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Abstract 

The formidable difficulty in securing systems stems in 

large part from the increasing complexity of the 

systems we build but also the degree to which we now 

depend on information systems.  Complex systems 

cannot be fully verified under all possible conditions.  

Self-Cleansing Intrusion Tolerance (SCIT) servers go 

through periodic cleaning. SCIT can be used to create 

secure and robust cluster of servers without the 

impossible requirement of having perfect security on 

each server in the cluster.  In this paper
†
, we identify 

six SCIT security primitives that must be satisfied. We 

present a SCIT hardware enhanced (SCIT/HES) 

implementation that guarantees the incorruptibility of 

SCIT operations. 

1. Introduction 

Networks and the systems that run on them have 

become essential to the operation of business 

enterprises, functioning of the global economy, and 

national security [1]. Despite decades of research on 

computer and network security systems are besieged by 

a myriad of security threats—viruses, worms, malware, 

denial of service attacks, data thefts, and software 

vulnerabilities.  
Complex systems cannot be fully verified under all 

possible conditions, and thus unseen bugs and 

vulnerabilities can and do make their way into 

production software releases.  The commercial drives 

to add more features and ship products quickly only 

exacerbate the problems.  Another factor contributing 

to the poor state of system security today is 

connectivity.  In [1] this point is captured with a simple 

equation: Ubiquitous Interconnectivity = Widespread 

Vulnerability. 

 These mounting security challenges necessitate a 

reexamination of the fundamental assumptions of 
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present computer security defenses:  Do we really 

know all enemy tactics and techniques?  Do we know 

about all of the potential vulnerabilities that exist in our 

systems?  The only prudent conclusion is there are 

attacks that could evade even the most state-of-art and 

constantly updated defensive systems.  

In [2, 3, 4, 5] we developed Self-Cleansing Intrusion 

Tolerance (SCIT) with focus on creating a remediation 

mechanism for a broad set of system unknown and 

undetected attacks.  In a SCIT system multiple servers 

are configured to perform some service such as e-mail, 

web or DNS servers.  The SCIT cluster architecture 

allows individual servers to occupy different roles at 

different times without affecting the availability of the 

service that the cluster is performing.  The lifecycle of 

an individual server begins with the cleansing role and 

then progresses through one or more online service 

roles.  Constantly repeating this lifecycle ensures that 

each server is not online indefinitely and that it is 

periodically cleaned.  By limiting the length of time a 

server is exposed online, SCIT reduces the window of 

opportunity for an attacker to exploit known or 

unknown vulnerabilities.  Further, by periodically 

cleaning each server, an attacker’s opportunity to 

establish a foothold to use for further or future attacks 

is severely restricted.  In [5, 6], we have developed 

primitive forms of hardware enhancements for use by 

SCIT DNS systems.  A cluster-wide SCIT management 

algorithm was proposed in [7]. 
Of course, SCIT operations and mechanisms 

themselves could also be attacked by the enemy in 

attempts to disable server cleansing and stop role 

rotations.  Software implementations of SCIT 

operations in particular leave open the possibility of 

being compromised and inevitably constitute a weak 

link in security.  In this paper, we propose a hardware-

based, generic framework that guarantees the 

incorruptibility of SCIT operations.  We begin our 

design with the following two zero-trust principles:  

(1) Software is malleable. All software can be 

potentially corrupted through communications. This is 



the only prudent assumption given the trend of 

increasing complexities and vulnerabilities in software. 

(2) Online servers are corrupted. All online systems 

(those exposed to the external, public network) must be 

assumed to be compromised.  This is the only prudent 

response to not knowing “all” system vulnerabilities 

and attack techniques. 

In this paper we propose six security proprieties of 

SCIT, termed SCIT Primitives (see Table 1).  The 

primary contribution of this paper is a scalable 

hardware framework, termed SCIT with Hardware 

Enhanced Security (SCIT/HES), that complements the 

software components of SCIT in order to enforce and 

guarantee the proposed SCIT Primitives. Compared to 

our previous, relatively primitive designs of hardware 

enhancements, the design presented here further 

address the following issues. 

• Generic. The design presented here does not assume 

any specific services provided by the SCIT cluster.  

It is designed for incorporation by generic server 

clusters to benefit from the intrusion tolerance 

features provided by SCIT. 

• Scalability.  The new design scales to large size 
clusters. 

• The removal of single point of failure at the central 

SCIT management controller in the cluster. 

The remainder of the paper is organized as follows.  

We present in Section 2 the hardware components of 

the SCIT/HES framework.  We elaborate in Section 3 

the ways in which the SCIT Primitives in Table 1 are 

enforced and their implications on system security.  We 

present in Section 4 the per-server state transitions in 

SCIT/HES and summarize in Section 5 the advantages 

of SCIT/HES.  The issues of scalability and points of 

hardware failures are addressed in Section 6. We give 

related work and conclusion in Sections 7 and 8, 

respectively. 

Table 1. SCIT Security Primitives 

(1) Guaranteed Periodic Reset and Cleansing 

(2) Protected Files Load From Trusted Storage Source 

(3) Guaranteed Role Assumption in a known state. 

(4) Security-Critical Operations Executed Only in off-line 
Clean State 

(5) Guaranteed Isolation of Online Servers (from the 
internal networks and trusted storage) 

(6) Guaranteed Isolation of Secure Controller 

2. Secure Controller and Trusted Interface  

The SCIT/HES framework uses a centralized 

controller and a small set of simple, non-programmable 

logic circuits in the communication interfaces.  It 

allows for the use of standard server hardware while 

providing guaranteed security “primitives” upon which 

the ultimate security of the system depends. The high-

level architecture of SCIT/HES is depicted in Figure 1.  

In the figure, we show only the detailed setup between 

the central controller and a particular Server X.  The 

same setup applies to all the other servers in the cluster, 

omitted in Figure 1 for clarity.  We point out that the 

issue of single point of failure caused by the central 

controller will be addressed later. 
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Figure 1. SCIT/HES Cluster Architecture 



2.1. SCIT Secure Controller 
 

As seen in Figure 1, the central element of a 

SCIT/HES cluster is the SCIT Secure Controller which 

manages a set of Trusted Interfaces that provide 

connections to each server in the cluster.  The SCIT 

Controller is a programmable machine (server) that 

implements the control algorithms to govern the 

cluster-wide SCIT operations, including server role 

rotations.  Using a centralized, programmable 

controller affords cluster designers flexibility and 

robustness that would be very difficult if not 

impossible to achieve with the fully software-based 

SCIT implementations.  A central mechanism of 

control simplifies both administration and 

programming of the cluster which allows the cluster 

designer to modify, tune, and optimize the role rotation 

algorithms needed for a particular application.  Timing 

of both role rotations and reset timers are also left to 

the cluster designer.  From a design perspective we 

purposefully kept as much of the complexity of the 

cluster as possible in one place—the SCIT Secure 

Controller.  

2.2. SCIT Trusted Interface Module 
 

The SCIT Trusted Interface Modules (TIMs) in 

Figure 1 provide a unidirectional communications link 

from the SCIT Controller to each server in the cluster.  

At the server end of the Trusted Interface Module, the 

unit is connected to the server’s serial port for power, 

ground, and data; a connection to the server’s reset 

switch is also used to provide the failsafe reset 

function.  The data sent from the Secure Controller to 

the server over this connection informs the server when 

a state change is needed (such as a reset signal to begin 

the cleansing process) and what state to transition to. 

The server-side Trusted Interface Module also contains 

a SCIT Switch component that provides the ability to 

physically cut-off the network connections from the 

server to the local network (which includes the SCIT 

Controller itself as well as the Trusted Storage server).  
In this way, the Trusted Interface is the isolating 

mechanism that maintains the protected state of the 

SCIT Controller and at the same time allowing it to 

send messages to control the state of each server—this 

is a unidirectional link guaranteed by hardware. Using 

the Trusted Interface, the Controller manages the 

communications interface between the clean machine 

(a server that has been cleansed but not yet online), 

Trusted Storage machine, and the Controller itself. The 

SCIT Switch provides hardware-guaranteed isolation 

between each Server and the Trusted Storage unit and 

between the Controller and the Server.  When the 

Switch is closed it enables the network connection 

between the Server and the other machines it connects 

to, but, when the switch set to the open position no 

network connection can exist.  These form the 

foundations of the six SCIT Primitives, as discussed in 

the next section.  

3. The SCIT Security Primitives 

The first SCIT security primitive in Table 1 is the 

guarantee that servers always go through and complete 

the periodic self-cleansing process.  Resetting the 

server system will force it to reboot, go through the 

cleaning process, and finally load known clean copies 

of all critical files from the trusted storage.  This 

primitive is achieved through two mechanisms: the 

primary mechanism is the SCIT daemon process 

running on each server and the secondary (backup) 

mechanism is a hardware failsafe timer and reset 

switch, both to be discussed later.  

The second security primitive requires that all files 

critical to the successful operation of the server are 

loaded from a read-only device such as a CD-ROM or 

from a Trusted Storage device which is 

cryptographically secured.   
The third security primitive guarantees the initial 

service role assumption of a server transitioning from 

the ready (clean) state to the assigned online service 

role. The basis for this guarantee is the fact that a 

newly clean server has not been exposed to the outside 

world (external networks) and is thus free from any 

corruption.  Since the SCIT daemon and other critical 

system software has been loaded from a known clean 

copy we can be assured that the server, when 

commanded by the Secure Controller, will transition 

into its intended service role as expected.  
The fourth security primitive requires the processing 

of security-critical operations only during the clean 

state, before the server goes online and is exposed to 

the external network.  Like the second primitive, 

previous SCIT architectures already implement this 

primitive but do so in software.  SCIT/HES enforces 

the fourth security primitive by using SCIT Switches to 

manage the access to the Trusted Storage, which hold 

security keys and other critical data. Before moving a 

server online, the Controller will turn off the SCIT 

Switch of the server to physically prevent access to the 

Trusted Storage host and thus keys and other critical 

data.  Any data that is stored on the Trusted Storage 

host and is accessed during the self-cleansing process 

will never be exposed to the public/enterprise network. 
The fifth security primitive is the guarantee that the 

SCIT Secure Controller is always fully isolated from 

the servers that are online performing their production 

roles.  To enforce this guarantee a unique type of 

hardware switch—a “once after reset” switch—is 



implemented using a basic logic circuit.  This switch is 

installed on all interfaces that connect the Controller to 

the servers in the cluster and regulates the direction of 

data flow on the interfaces.  The “once after reset” 

switch operates between two and only two states: one 

state allows bidirectional data flow between the 

Controller and the server while the other state allows 

only unidirectional data flow from the Controller to the 

server.  The Controller operates the switch via simple 

hardware-based signaling inputs which cause changes 

in the switch’s state.  The SCIT Switch powers up in 

the closed state which allows the server to connect to 

the Trusted Storage unit as it goes through the cleaning 

process.  At this time, the server can also communicate 

with the Controller via the intranet connection to 

exchange any state data (if required by the applications 

being run in the cluster).  Once the server is clean and 

ready to perform an online role, the SCIT Switch is set 

to the open position which prevents any 

communications on the network interface regardless of 

what state the network interface card is set to on the 

server.  An attacker cannot turn the interface on and 

gain a network link outside the server into the rest of 

the cluster.  Once the state of the switch is changed by 

the controller the only way to restore the state to enable 

communications on the link is a server reset which 

cycles the power to the switch.  This is the so called 

“once after reset” property that ensures server isolation. 
The sixth and final security primitive guarantees 

that the Secure Controller will always remain 

completely isolated from the rest of the SCIT network. 

The isolation of the Controller is accomplished in 

implementation terms by using a one-way optical link 

in the Trusted Interface Modules.  Such a link provides 

absolute logical isolation of the Controller.  As such 

the Secure Controller is free from all forms of network-

based attack. 

4. Server States and Role Rotations 

Figure 2 shows the per-server state transition 

diagram in a SCIT/HES cluster.  Here an important 

distinction must be made between the terms state and 

role.  In a SCIT system a state means the condition of a 

SCIT server at a given point in time whereas the term 

role refers to the service a server provides to users (i.e. 

web, DNS, or file services). 

A SCIT server begins with the warm rebooting 

(hardware reset) of the server, denoted as state [0] in 

Figure 2.  The reboot starts the self-cleansing process 

by cleaning up all forms of corruption in memory.  The 

server subsequently loads critical files from a read-only 

storage source (or a read/write storage that is 

cryptographically-protected source), reference state (1).  

Critical files, also termed “Protected files”, include 

fundamental operating system files (kernel and other 

vital files), application executables, and important 

configurations files.  These are the set of files that are 

required to be in a known, uncorrupted state in order to 

provide assured server operation.  The server enters the 

final offline state (2) in the SCIT lifecycle.  When 

commanded by the Secure Controller (via the Trusted 

Interface), the ready server enters a service role, state 

(3), during which the server provides designated 

service(s) to end users. 

 

 
 

Figure 2. SCIT State Diagram 
 

Upon completion of its service role, each SCIT 

server will return to state 0 after a reboot signal.  The 

vital transition from state (3) to (0) is achieved by two 

independent mechanisms.  Under normal conditions 

(no attack on server) the reboot signal is sent from the 

Secure Controller via the Trusted Interface and 

ultimately a SCIT daemon responds to the controller’ 

signal and resets the server to begin the cleansing 

process.  This reset method relies on the viability of the 

SCIT daemon, a software process, which is subject to 

potential subversion by an attacker.  To eliminate this 

attack vector and provide absolute assurance that 

periodic self-cleansing occurs (SCIT Security Primitive 

1), an independent mechanism known as the Trusted 

Interface Failsafe Reset Timer is implemented as a 

hardware-based timing circuit.  Upon expiration, this 

timer circuit triggers a relay to activate the hardware 

reset switch on the server thus ensuring the periodic 

rebooting and cleansing of SCIT servers regardless the 

presence of software corruption. 

5. Advantages of SCIT/HES 

The general benefits of the SCIT/HES architecture, 

which implements a cluster using centralized control, 

are the strong physical/logical isolation of the online 

servers, the elimination of the dependency on 

distributed software for cluster coordination, and the 

removal of the need for intra-server communications 

(as required with distributed SCIT versions). 



In summary, the centralized control architecture 

version of SCIT has the following properties, all of 

which enforce the six SCIT security primitives: 

• Server reset (restart) cleans memory and begins 

the cleansing process. 

• Server boot-up from trusted storage loads all 

files needed to guarantee the “clean” state of the 

server.   

• Each server’s lifetime (time in service) is finite, 

known, and ultimately guaranteed by the failsafe 

reset mechanism.  Limiting the amount of time 

that each server is exposed to the outside world 

limits the potential for successful attacks. 

• The SCIT Central Controller architecture 

eliminates the software risks associated with 

using a distributed algorithm to control the role 

rotations of the servers in the cluster. 

• A guaranteed unidirectional communication 

channel from the Controller to each server in the 

cluster ensures the complete and absolute 

isolation of the Controller from all servers that 

are in the online (in service) state.    
Periodically resetting and cleansing each SCIT 

server provides three important security advantages 

that are unique to our system design.  First, the server 

begins each lifecycle in a known clean state free from 

malware or corruption which provides for assured 

initial operation or the server.  Second, by placing a 

finite time limit on the exposure of the server to 

potential attack via the external network—this bounds 

the probability of a successful attack damaging the 

SCIT cluster as well as limits the overall impact of an 

attack.  Finally, by rebooting the server and loading 

protected files from a read-only source any malware or 

corruption that impacted the server while exposed to 

the external network are removed from the server 

without the need to rely on successful detection of the 

problems. 

6. Refactoring for Robustness 

While SCIT/HES provides numerous valuable 

security benefits unique to this architecture, there are 

several potential points of failure that should be 

factored out of the design to achieve a balance among 

security, availability, and robustness.  
Centrally-controlled SCIT solves the server 

coordination and management issues nicely, but as an 

unwanted byproduct it added a potential critical point 

of failure in the Central Controller itself. Through 

refactoring our design we will show the desired 

balance between security and robustness. 
Centralizing control introduces a scalability 

concern, that is, communication links must be 

established from the Central Controller to each server. 

At small scale this is not a problem, but as the scale of 

the SCIT/HES secure computing cluster approaches 

realistic enterprise-level size of twenty or more servers, 

the point-to-point flat controller link topology could 

become a challenge to scaling and managing the secure 

computing cluster. 
Finally, as an aid to server management and more 

fine-grained control or server roles we paradoxically 

also seek to add a 2-way communication channel 

enabling each server to send signals to the Central 

Controller for auditing and server control feedback. 

The design challenge is to do this without violating one 

of the core tenants of the SCIT design—the guaranteed 

isolation of online servers from the Central Controller 

(Table 1: SCIT Primitive 6). 
We begin our design refactoring with the Central 

Controller. As we have seen, the use of a Central 

Controller provides authoritative cluster control which 

is both an asset and a liability in terms of being a single 

point of failure. Figure 3 illustrates a more robust 

Controller architecture whereby there are now two 

Controllers (A and B) with one functioning as the 

active controller and the other serving as a hot failover 

spare controller. State synchronization between 

controllers necessary to enable a hot failover is 

maintained via a backside private LAN connection 

shown on the left edge of the diagram. The dual 

Controller setup is shown in context of the entire 

refactored SCIT/HES architecture shown in Figure 3. 
With respect to the challenges of scaling a SCIT 

secure computing cluster to enterprise-class size of 

several tens or more servers, we introduce the concept 

of the SCIT Switchboard. The Switchboard provides 

several important capabilities that directly impact 

cluster scalability and management: addressing support 

for an arbitrary number of Secure Interfaces and simple 

message queuing. Note that we purposefully renamed 

the Trusted Interface Modules from the original design 

in Figure 1 to the Secure Interfaces here in Figure 3.  

This was done to help differentiate the two because the 

refactored Secure Interfaces now support two-way data 

traffic as we will soon see. 
The SCIT Switchboard logically connects both 

Controllers to an arbitrary number of Secure Interfaces; 

but each Controller-to-Switchboard interface consists 

of only two links: an outbound (from the Controller’s 

perspective) Control connection (C) and an inbound 

Feedback connection (F). Regardless of how many 

servers are present in a cluster, there will only need to 

be these four backside connections between the 

Switchboard and the two SCIT controllers—a 

significant gain with respect to scaling is the result. 



 

 
 

Figure 3. Refactored SCIT/HES Architecture 
 

Before discussing Switchboard addressing and 

message queuing in detail, we need to introduce the 

new dual-mode Secure Interface that enables 

bidirectional data traffic flows that is, both to and from 

the Controller (via the Switchboard). As a major 

change from the original architecture design we now 

use the same link for both control messages and server 

status or feedback messages. The notion of making this 

critical communications link operate as a dual-mode 

channel enables the same security benefits as the 

original design yet allows data to flow back to the 

Controller, but only under the specific conditions of the 

feedback mode of operation. In our original design, 

these links are always outbound and unidirectional 

carrying data from the Controller to each server in the 

cluster; under the refactored architecture this is now the 

control mode for the link. 
 

 
 

Figure 4. Control and Feedback Modes 
 

The dual-mode Secure Interface links are really two 

hardware-enforced unidirectional links which share a 

single communications channel—either electrical or 

optical; the choice of which type of communications 

path to use is left to those implementing the system. 

Using an optical link for explanation of the links 

operation, we have an emitter/detector module at each 

end of a fiber optic cable that links the two Secure 

Interface modules.  In feedback mode, the 

communication path is from server to Switchboard 

(and ultimately to the Controller). The opposite 

direction of data flow is used for control mode as 

shown in Figure 4.  Maintaining this configuration is 

simply a matter of enabling the emitter at the server 

side and the detector at the Switchboard side of the 

link; the mode of the link is hardware controlled by a 

simple switching circuit that enables one mode or the 

other but not both at once. Feedback mode is enabled 

once per server self-cleansing cycle after restarting but 

before being put online. Feedback mode 

communication occurs after the server is returned to a 

known state, and this mode is terminated before the 

server is exposed to the internet, thus ensuring the 

isolation of the SCIT controller from online servers. 

Once feedback mode is switched off by the 

Switchboard, the interface maintains a control mode 

configuration until the next server cycle. 

With an understanding of how the dual-mode 

Secure Interface links work, we can now return to our 

discussion of how the Switchboard operates. Let us 

begin with how messages are structured and addressed. 
Since a SCIT secure computing cluster will have N 

servers and since we have already stated that each 

controller only maintains a single control and single 

feedback connection to the Switchboard, some form of 



message addressing is required to route messages to 

and from the correct server. In keeping with our 

example of using an optical coupling for the Secure 

Interfaces, we’ll use a simple pulse-based coding for 

our messages. We need only two fixed length 

components in our messages: an address and a code, so 

our messages look like this: [address][code]. The 

specifics of the message content are left to 

implementation.  
In a SCIT system there are no arbitrary data 

payloads that are exchanged between Controller and 

the servers but rather status codes that denote 

commands when sent by the Controller or denote status 

indicators when sent by a server. By using a code-

based system for communication we avoid the perils of 

allowing arbitrary data payloads to be exchanged 

between the Controller and the servers. This design 

contributes greatly to the isolation and thus safety of 

the Controller. 
Given our simple message format of 

[address][code], we can implement simple 

message routing and queuing within the Switchboard. 

Each Secure Interface has an associated feedback 

queue used to collect incoming feedback messages 

from its attached server. A command queue exists for 

each of the two Controllers to collect outbound 

command messages sent by controllers. Similarly there 

is a master feedback queue for each Controller that 

holds all of the feedback messages sent by servers in 

the cluster. 

A simple logical address-to-physical link mapping 

schema is implemented by the message router within 

the Switchboard, see Figure 5. FIFO buffers exist on 

each Switchboard side of the Secure Interface to 

remove the need to deal with contention within the 

Switchboard.  
Message processing is straightforward. For 

feedback messages, processing involves the 

Switchboard reading (if data exists) each buffer in turn 

and moving a copy of all received messages into each 

Controller feedback queue. Each Controller 

periodically polls its feedback queue for incoming 

messages. 

For command messages, the process begins with the 

primary Controller issuing a command by pushing onto 

its command queue in the Switchboard. The message 

router reads this queue and using the [address] 

portion of the message, decides which physical link to 

use to forward the message; it does so by writing the 

[code] portion of the message to the correct Secure 

Interface buffer. In command mode, the Secure 

Interface immediately signals the code points placed in 

its buffer, thus issuing the command to the server. 

 

 
 

Figure 5: SCIT Switchboard Internals 
 

Advantages of Refactored SCIT/HES 

Our refactored SCIT/HES architecture addresses 

each of the challenges we specified in the last section. 

Adding a second Controller and keeping it 

synchronized with the primary Controller enables a hot 

failover in the event the primary Controller 

malfunctions. This redundancy eliminates the 

Controller as a single point of failure. 

Adding a SCIT Switchboard with a simple but 

effective addressing and message routing schema, we 

greatly increase the capability to expand the SCIT 

cluster to multiple tens of servers or more to suit 

enterprise-scale computing needs. 
By architecting hardware-enforced dual-mode links 

in the Secure Interfaces, we enable servers to 

communicate status messages back to the Controller 

without losing the critical Controller isolation that 

underlies the cluster’s ultimate security. Use of 

feedback messages enables the Controller to make 

allocation decisions as the cluster operates.  
By refactoring our centralized-control design we 

have retained the strong security benefits it affords 

while introducing increased robustness and flexibility.  

7. Related Work 

The concept of intrusion tolerance has been 

previously explored in [8, 9, 10, 11]. Our assumption 

that undetected intrusions are inevitable and must be 

treated as an inherent problem of clusters is similar to 

that of Recovery Oriented Computing, which considers 

software and human errors as the norm and handles 

them by isolation and redundancy [12].   
Simple forms of server rotations have previously 

been employed in high-availability systems, where 

backup servers rotate online to ensure uninterrupted 

service in face of primary server failures [13, 14, 15, 

16].  SCIT systems share many design challenges with 



high-availability systems, such as the seamless server 

transitions and sharing of server identities.  

We point out that in many server clusters the term 

“server rotation” often refers to “rotating online servers 

in servicing arriving clients,” typically for the purpose 

of workload sharing; such rotations are not related to 

the work presented here. 

8. Conclusion 

Modern network-based systems are complex 

interconnected systems which inevitably contain 

known and unknown flaws.  SCIT addresses this 

situation directly by mitigating the risks associated 

with known and unknown vulnerabilities in software 

using a secure clustering approach with self-cleansing 

processes, separation of duties, and server role 

rotations. 
The SCIT Secure Controller architecture represents 

a significant evolution in self-cleansing systems and 

one that seeks to enable the construction of server 

clusters with provable security characteristics.  We 

have shown that this centralized architecture yields 

guaranteed security properties but also provides 

important administrative and economic benefits. 

• Clustering, role rotations, and self-cleansing 

provide security guarantees. 

• Depending on security software in any 

exposed part of the system leads to an 

unknowable state of security. 

• SCIT is designed to utilize generic server 

hardware and requires minimal modifications 

to this hardware to operate. 

• Centralized control provides the advantage of 

easy administration of a SCIT server cluster. 
The use of specialized hardware provides assurance 

that SCIT servers will operate in a predictable cycle 

regardless of any potential attacks.  The hardware 

interfaces utilize simple, non-programmable logic 

circuits which are easy to assemble, inexpensive to 

build, and impervious to all network-based attacks—

both known and unknown.  
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