Incorruptible System Self-Cleansing for Intrusion Tolerance

Yih Huang, David Arsenault, andArun Sood
Department of Computer Science and Center for Infamgdysis
George Mason University, Fairfax, VA 22030
{huangyih, darsenau, asood}@cs.gmu.edu

Abstract [Despite the increased focus on security,

critical information systems remain vulnerable to cyber
attacks. The problem stems in large part from the constant
innovation and evolution of attack techniques. Thetrend lends
importance to the concept of intrusion tolerance: a critical
system must fend off or at least limit the damage caused by
unknown and/or undetected attacks.
In prior work, we developed a Self-Cleansing Intrusion
Tolerance (SCIT) architecture that achieves the above goal by
constantly cleansing the servers and rotating the role of
individual servers. In this paper, we show that, with simple
har dwar e enhancements strategically placed in a SCIT system,
incorruptible intrusion containment can be realized. We then
present an incorruptible SCIT design for use by one of the
most critical infrastructures of the Internet, the domain name
services. It is our belief that incorruptible intrusion
containment as presented here constitutes a new, effective
layer of system defensefor critical information systems.

Keywords
computer security, self-cleansing systems, intrusimntainment,
domain name system

unknowns” faced by today’s critical information &ms in
cyber warfare.

Our response to these formidable challenges is Self
Cleansing Intrusion Tolerance, or SCIT. The undegl
assumption is that all software is malleable artdugion
detection cannot absolutely detect all system lresc It
follows that a server that has been online and segbdo
attacks must be assumed compromised. Consequantly,
online server must be periodically cleansed tooresit to a
known clean state, regardless of whetherirgrusion is
detected or not. In [1,2,3,5] we presented our designs of
SCIT-enabled firewalls, web servers, and DNS server
The primary contribution of this work is the inttaxtion of
incorruptibility guarantees of SCIT, called SCITirRitives,
enforced by simple hardware enhancements stratggica
placed in a SCIT server cluster.

We point out that SCIT does not exclude the use of
intrusion prevention and detection technologieg, rather
adds another layer of defense, extending the idea o
"defense-in-depth" through periodic system cleansifihe

|. INTRODUCTION effectiveness of SCIT depends on fast self-cleansjles,

Networks and the systems that run on them havethus restricting would-be attackers to short tinsedows to
become essential to the operation of business peises, breach the system before restoration through $edfsing.
functioning of the global economy, and the defeoféhe In response, an attacker may target SCIT itsedhimttempt
nation. Yet these critical information systems a@m to defeat this last line of system defense.
vulnerable even with the recently increased focus o In this paper we investigate the survivability oZI$
security. The problem stems in large part fromabestant ~ under unknown and/or undetected attacks. Werkrgew
innovation and evolution of attack techniques. The SCIT basics in Section 2. We present, in Sectica $gt of
increasing sophistication and incessant morphingybker criteria, called SCIT Primitives, which ensure the
attacks lend importance to the concept iofrusion incorruptibility of system self-cleansing cycle#\ generic
tolerance: a critical system must fend off or at least limit design framework that satisfies said primitivesliscussed
the damages caused by unknown and/or undetectatksatt in Section 4. As an example, we give in Sectioth®

An unknown attack is an attack based on new details of an incorruptible SCIT system for usedmynain
vulnerabilities, exploits and/or attack technigtiest are yet ~ name services (it is an adaptation of our priorTSONS
unknown to the public. Anndetected attack is a successful ~ design [3]). We conclude this work in Section 6.
attack that evade; intrusion detection mechanisong | Il SCIT REVIEW
enough to cause significant losses. The two cdacae
related but not identical: while an unknown attduks
greater opportunities to evade detection, an untite
attack could be based on previously known attack
techniques. The two combined represents the “umkno

A SCIT cluster comprises a set of interconnected
servers that cooperatively provide a predefinedriicer
Any server in the cluster periodically switchesviestn two
modes: online servicing clients (which are outsitie
cluster) and offline for cleansing. Either a cahtrontroller
or a distributed control mechanisms using a Cluster
Communication Protocol (CCP) can be used to coatdin
server mode rotations [3]. A high level view of I$C
cluster operations is depicted in Figure 1.

This research is part of the Critical Infrastruetérotection
Project funded by the National Institute of Standeand
Technology.

Lo Rotation
// \

K \

II \
! \
' v
1

\ .

_ \ Online
Offline N O servers;
servers; in - _ & potentially
self-cleansing ~ Gy -7 compromised

Fig. 1: A High-level View of SCIT Cluster operations

As a specific example, consider the SCIT DNS cluste
shown in Figure 2. The cluster comprisbsee server
boxes and advertisesvo IP addresses, a primary name
server address and a secondary name server addégss.
any point in time only one of the servers will beeoating
in one of the following three states: (1) PrimariN®
communicating with clients using the primary 1P s,
(2) Secondary DNS, communicating with clients using
secondary IP address, and (3) Offline for selftodiag
with no public IP address.

~~. Primary DNS

~

server

. 1
Cleansing '
server '

/ Secondary
DNS server

Fig. 2: The SCIT DNS Cluster

Part of the rotation process is to bring onlinevees
offine. Next, system is rebooted to initiate clsimg
procedures in order to return servers to a welieefclean
state. At a minimum such a state includes systiearies,
system configuration files, critical utilities, sére binaries
(BIND binaries, Apache binaries, etc.), and service
configuration files. Many services may include rpaf)
application data as well. In SCIT DNS, its cletates also
covers the DNS master file and cryptography kdyst the
SCIT web servers, the clean state covers static HTM
pages and web scripts. In many applications, taudi
functions can also be performed on offline servers.

We notice that a simple form of server rotation has
previously been employed in high-availability sysse
where backup servers rotate online to ensure unipied
service in face of primary server failures [4]. IBGystems
share many design challenges with high-availability
systems, such as the seamless server transitiodnshaning
of server identities (IP and/or
Examples of existing high-availability systems irdg DNS
servers, NFS servers, authentication serviceswdits,

hardware addresses)

IPsec gateways, and Vvirtual

gateways.

private network (VPN)

Ill. SCIT PRIMITIVES

When considering unknown and undetected attacks,
one must assume that the self-cleansing procesdsis
subject to attacks. It is indeed possible to feterwith the
operations of SCIT. To interfere with the selfarising
process after rebooting, an attacker could instatljan
horse copies of system/cleansing utilities, hackrtgp
tasks/processes, or even tamper with the bootstgpp
procedure of the operating system. The successful
completion of cleansing does not guarantee thengstion
of a desired online service role either. The seomuld
already have been under attacks while cleansirtjgaing
online inevitably involves communications, giving
opportunities to unpredicted breaches. Lastly, inaist
importantly, an online server may be taken over by
attackers. The process of counting down to the next
rebooting could consequently be interrupted, stogpphe
SCIT cleansing cycles all together.

In the following we present a set of properties, or
primitives so that if a given SCIT cluster satisfithese
properties, then it is said to ISEIT incorruptible. In the
discussion arexposed node refers to any online server
inside the SCIT cluster or any computer/serveridatthe
cluster. Among the primitives below, Primitives RBP4
apply to all SCIT designs while Primitive P5 applte only
those with a central controller.

P1. Inevitability of periodic server cleansing. A server

will be rebooted and subsequently cleansed within a
predeterminetiength of time.

No communications from exposed nodes to
cleansing servers. Consequently, a cleansing server
is not subject to remote attacks. Notice that weak
disallow cleansing nodes to send messages/signals t
exposed nodes.

Completion of cleansing. The cleansing procedure
will be completed so that system is in a predefined
clean state.

Guaranteed role assumption. A newly cleansed
server will assume a designated online role/idgntit

No communications from exposed nodes to the
central controller. It is thus impossible to attack the
central server at any time. Again, we allow the
controller to send messages/signals to exposedsnode

P2.

P3.

P4,

P5.

Not all SCIT designs satisfy these demanding
requirements. In fact, with the assumption thdivwsre is
eventually corruptible, an entirely software-bass@IT
system cannot satisfy all the primitives and thaefis

! For additional protection the server cleansingtizould be
random and change in each cycle. The time lemgBrimitive
P1 is the longest cleansing cycle allowed.

subject to compromises in its own operations. & rtlext
section, we present a SCIT framework that is ingaiible

toggle signal followed by a reset switches theranberver
in Figure 4(a) to the offline mode in Figure 4(#s such, a

as defined above through the use of simple hardwareserver can either receive incoming messages frotsideu

enhancements.

IV. INCORRUPTIBLE SCIT
WITH HARDWARE ENHANCEMENTS

The SCIT primitives are best achieved by isolatién.
server is completely shielded from external infleesif it is
“physically” cut off and if it does not process ddeft by
online servers. To achieve cutting-off in an imoptible
way, simple hardware devices, such as on-off se#chre
employed. We refer to the resulting framework as
SCIT/HES (for Hardware Enhanced Security).

In SCIT/HES, a central controller is used to manage
server rotations and role assignments. (In impfeat®ns,
the controller could also be an off-the-shelf setwex; the
name suggests its use not its construction) ¢ riaintains
the communication configuration, shown in FigurevBere
the controller keeps two-way communication pathshwi
cleansing servers but only one-way paths to readimeo
servers. Consequently, an online server or angeno
outside the cluster (the exposed nodes) can resitiienthe
controller nor those servers in cleansing. Ondieevers of
course must have two-way communications with céient
outside the cluster. We emphasize that the armoWwgure
3 represent permissible directions in communicattbey
do not mandate dedicated communication channels.

SCIT/HES -~~~
Cluster ,-~

i
£
s
G
S5t

Offline O

Fig. 3: Communication configuration of SCIT/HES

Online

Due to server rotations, the configuration of a
SCIT/HES cluster is dynamic. Communication pathstm
be cut and reestablished when servers switch batwee
online and offline modes. In SCIT/HES, the central
controller also manages communication paths. Eteps
between the controller and an individual serveresented
in Figure 4. In the figure, we use solid lines &pnesent

(and thus is subject to attacks) or send messagdket
controller, but never both at the same time. Claan
servers receive inputs from only the central cdlgro
Primitives P2 and P5 are thus fulfilled.

Toggle
v M
— _ Clients
Rese
(a) a server presently online
v v
— {) -~ ~ Clients
o/ >

(b) the server after a toggle signal and a reset kigna
now offline

Fig. 4: The hardware enhancements in SCIT/HES

With the central controller shielded from any fooh
external influence and in charge of periodicallgetting
servers, Primitive P1 is fulfilled.

Primitive P3 concerns the bootstrapping and clegnsi
procedures used by SCIT servers. Once a server is
rebooted, it enters a bootstrapping process folibwg
cleansing routines. A simple way to enforce PiiraiP3 is
that the entire system uses read-only storage Yfstems
state. For instance, all system components andcser
software are stored on a CD-ROM. In this casepatihg
and loading the system from the CD-ROM is the entir
cleansing process; afterward the system is in avkrdean
state. This solution has potential performancebleros,
due to the slowness of optical drives. Also, maesvices
require the predefined “system state” to cover @odata.

A more flexible approach is to bootstrap a servemf
a read-only device. However the application datd toe
binaries that the server needs to perform its erflimctions
are stored in a write-able storage, called the haod drive.
When the server enters an online mode, it swittbebe
hard drive as the root file system. The self-céiam
procedure checks the integrity of the root hardvedidnd

network links for TCP/IP message exchanges (such agestores itto a clean state if corruptions areated. In the

Ethernet cables) and dashed lines to represensfilirers
that conduct electromagnetic control signals.

As seen in Figure 4(a), the controller has two aign
lines to reach each server: a reset line and dedigg. A
reset signal forces the server to reboot. Theléogignal
controls two switches that are always in oppodiiges. A

self-cleansing mode, all executables (the kernglities,
system check tools, etc.) are retrieved from thasl@nly
device. We naotice that before a server goes aniine
cannot be reached by exposed nodes and all
configurations and binaries are from read-only ajer
hence the fulfillment of Primitive P3.

its

Lastly, it is the (never exposed) central controtieat
assigns a role to a newly cleansed server. Whieiving
directions of its new role from the controller, therver is

with the configuration (P,S,C), where server SOthe
primary (P), S1 the secondary (S) and S2 in clegn&r).
(Due to space limits, the steps whereby serversr ¢heir

disconnected from exposed nodes. The process ef rol respective initial roles have been omitted in thmowe
assumption is not subject to external influenced an presentation.) After the first timeout event (Tifeg), the

Primitive P4 is fulfilled.

V. INCORRUPTIBLE INTRUSION CONTAINMENT
A DNS EXAMPLE

To illustrate the use of the SCIT/HES framework, we
present its application in a critical part of theekrnet, the
domain name systems. A SCIT/HES DNS cluster iretud
three servers (S0, S1, and S2) and a central dlenttbat
executes the algorithm presented below to coorelisatver
rotations. There are two forms of communicatiamghie
algorithm. First, the controller uses unidirectibsignals to
reset a server and change its network communicagdins.

primary server SO and the cleansing server S2 lswitade,
resulting in the configuration (C,S,P). A compleiele of
server rotations is given in Figure 5.

T2
(C,S,P—>(S,C,P)
T1 T1

-------------- » initialization
e (P, S, C) _ _ (S,P.C)
—> timer fires

T2 T2

Second, the controller uses two-way TCP/IP message

exchanges to communicate the designation of amenli
role/identity with a newly cleansed server. Wheoceiving
a role message from the controller, the server @agledges

only after it has completed its self-cleansing.

Centralized Server Rotation Algorithm
Variables:
Toggle[0,2]: toggle signals to servers SO, S1, S2
Reset[0,2]: reset signals to servers SO, S1, S2
P: integer in [0,2] for the ID of the primary serve
S: integer in [0,2] for the ID of the secondaryveer
C: integer in [0,2] for the ID of the cleansingsar
T1 and T2: two timers
Initializations:
P=0,S=1,and C=2.
Set timer T1.
When T1 fires // switch primary with cleansing
Send signal Reset[P].
Send signal Toggle[P].
Send role ‘Primary’ to Server[C].
Wait for an ack from Server[C].
Send signal Toggle[C]
Swap the values of P and C.
Set timer T2.
When T2 fires // switch secondary with cleansing
Send signal Reset[S].
Send signal Toggle[S].
Send role ‘Secondary’ to Server[C].
Wait for an ack from Server[C].
Send signal Toggle[C]
Swap the values of S and C.
Set timer T1.

Following the algorithm, the central controller
alternates between two timers T1 and T2 so thad rol
rotations alternate between PrimarZleansing switches
and Secondary Cleansing switches. The system starts

(P.CSf——(CP.S)

Fig. 5: A cycle of SCIT DNS server rotations

VI. CONCLUSION

We have shown that with simple hardware
enhancements strategically placed in a serveretluitis
possible to build intrusion containment mechanidiret
cannot be corrupted. We have presented a SCITBIE¥S
cluster as an example of our framework. It isloelief that
incorruptible intrusion containment as presenteastitutes
a new, effective layer of defense for critical imf@tion
systems against undetected and unknown attacks, the
unknown unknowns in computer system security.

REFERENCES

[1] Yih Huang and Arun Sood, “Self-Cleansing Systenms fo
Intrusion Containment,Proceedings of Workshop on Sdif-
Healing, Adaptive, and Self-Managed Systems (SHAMAN),
New York City, June 2002.

[2] Yih Huang, Arun Sood, and Ravi K. Bhaskar, “Couimtgr
Web Defacing Attacks with System Self-Cleansing,”
Proceedings of 71" Word Multiconference on Systemics,
Cybernetics and Informatics, pp. 12—16, Orlando, Florida,
July 2003.

[3] Yih Huang, David Arsenault, and Arun Sood, “SCIT-BN
Critical Infrastructure Protection through Secutd®Server
Dynamic Updates,” presented at the Trusted Internet
Workshop Conference, Bangalore, India, Decembed 200
(Also to appear in Journal of High Speed Networking

[4] Peter S. WeyganGlusters for High Availability, Prentice
Hall, 1996.

5] Yih Huang, David Arsenault, and Arun Sood, “Secgrin
DNS Services through System Self Cleansing and Wil
EnhancementsProceedings First International Conference
on Availability, Reliability and Security (ARES 2006),
Vienna, Austria, April 2006 (accepted).

