

Secure, Resilient Computing Clusters: Self-Cleansing Intrusion Tolerance

with Hardware Enforced Security (SCIT/HES)

David Arsenault, Arun Sood, Yih Huang
Computer Science Department

George Mason University

Fairfax, Virginia, USA

{darsenau, asood, huangyih}@cs.gmu.edu

Abstract

The formidable difficulty in securing systems stems in

large part from the increasing complexity of the

systems we build but also the degree to which we now

depend on information systems. Complex systems

cannot be fully verified under all possible conditions.

Self-Cleansing Intrusion Tolerance (SCIT) servers go

through periodic cleaning. SCIT can be used to create

secure and robust cluster of servers without the

impossible requirement of having perfect security on

each server in the cluster. In this paper
†
, we identify

six SCIT security primitives that must be satisfied. We

present a SCIT hardware enhanced (SCIT/HES)

implementation that guarantees the incorruptibility of

SCIT operations.

1. Introduction

Networks and the systems that run on them have

become essential to the operation of business

enterprises, functioning of the global economy, and

national security [1]. Despite decades of research on

computer and network security systems are besieged by

a myriad of security threats—viruses, worms, malware,

denial of service attacks, data thefts, and software

vulnerabilities.
Complex systems cannot be fully verified under all

possible conditions, and thus unseen bugs and

vulnerabilities can and do make their way into

production software releases. The commercial drives

to add more features and ship products quickly only

exacerbate the problems. Another factor contributing

to the poor state of system security today is

connectivity. In [1] this point is captured with a simple

equation: Ubiquitous Interconnectivity = Widespread

Vulnerability.

 These mounting security challenges necessitate a

reexamination of the fundamental assumptions of

†
 This research is supported by the NIST-funded Critical
Infrastructure Protection Project and Sun Microsystems.

present computer security defenses: Do we really

know all enemy tactics and techniques? Do we know

about all of the potential vulnerabilities that exist in our

systems? The only prudent conclusion is there are

attacks that could evade even the most state-of-art and

constantly updated defensive systems.

In [2, 3, 4, 5] we developed Self-Cleansing Intrusion

Tolerance (SCIT) with focus on creating a remediation

mechanism for a broad set of system unknown and

undetected attacks. In a SCIT system multiple servers

are configured to perform some service such as e-mail,

web or DNS servers. The SCIT cluster architecture

allows individual servers to occupy different roles at

different times without affecting the availability of the

service that the cluster is performing. The lifecycle of

an individual server begins with the cleansing role and

then progresses through one or more online service

roles. Constantly repeating this lifecycle ensures that

each server is not online indefinitely and that it is

periodically cleaned. By limiting the length of time a

server is exposed online, SCIT reduces the window of

opportunity for an attacker to exploit known or

unknown vulnerabilities. Further, by periodically

cleaning each server, an attacker’s opportunity to

establish a foothold to use for further or future attacks

is severely restricted. In [5, 6], we have developed

primitive forms of hardware enhancements for use by

SCIT DNS systems. A cluster-wide SCIT management

algorithm was proposed in [7].
Of course, SCIT operations and mechanisms

themselves could also be attacked by the enemy in

attempts to disable server cleansing and stop role

rotations. Software implementations of SCIT

operations in particular leave open the possibility of

being compromised and inevitably constitute a weak

link in security. In this paper, we propose a hardware-

based, generic framework that guarantees the

incorruptibility of SCIT operations. We begin our

design with the following two zero-trust principles:

(1) Software is malleable. All software can be

potentially corrupted through communications. This is

the only prudent assumption given the trend of

increasing complexities and vulnerabilities in software.

(2) Online servers are corrupted. All online systems

(those exposed to the external, public network) must be

assumed to be compromised. This is the only prudent

response to not knowing “all” system vulnerabilities

and attack techniques.

In this paper we propose six security proprieties of

SCIT, termed SCIT Primitives (see Table 1). The

primary contribution of this paper is a scalable

hardware framework, termed SCIT with Hardware

Enhanced Security (SCIT/HES), that complements the

software components of SCIT in order to enforce and

guarantee the proposed SCIT Primitives. Compared to

our previous, relatively primitive designs of hardware

enhancements, the design presented here further

address the following issues.

• Generic. The design presented here does not assume

any specific services provided by the SCIT cluster.

It is designed for incorporation by generic server

clusters to benefit from the intrusion tolerance

features provided by SCIT.

• Scalability. The new design scales to large size
clusters.

• The removal of single point of failure at the central

SCIT management controller in the cluster.

The remainder of the paper is organized as follows.

We present in Section 2 the hardware components of

the SCIT/HES framework. We elaborate in Section 3

the ways in which the SCIT Primitives in Table 1 are

enforced and their implications on system security. We

present in Section 4 the per-server state transitions in

SCIT/HES and summarize in Section 5 the advantages

of SCIT/HES. The issues of scalability and points of

hardware failures are addressed in Section 6. We give

related work and conclusion in Sections 7 and 8,

respectively.

Table 1. SCIT Security Primitives

(1) Guaranteed Periodic Reset and Cleansing

(2) Protected Files Load From Trusted Storage Source

(3) Guaranteed Role Assumption in a known state.

(4) Security-Critical Operations Executed Only in off-line
Clean State

(5) Guaranteed Isolation of Online Servers (from the
internal networks and trusted storage)

(6) Guaranteed Isolation of Secure Controller

2. Secure Controller and Trusted Interface

The SCIT/HES framework uses a centralized

controller and a small set of simple, non-programmable

logic circuits in the communication interfaces. It

allows for the use of standard server hardware while

providing guaranteed security “primitives” upon which

the ultimate security of the system depends. The high-

level architecture of SCIT/HES is depicted in Figure 1.

In the figure, we show only the detailed setup between

the central controller and a particular Server X. The

same setup applies to all the other servers in the cluster,

omitted in Figure 1 for clarity. We point out that the

issue of single point of failure caused by the central

controller will be addressed later.

SCIT Secure

Controller

Trusted

Storage

Trusted

Interface

Module

SCIT SwitchTrusted

Interface

Module

To

Server

N

Public

Network

…

Trusted

Interface

Module
Server

x

Serial connector:

+Vdc, ground,

and command

data channel.

Network interface

connection under

control of SCIT

Switch within

Trusted Interface.

Server reset

switch provides

failsafe reset.

Control

Algorithms

State Data

Reset Timers

Network connections only enabled

during clean state; once disabled by

SCIT Switch only the server reset

cycle can restore connection.

Hardware-guaranteed

unidirectional control

signaling interface.

Figure 1. SCIT/HES Cluster Architecture

2.1. SCIT Secure Controller

As seen in Figure 1, the central element of a

SCIT/HES cluster is the SCIT Secure Controller which

manages a set of Trusted Interfaces that provide

connections to each server in the cluster. The SCIT

Controller is a programmable machine (server) that

implements the control algorithms to govern the

cluster-wide SCIT operations, including server role

rotations. Using a centralized, programmable

controller affords cluster designers flexibility and

robustness that would be very difficult if not

impossible to achieve with the fully software-based

SCIT implementations. A central mechanism of

control simplifies both administration and

programming of the cluster which allows the cluster

designer to modify, tune, and optimize the role rotation

algorithms needed for a particular application. Timing

of both role rotations and reset timers are also left to

the cluster designer. From a design perspective we

purposefully kept as much of the complexity of the

cluster as possible in one place—the SCIT Secure

Controller.

2.2. SCIT Trusted Interface Module

The SCIT Trusted Interface Modules (TIMs) in

Figure 1 provide a unidirectional communications link

from the SCIT Controller to each server in the cluster.

At the server end of the Trusted Interface Module, the

unit is connected to the server’s serial port for power,

ground, and data; a connection to the server’s reset

switch is also used to provide the failsafe reset

function. The data sent from the Secure Controller to

the server over this connection informs the server when

a state change is needed (such as a reset signal to begin

the cleansing process) and what state to transition to.

The server-side Trusted Interface Module also contains

a SCIT Switch component that provides the ability to

physically cut-off the network connections from the

server to the local network (which includes the SCIT

Controller itself as well as the Trusted Storage server).
In this way, the Trusted Interface is the isolating

mechanism that maintains the protected state of the

SCIT Controller and at the same time allowing it to

send messages to control the state of each server—this

is a unidirectional link guaranteed by hardware. Using

the Trusted Interface, the Controller manages the

communications interface between the clean machine

(a server that has been cleansed but not yet online),

Trusted Storage machine, and the Controller itself. The

SCIT Switch provides hardware-guaranteed isolation

between each Server and the Trusted Storage unit and

between the Controller and the Server. When the

Switch is closed it enables the network connection

between the Server and the other machines it connects

to, but, when the switch set to the open position no

network connection can exist. These form the

foundations of the six SCIT Primitives, as discussed in

the next section.

3. The SCIT Security Primitives

The first SCIT security primitive in Table 1 is the

guarantee that servers always go through and complete

the periodic self-cleansing process. Resetting the

server system will force it to reboot, go through the

cleaning process, and finally load known clean copies

of all critical files from the trusted storage. This

primitive is achieved through two mechanisms: the

primary mechanism is the SCIT daemon process

running on each server and the secondary (backup)

mechanism is a hardware failsafe timer and reset

switch, both to be discussed later.

The second security primitive requires that all files

critical to the successful operation of the server are

loaded from a read-only device such as a CD-ROM or

from a Trusted Storage device which is

cryptographically secured.
The third security primitive guarantees the initial

service role assumption of a server transitioning from

the ready (clean) state to the assigned online service

role. The basis for this guarantee is the fact that a

newly clean server has not been exposed to the outside

world (external networks) and is thus free from any

corruption. Since the SCIT daemon and other critical

system software has been loaded from a known clean

copy we can be assured that the server, when

commanded by the Secure Controller, will transition

into its intended service role as expected.
The fourth security primitive requires the processing

of security-critical operations only during the clean

state, before the server goes online and is exposed to

the external network. Like the second primitive,

previous SCIT architectures already implement this

primitive but do so in software. SCIT/HES enforces

the fourth security primitive by using SCIT Switches to

manage the access to the Trusted Storage, which hold

security keys and other critical data. Before moving a

server online, the Controller will turn off the SCIT

Switch of the server to physically prevent access to the

Trusted Storage host and thus keys and other critical

data. Any data that is stored on the Trusted Storage

host and is accessed during the self-cleansing process

will never be exposed to the public/enterprise network.
The fifth security primitive is the guarantee that the

SCIT Secure Controller is always fully isolated from

the servers that are online performing their production

roles. To enforce this guarantee a unique type of

hardware switch—a “once after reset” switch—is

implemented using a basic logic circuit. This switch is

installed on all interfaces that connect the Controller to

the servers in the cluster and regulates the direction of

data flow on the interfaces. The “once after reset”

switch operates between two and only two states: one

state allows bidirectional data flow between the

Controller and the server while the other state allows

only unidirectional data flow from the Controller to the

server. The Controller operates the switch via simple

hardware-based signaling inputs which cause changes

in the switch’s state. The SCIT Switch powers up in

the closed state which allows the server to connect to

the Trusted Storage unit as it goes through the cleaning

process. At this time, the server can also communicate

with the Controller via the intranet connection to

exchange any state data (if required by the applications

being run in the cluster). Once the server is clean and

ready to perform an online role, the SCIT Switch is set

to the open position which prevents any

communications on the network interface regardless of

what state the network interface card is set to on the

server. An attacker cannot turn the interface on and

gain a network link outside the server into the rest of

the cluster. Once the state of the switch is changed by

the controller the only way to restore the state to enable

communications on the link is a server reset which

cycles the power to the switch. This is the so called

“once after reset” property that ensures server isolation.
The sixth and final security primitive guarantees

that the Secure Controller will always remain

completely isolated from the rest of the SCIT network.

The isolation of the Controller is accomplished in

implementation terms by using a one-way optical link

in the Trusted Interface Modules. Such a link provides

absolute logical isolation of the Controller. As such

the Secure Controller is free from all forms of network-

based attack.

4. Server States and Role Rotations

Figure 2 shows the per-server state transition

diagram in a SCIT/HES cluster. Here an important

distinction must be made between the terms state and

role. In a SCIT system a state means the condition of a

SCIT server at a given point in time whereas the term

role refers to the service a server provides to users (i.e.

web, DNS, or file services).

A SCIT server begins with the warm rebooting

(hardware reset) of the server, denoted as state [0] in

Figure 2. The reboot starts the self-cleansing process

by cleaning up all forms of corruption in memory. The

server subsequently loads critical files from a read-only

storage source (or a read/write storage that is

cryptographically-protected source), reference state (1).

Critical files, also termed “Protected files”, include

fundamental operating system files (kernel and other

vital files), application executables, and important

configurations files. These are the set of files that are

required to be in a known, uncorrupted state in order to

provide assured server operation. The server enters the

final offline state (2) in the SCIT lifecycle. When

commanded by the Secure Controller (via the Trusted

Interface), the ready server enters a service role, state

(3), during which the server provides designated

service(s) to end users.

Figure 2. SCIT State Diagram

Upon completion of its service role, each SCIT

server will return to state 0 after a reboot signal. The

vital transition from state (3) to (0) is achieved by two

independent mechanisms. Under normal conditions

(no attack on server) the reboot signal is sent from the

Secure Controller via the Trusted Interface and

ultimately a SCIT daemon responds to the controller’

signal and resets the server to begin the cleansing

process. This reset method relies on the viability of the

SCIT daemon, a software process, which is subject to

potential subversion by an attacker. To eliminate this

attack vector and provide absolute assurance that

periodic self-cleansing occurs (SCIT Security Primitive

1), an independent mechanism known as the Trusted

Interface Failsafe Reset Timer is implemented as a

hardware-based timing circuit. Upon expiration, this

timer circuit triggers a relay to activate the hardware

reset switch on the server thus ensuring the periodic

rebooting and cleansing of SCIT servers regardless the

presence of software corruption.

5. Advantages of SCIT/HES

The general benefits of the SCIT/HES architecture,

which implements a cluster using centralized control,

are the strong physical/logical isolation of the online

servers, the elimination of the dependency on

distributed software for cluster coordination, and the

removal of the need for intra-server communications

(as required with distributed SCIT versions).

In summary, the centralized control architecture

version of SCIT has the following properties, all of

which enforce the six SCIT security primitives:

• Server reset (restart) cleans memory and begins

the cleansing process.

• Server boot-up from trusted storage loads all

files needed to guarantee the “clean” state of the

server.

• Each server’s lifetime (time in service) is finite,

known, and ultimately guaranteed by the failsafe

reset mechanism. Limiting the amount of time

that each server is exposed to the outside world

limits the potential for successful attacks.

• The SCIT Central Controller architecture

eliminates the software risks associated with

using a distributed algorithm to control the role

rotations of the servers in the cluster.

• A guaranteed unidirectional communication

channel from the Controller to each server in the

cluster ensures the complete and absolute

isolation of the Controller from all servers that

are in the online (in service) state.
Periodically resetting and cleansing each SCIT

server provides three important security advantages

that are unique to our system design. First, the server

begins each lifecycle in a known clean state free from

malware or corruption which provides for assured

initial operation or the server. Second, by placing a

finite time limit on the exposure of the server to

potential attack via the external network—this bounds

the probability of a successful attack damaging the

SCIT cluster as well as limits the overall impact of an

attack. Finally, by rebooting the server and loading

protected files from a read-only source any malware or

corruption that impacted the server while exposed to

the external network are removed from the server

without the need to rely on successful detection of the

problems.

6. Refactoring for Robustness

While SCIT/HES provides numerous valuable

security benefits unique to this architecture, there are

several potential points of failure that should be

factored out of the design to achieve a balance among

security, availability, and robustness.
Centrally-controlled SCIT solves the server

coordination and management issues nicely, but as an

unwanted byproduct it added a potential critical point

of failure in the Central Controller itself. Through

refactoring our design we will show the desired

balance between security and robustness.
Centralizing control introduces a scalability

concern, that is, communication links must be

established from the Central Controller to each server.

At small scale this is not a problem, but as the scale of

the SCIT/HES secure computing cluster approaches

realistic enterprise-level size of twenty or more servers,

the point-to-point flat controller link topology could

become a challenge to scaling and managing the secure

computing cluster.
Finally, as an aid to server management and more

fine-grained control or server roles we paradoxically

also seek to add a 2-way communication channel

enabling each server to send signals to the Central

Controller for auditing and server control feedback.

The design challenge is to do this without violating one

of the core tenants of the SCIT design—the guaranteed

isolation of online servers from the Central Controller

(Table 1: SCIT Primitive 6).
We begin our design refactoring with the Central

Controller. As we have seen, the use of a Central

Controller provides authoritative cluster control which

is both an asset and a liability in terms of being a single

point of failure. Figure 3 illustrates a more robust

Controller architecture whereby there are now two

Controllers (A and B) with one functioning as the

active controller and the other serving as a hot failover

spare controller. State synchronization between

controllers necessary to enable a hot failover is

maintained via a backside private LAN connection

shown on the left edge of the diagram. The dual

Controller setup is shown in context of the entire

refactored SCIT/HES architecture shown in Figure 3.
With respect to the challenges of scaling a SCIT

secure computing cluster to enterprise-class size of

several tens or more servers, we introduce the concept

of the SCIT Switchboard. The Switchboard provides

several important capabilities that directly impact

cluster scalability and management: addressing support

for an arbitrary number of Secure Interfaces and simple

message queuing. Note that we purposefully renamed

the Trusted Interface Modules from the original design

in Figure 1 to the Secure Interfaces here in Figure 3.

This was done to help differentiate the two because the

refactored Secure Interfaces now support two-way data

traffic as we will soon see.
The SCIT Switchboard logically connects both

Controllers to an arbitrary number of Secure Interfaces;

but each Controller-to-Switchboard interface consists

of only two links: an outbound (from the Controller’s

perspective) Control connection (C) and an inbound

Feedback connection (F). Regardless of how many

servers are present in a cluster, there will only need to

be these four backside connections between the

Switchboard and the two SCIT controllers—a

significant gain with respect to scaling is the result.

Figure 3. Refactored SCIT/HES Architecture

Before discussing Switchboard addressing and

message queuing in detail, we need to introduce the

new dual-mode Secure Interface that enables

bidirectional data traffic flows that is, both to and from

the Controller (via the Switchboard). As a major

change from the original architecture design we now

use the same link for both control messages and server

status or feedback messages. The notion of making this

critical communications link operate as a dual-mode

channel enables the same security benefits as the

original design yet allows data to flow back to the

Controller, but only under the specific conditions of the

feedback mode of operation. In our original design,

these links are always outbound and unidirectional

carrying data from the Controller to each server in the

cluster; under the refactored architecture this is now the

control mode for the link.

Figure 4. Control and Feedback Modes

The dual-mode Secure Interface links are really two

hardware-enforced unidirectional links which share a

single communications channel—either electrical or

optical; the choice of which type of communications

path to use is left to those implementing the system.

Using an optical link for explanation of the links

operation, we have an emitter/detector module at each

end of a fiber optic cable that links the two Secure

Interface modules. In feedback mode, the

communication path is from server to Switchboard

(and ultimately to the Controller). The opposite

direction of data flow is used for control mode as

shown in Figure 4. Maintaining this configuration is

simply a matter of enabling the emitter at the server

side and the detector at the Switchboard side of the

link; the mode of the link is hardware controlled by a

simple switching circuit that enables one mode or the

other but not both at once. Feedback mode is enabled

once per server self-cleansing cycle after restarting but

before being put online. Feedback mode

communication occurs after the server is returned to a

known state, and this mode is terminated before the

server is exposed to the internet, thus ensuring the

isolation of the SCIT controller from online servers.

Once feedback mode is switched off by the

Switchboard, the interface maintains a control mode

configuration until the next server cycle.

With an understanding of how the dual-mode

Secure Interface links work, we can now return to our

discussion of how the Switchboard operates. Let us

begin with how messages are structured and addressed.
Since a SCIT secure computing cluster will have N

servers and since we have already stated that each

controller only maintains a single control and single

feedback connection to the Switchboard, some form of

message addressing is required to route messages to

and from the correct server. In keeping with our

example of using an optical coupling for the Secure

Interfaces, we’ll use a simple pulse-based coding for

our messages. We need only two fixed length

components in our messages: an address and a code, so

our messages look like this: [address][code]. The

specifics of the message content are left to

implementation.
In a SCIT system there are no arbitrary data

payloads that are exchanged between Controller and

the servers but rather status codes that denote

commands when sent by the Controller or denote status

indicators when sent by a server. By using a code-

based system for communication we avoid the perils of

allowing arbitrary data payloads to be exchanged

between the Controller and the servers. This design

contributes greatly to the isolation and thus safety of

the Controller.
Given our simple message format of

[address][code], we can implement simple

message routing and queuing within the Switchboard.

Each Secure Interface has an associated feedback

queue used to collect incoming feedback messages

from its attached server. A command queue exists for

each of the two Controllers to collect outbound

command messages sent by controllers. Similarly there

is a master feedback queue for each Controller that

holds all of the feedback messages sent by servers in

the cluster.

A simple logical address-to-physical link mapping

schema is implemented by the message router within

the Switchboard, see Figure 5. FIFO buffers exist on

each Switchboard side of the Secure Interface to

remove the need to deal with contention within the

Switchboard.
Message processing is straightforward. For

feedback messages, processing involves the

Switchboard reading (if data exists) each buffer in turn

and moving a copy of all received messages into each

Controller feedback queue. Each Controller

periodically polls its feedback queue for incoming

messages.

For command messages, the process begins with the

primary Controller issuing a command by pushing onto

its command queue in the Switchboard. The message

router reads this queue and using the [address]

portion of the message, decides which physical link to

use to forward the message; it does so by writing the

[code] portion of the message to the correct Secure

Interface buffer. In command mode, the Secure

Interface immediately signals the code points placed in

its buffer, thus issuing the command to the server.

Figure 5: SCIT Switchboard Internals

Advantages of Refactored SCIT/HES

Our refactored SCIT/HES architecture addresses

each of the challenges we specified in the last section.

Adding a second Controller and keeping it

synchronized with the primary Controller enables a hot

failover in the event the primary Controller

malfunctions. This redundancy eliminates the

Controller as a single point of failure.

Adding a SCIT Switchboard with a simple but

effective addressing and message routing schema, we

greatly increase the capability to expand the SCIT

cluster to multiple tens of servers or more to suit

enterprise-scale computing needs.
By architecting hardware-enforced dual-mode links

in the Secure Interfaces, we enable servers to

communicate status messages back to the Controller

without losing the critical Controller isolation that

underlies the cluster’s ultimate security. Use of

feedback messages enables the Controller to make

allocation decisions as the cluster operates.
By refactoring our centralized-control design we

have retained the strong security benefits it affords

while introducing increased robustness and flexibility.

7. Related Work

The concept of intrusion tolerance has been

previously explored in [8, 9, 10, 11]. Our assumption

that undetected intrusions are inevitable and must be

treated as an inherent problem of clusters is similar to

that of Recovery Oriented Computing, which considers

software and human errors as the norm and handles

them by isolation and redundancy [12].
Simple forms of server rotations have previously

been employed in high-availability systems, where

backup servers rotate online to ensure uninterrupted

service in face of primary server failures [13, 14, 15,

16]. SCIT systems share many design challenges with

high-availability systems, such as the seamless server

transitions and sharing of server identities.

We point out that in many server clusters the term

“server rotation” often refers to “rotating online servers

in servicing arriving clients,” typically for the purpose

of workload sharing; such rotations are not related to

the work presented here.

8. Conclusion

Modern network-based systems are complex

interconnected systems which inevitably contain

known and unknown flaws. SCIT addresses this

situation directly by mitigating the risks associated

with known and unknown vulnerabilities in software

using a secure clustering approach with self-cleansing

processes, separation of duties, and server role

rotations.
The SCIT Secure Controller architecture represents

a significant evolution in self-cleansing systems and

one that seeks to enable the construction of server

clusters with provable security characteristics. We

have shown that this centralized architecture yields

guaranteed security properties but also provides

important administrative and economic benefits.

• Clustering, role rotations, and self-cleansing

provide security guarantees.

• Depending on security software in any

exposed part of the system leads to an

unknowable state of security.

• SCIT is designed to utilize generic server

hardware and requires minimal modifications

to this hardware to operate.

• Centralized control provides the advantage of

easy administration of a SCIT server cluster.
The use of specialized hardware provides assurance

that SCIT servers will operate in a predictable cycle

regardless of any potential attacks. The hardware

interfaces utilize simple, non-programmable logic

circuits which are easy to assemble, inexpensive to

build, and impervious to all network-based attacks—

both known and unknown.

References

[1] PITAC, Cyber Security: A Crisis of Prioritization,

February 2005. www.nitrd.gov

[2] Yih Huang and Arun Sood, “Self-Cleansing Systems for

Intrusion Containment,” Proceedings of Workshop on

Self-Healing, Adaptive, and Self-Managed Systems
(SHAMAN), New York, NY, June 2002.

[3] Yih Huang, Arun Sood, and Ravi K. Bhaskar,

“Countering Web Defacing Attacks with System Self-

Cleansing,” Proceedings of 7th Word Multiconference

on Systemics, Cybernetics and Informatics, pp. 12—16,
Orlando, Florida, July 2003.

[4] Yih Huang, David Arsenault, and Arun Sood, “SCIT-

DNS: Critical Infrastructure Protection through Secure

DNS Server Dynamic Updates,” Journal of High Speed
Networking, vol 15 No 1, pp 5 – 19, 2006.

[5] Yih Huang, David Arsenault, and Arun Sood, "Securing

DNS Services through System Self Cleansing and

Hardware Enhancements", Proceedings First

International Conference on Availability, Reliability and
Security (ARES 2006), Vienna, Austria, April 2006.

[6] Yih Huang, David Arsenault, and Arun Sood,

“Incorruptible System Self Cleansing for Intrusion

Tolerance,” to appear in Proceedings Workshop on

Information Assurance 2006, Phoenix, Arizona, April

2006.

[7] Yih Huang, David Arsenault, and Arun Sood, "Closing

Cluster Attack Windows through Server Redundancy

and Rotations," Proceedings of the Second International

Workshop on Cluster Security (Cluster-Sec06),

Singapore, May 2006.

[8] Yves Deswarte and L. Blain and Jean-Charles Fabre,

“Intrusion Tolerance in Distributed Computing

Systems,” IEEE Symposium on Security and Privacy,
1991.

[9] Pal P, Webber F, Schantz RE, and Loyall JP, “Intrusion

Tolerant Systems,” Proceedings of the IEEE Information

Survivability Workshop (ISW-2000), 24-26 October
2000, Boston, Massachusetts.

[10] Pal P, Webber F, Schantz RE, Loyall JP, Watro R,

Sanders W, Cukier M and Gossett J. “Survival by

Defense-Enabling,” Proceedings of the New Security

Paradigms Workshop 2001, pp. 71-78, Cloudcroft, New
Mexico, September 11-13, 2001.

[11] S. Dawson,J. Levy, R. Riemenschneider, H. Saidi, V.

Stavridou, and A. Valdes, “Design assurance arguments

for intrusion tolerance,” In Workshop on Intrusion
Tolerant Systems, Bethesda, MD, June 2002.

[12] Brown, A. and D. A. Patterson. “Embracing Failure: A

Case for Recovery-Oriented Computing (ROC),” High

Performance Transaction Processing Symposium,

Asilomar, CA, October 2001.

[13] Peter S. Weygant, Clusters for High Availability,
Prentice Hall, 1996.

[14] High-Availability Linux Project. www.linux-ha.org.

[15] Steve Blackmon and John Nguyen, “High-Availability

File Server with Heartbeat,” System Admin, the Journal

for UNIX Systems Administrators, vol. 10, no. 9,
September 2001.

[16] R. Rabbat, T. McNeal and T. Burke, “A High-

Availability Clustering Architecture with Data Integrity

Guarantees,” Proc. of IEEE International Conference on

Cluster Computing, 178–182, (Newport Beach, CA)
Oct., 2001.

