to a border router/firewall, also running
Linux. Two public, routable IP addresses are used, one for
each of the two active DNS servers. We use static NAT
translation to provide a private, non-routable IP address for
each of the DNS servers in the cluster. Linux IPTABLES is
used to perform address translation and packet filtering.
When a server is assigned a new role in the cluster, either as
Primary DNS or Secondary DNS, it claims the private IP
address for that role using a gratuitous ARP announcement
on the subnet. The server lifecycle algorithm is coded in a
shell script and executed immediately after booting.

Coordination of server roles is accomplished using the
SCIT-CCP protocol described in the previous section. The
processing of knocks, in accordance with Figure 5, is
implemented in a SCIT-CCP daemon running on every
server in the cluster. Each server in the cluster also runs a
local firewall independent of the firewall box in Figure 1.
The SCIT-CPP daemon on a server receives incoming
knocks through monitoring the log file produced by this
local firewall.

File integrity is monitored and maintained in our system
through the use of Tripwire [8], which is a signature-based
change detection package. The package is used to digitally
sign important system files and directories (/sbin, /usr/bin,

and so on). In Step 1 of the server lifecycle, these signatures
are checked and in the cases of inconsistencies,
corresponding files are recovered from a local read-only
storage. These tasks constitute the “self cleansing” of SCIT
DNS systems. We point out that the copy of the master file
on the primary server is not signed. Corruption in this copy
will be automatically corrected when the next primary server
takes over – the new Primary will use a new copy obtained
directly from Offline Storage (Step 4 of server Lifecycle).

In our prototype we segregate the requests coming into
the name server using a DNS wrapper program which
borrows from the idea of Dr. Venema’s TCP Wrappers [17].
The wrapper listens on port 53 (TCP/UDP) and acts as a
proxy for named, a popular open-source implementation of
DNS/DNSSEC. It passes quires to named but stores
incoming dynamic update data in a temporary file on the
online storage machine associated with the Primary DNS
server. As discussed in Section 3, the updates are not
incorporated into the master file until they are verified [14]
during the next cleansing cycle.

Each backend storage in Figure 1 is implemented as an
Intel/Linux machine with local hard drives. The connection
between a server and a backend storage machine is
established as follows. A port knocking message is used to
begin the process. Two knocks on port 28,030 on a backend
storage machine opens a designated port for the server shell
script to establish a SSH channel. Such connections are used
to give clean servers access to the master file in the offline
storage and pending dynamic update requests stored in an
online storage. The current primary server also establishes a
connection to an offline storage to store incoming update
requests.

Lastly, we briefly discuss the limitations of the current
protocol and prototype design with an eye toward our future
research. We have presented a cluster architecture that
incorporates three servers in a round robin rotation scheme.
In the future we will extend our cluster model to an arbitrary
number of servers and may utilize rotational schemes other
than straight round robin. A potential enhancement to SCIT-
CPP includes the ability to carry data payloads for message
origin authentication. With the presence of payloads in CCP
messages, error handling will also likely be needed. We will
also explore the potential value of building a SCIT cluster
using pairs of SCIT servers as individual cluster nodes. In
such a configuration, each node in the cluster would be a
pair of SCIT servers alternates roles between providing
service and cleaning as in our prior work [6, 7].

VI. CONCLUSION

The SCIT DNS cluster architecture provides high-
availability, intrusion tolerance, and guaranteed DNS
integrity through periodic restarting, cleansing and integrity
checking of each server in the cluster. To achieve this we
operate the cluster such that each server rotates through each

role shown in Figure 2. By limiting the time any server is
running and exposed to the public Internet we limit the
amount of exposure to potential attack in terms of time. That
is if an attacker is able to corrupt either the Primary or
Secondary DNS server it will soon be restarted and cleaned,
ejecting the hacker, and repairing any damage done to
critical files. We protect the integrity of the master file by
segregating DNS dynamic updates from name resolution
requests, storing the dynamic updates in a temporary storage
until they can be verified and committed to the master file
during the cleaning process.

SCIT-DNS architecture augments the security afforded
to DNS services over and above the DNSSEC
enhancements. Through hardware redundancy, segregation
of dynamic DNS updates, server role rotations, and the
periodic cleansing process, SCIT DNS ensures high
availability and master file data integrity even in the face of
unknown or undetected attacks. A more resilient and reliable
DNS service contributes significantly to the protection of
network-based critical infrastructure systems.

REFERENCES
[1] Bellovin, S. M. Using domain name system for system break-ins. In

Proceedings of the 5th Usenix UNIX Security Symposium. Salt Lake
City, UT, 1995.

[2] Steve Blackmon and John Nguyen, “High-Availability File Server
with Heartbeat,” System Admin, the Journal for UNIX Systems
Administrators, vol. 10, no. 9, September 2001. [CIDF] Common
Intrusion Detection Framework, www.gidos.org

[3] Eronen, P. and Sars, J. Applying decentralized trust management to
DNS dynamic updates. In Proceedings of the NordU/USENIX 2001
conference. Stockholm, Sweden.

[4] High-Availability Linux Project. www.linux-ha.org.

[5] M. Hosmer and M. Duren, “Detecting subtle system changes using
digital signatures,” Proceedings of Information Technology
Conference, pages 125—128, (Syracuse, NY) Sep. 1998.

[6] Yih Huang, Arun Sood, and Ravi K. Bhaskar, “Countering Web
Defacing Attacks with System Self-Cleansing,” Proceedings of 7th
Word Multiconference on Systemics, Cybernetics and Informatics, pp.
12—16, Orlando, Florida, July 2003.

[7] Yih Huang and Arun Sood, “Self-Cleansing Systems for Intrusion
Containment,” Proceedings of Workshop on Self-Healing, Adaptive,
and Self-Managed Systems (SHAMAN), New York City, June 2002.

[8] Gene H. Kim and Eugene H. Spafford, “Writing, Supporting, and
Evaluating Tripwire: A Publicly Available Security Tool,” in
Proceedings of USENIX Applications Development Symposium,
(Toronto, Canada), April 1994. Also see www.tripwire.com.

[9] Krzywinski, M. 2003. Port Knocking: Network Authentication Across
Closed Ports. SysAdmin Magazine 12: 12-17. www.portknocking.org

[10] R. Rabbat, T. McNeal and T. Burke, “A High-Availability Clustering
Architecture with Data Integrity Guarantees,” Proceedings of IEEE
International conference on Cluster Computing, 178 – 182, (Newport
Beach, CA) Oct., 2001.

[11] Mockapetries, P. Domain names - concepts and facilities. Internet
RFC1034, 1987.

[12] Mockapetries, P. Domain names implementation and specification.
Internet RFC1035, 1987.

[13] Vixie (Ed.), P., Thomson, S., Rekhter, Y. and J. Bound, "Dynamic
Updates in the Domain Name System", Internet RFC 2136, April
1997.

[14] D. Eastlake. Domain Name System Security Extensions. Internet RFC
2137, April 1997.

[15] Vixie, P.: DNS and BIND security issues. In Proceedings of the 5th
Usenix Security Symposium. Salt Lake City, UT, 1995.

[16] Wang, X., Huang, Y., Desmedt, Y., and Rine, D. Enabling secure on-
line DNS dynamic update. In Proceedings of the 16th Annual
Computer Security Applications Conference. New Orleans, Lousiana,
USA, 52—58, 2000.

[17] Venema, Wietse. “TCP Wrappers.” 1997. htp://www.porcupine.org.

[18] Peter S. Weygant, Clusters for High Availability, Prentice Hall, 1996.

http://www.rfc-archive.org/getrfc.php?rfc=2136

	I. Introduction
	II. SCIT Overview
	III. SCIT-DNS Cluster
	IV. Cluster Coordination Protocol
	V. Prototype Design
	VI. Conclusion

