
Incorruptible System Self-Cleansing for Intrusion Tolerance

Yih Huang, David Arsenault, and Arun Sood
Department of Computer Science and Center for Image Analysis

George Mason University, Fairfax, VA 22030
{huangyih, darsenau, asood}@cs.gmu.edu

Abstract  Despite the increased focus on security,
critical information systems remain vulnerable to cyber
attacks. The problem stems in large part from the constant
innovation and evolution of attack techniques. The trend lends
importance to the concept of intrusion tolerance: a critical
system must fend off or at least limit the damage caused by
unknown and/or undetected attacks.
In prior work, we developed a Self-Cleansing Intrusion
Tolerance (SCIT) architecture that achieves the above goal by
constantly cleansing the servers and rotating the role of
individual servers. In this paper, we show that, with simple
hardware enhancements strategically placed in a SCIT system,
incorruptible intrusion containment can be realized. We then
present an incorruptible SCIT design for use by one of the
most critical infrastructures of the Internet, the domain name
services. It is our belief that incorruptible intrusion
containment as presented here constitutes a new, effective
layer of system defense for critical information systems.

Keywords
computer security, self-cleansing systems, intrusion containment,
domain name system

I. INTRODUCTION
Networks and the systems that run on them have

become essential to the operation of business enterprises,
functioning of the global economy, and the defense of the
nation. Yet these critical information systems remain
vulnerable even with the recently increased focus on
security. The problem stems in large part from the constant
innovation and evolution of attack techniques. The
increasing sophistication and incessant morphing of cyber
attacks lend importance to the concept of intrusion
tolerance: a critical system must fend off or at least limit
the damages caused by unknown and/or undetected attacks.

An unknown attack is an attack based on new
vulnerabilities, exploits and/or attack techniques that are yet
unknown to the public. An undetected attack is a successful
attack that evades intrusion detection mechanisms long
enough to cause significant losses. The two concepts are
related but not identical: while an unknown attack has
greater opportunities to evade detection, an undetected
attack could be based on previously known attack
techniques. The two combined represents the “unknown

This research is part of the Critical Infrastructure Protection
Project funded by the National Institute of Standards and
Technology.

unknowns” faced by today’s critical information systems in
cyber warfare.

Our response to these formidable challenges is Self-
Cleansing Intrusion Tolerance, or SCIT. The underlying
assumption is that all software is malleable and intrusion
detection cannot absolutely detect all system breaches. It
follows that a server that has been online and exposed to
attacks must be assumed compromised. Consequently, an
online server must be periodically cleansed to restore it to a
known clean state, regardless of whether an intrusion is
detected or not. In [1,2,3,5] we presented our designs of
SCIT-enabled firewalls, web servers, and DNS servers.
The primary contribution of this work is the introduction of
incorruptibility guarantees of SCIT, called SCIT Primitives,
enforced by simple hardware enhancements strategically
placed in a SCIT server cluster.

We point out that SCIT does not exclude the use of
intrusion prevention and detection technologies, but rather
adds another layer of defense, extending the idea of
"defense-in-depth" through periodic system cleansing. The
effectiveness of SCIT depends on fast self-cleansing cycles,
thus restricting would-be attackers to short time windows to
breach the system before restoration through self-cleansing.
In response, an attacker may target SCIT itself in an attempt
to defeat this last line of system defense.

In this paper we investigate the survivability of SCIT
under unknown and/or undetected attacks. We first review
SCIT basics in Section 2. We present, in Section 3, a set of
criteria, called SCIT Primitives, which ensure the
incorruptibility of system self-cleansing cycles. A generic
design framework that satisfies said primitives is discussed
in Section 4. As an example, we give in Section 5 the
details of an incorruptible SCIT system for use by domain
name services (it is an adaptation of our prior SCIT DNS
design [3]). We conclude this work in Section 6.

II. SCIT REVIEW
A SCIT cluster comprises a set of interconnected

servers that cooperatively provide a predefined service.
Any server in the cluster periodically switches between two
modes: online servicing clients (which are outside the
cluster) and offline for cleansing. Either a central controller
or a distributed control mechanisms using a Cluster
Communication Protocol (CCP) can be used to coordinate
server mode rotations [3]. A high level view of SCIT
cluster operations is depicted in Figure 1.

Fig. 1: A High-level View of SCIT Cluster operations

As a specific example, consider the SCIT DNS cluster
shown in Figure 2. The cluster comprises three server
boxes and advertises two IP addresses, a primary name
server address and a secondary name server address. At
any point in time only one of the servers will be operating
in one of the following three states: (1) Primary DNS,
communicating with clients using the primary IP address,
(2) Secondary DNS, communicating with clients using the
secondary IP address, and (3) Offline for self-cleansing
with no public IP address.

Fig. 2: The SCIT DNS Cluster

Part of the rotation process is to bring online servers
offline. Next, system is rebooted to initiate cleansing
procedures in order to return servers to a well-defined clean
state. At a minimum such a state includes system binaries,
system configuration files, critical utilities, service binaries
(BIND binaries, Apache binaries, etc.), and service
configuration files. Many services may include (part of)
application data as well. In SCIT DNS, its clean state also
covers the DNS master file and cryptography keys. For the
SCIT web servers, the clean state covers static HTML
pages and web scripts. In many applications, audit
functions can also be performed on offline servers.

We notice that a simple form of server rotation has
previously been employed in high-availability systems,
where backup servers rotate online to ensure uninterrupted
service in face of primary server failures [4]. SCIT systems
share many design challenges with high-availability
systems, such as the seamless server transitions and sharing
of server identities (IP and/or hardware addresses).
Examples of existing high-availability systems include DNS
servers, NFS servers, authentication services, firewalls,

IPsec gateways, and virtual private network (VPN)
gateways.

III. SCIT PRIMITIVES
When considering unknown and undetected attacks,

one must assume that the self-cleansing process is also
subject to attacks. It is indeed possible to interfere with the
operations of SCIT. To interfere with the self-cleansing
process after rebooting, an attacker could install Trojan
horse copies of system/cleansing utilities, hack startup
tasks/processes, or even tamper with the bootstrapping
procedure of the operating system. The successful
completion of cleansing does not guarantee the assumption
of a desired online service role either. The server could
already have been under attacks while cleansing, and going
online inevitably involves communications, giving
opportunities to unpredicted breaches. Lastly, but most
importantly, an online server may be taken over by
attackers. The process of counting down to the next
rebooting could consequently be interrupted, stopping the
SCIT cleansing cycles all together.

In the following we present a set of properties, or
primitives so that if a given SCIT cluster satisfies these
properties, then it is said to be SCIT incorruptible. In the
discussion an exposed node refers to any online server
inside the SCIT cluster or any computer/server outside the
cluster. Among the primitives below, Primitives P1 to P4
apply to all SCIT designs while Primitive P5 applies to only
those with a central controller.

P1. Inevitability of periodic server cleansing. A server
will be rebooted and subsequently cleansed within a
predetermined1 length of time.

P2. No communications from exposed nodes to
cleansing servers. Consequently, a cleansing server
is not subject to remote attacks. Notice that we do not
disallow cleansing nodes to send messages/signals to
exposed nodes.

P3. Completion of cleansing. The cleansing procedure
will be completed so that system is in a predefined
clean state.

P4. Guaranteed role assumption. A newly cleansed
server will assume a designated online role/identity.

P5. No communications from exposed nodes to the
central controller. It is thus impossible to attack the
central server at any time. Again, we allow the
controller to send messages/signals to exposed nodes.

Not all SCIT designs satisfy these demanding
requirements. In fact, with the assumption that software is
eventually corruptible, an entirely software-based SCIT
system cannot satisfy all the primitives and therefore is

1 For additional protection the server cleansing time could be

random and change in each cycle. The time length in Primitive
P1 is the longest cleansing cycle allowed.

Server Mode
Rotation

Offline
servers; in
self-cleansing

Online
servers;

potentially
compromised

Cleansing
server

Primary DNS
server

Secondary
DNS server

subject to compromises in its own operations. In the next
section, we present a SCIT framework that is incorruptible
as defined above through the use of simple hardware
enhancements.

IV. INCORRUPTIBLE SCIT
WITH HARDWARE ENHANCEMENTS

The SCIT primitives are best achieved by isolation. A
server is completely shielded from external influence if it is
“physically” cut off and if it does not process data left by
online servers. To achieve cutting-off in an incorruptible
way, simple hardware devices, such as on-off switches, are
employed. We refer to the resulting framework as
SCIT/HES (for Hardware Enhanced Security).

In SCIT/HES, a central controller is used to manage
server rotations and role assignments. (In implementations,
the controller could also be an off-the-shelf server box; the
name suggests its use not its construction) It also maintains
the communication configuration, shown in Figure 3, where
the controller keeps two-way communication paths with
cleansing servers but only one-way paths to reach online
servers. Consequently, an online server or any node
outside the cluster (the exposed nodes) can reach neither the
controller nor those servers in cleansing. Online servers of
course must have two-way communications with clients
outside the cluster. We emphasize that the arrows in Figure
3 represent permissible directions in communication; they
do not mandate dedicated communication channels.

Fig. 3: Communication configuration of SCIT/HES

Due to server rotations, the configuration of a
SCIT/HES cluster is dynamic. Communication paths must
be cut and reestablished when servers switch between
online and offline modes. In SCIT/HES, the central
controller also manages communication paths. The setup
between the controller and an individual server is presented
in Figure 4. In the figure, we use solid lines to represent
network links for TCP/IP message exchanges (such as
Ethernet cables) and dashed lines to represent wires/fibers
that conduct electromagnetic control signals.

As seen in Figure 4(a), the controller has two signal
lines to reach each server: a reset line and a toggle line. A
reset signal forces the server to reboot. The toggle signal
controls two switches that are always in opposite states. A

toggle signal followed by a reset switches the online server
in Figure 4(a) to the offline mode in Figure 4(b). As such, a
server can either receive incoming messages from outside
(and thus is subject to attacks) or send messages to the
controller, but never both at the same time. Cleansing
servers receive inputs from only the central controller.
Primitives P2 and P5 are thus fulfilled.

Fig. 4: The hardware enhancements in SCIT/HES

With the central controller shielded from any form of
external influence and in charge of periodically resetting
servers, Primitive P1 is fulfilled.

Primitive P3 concerns the bootstrapping and cleansing
procedures used by SCIT servers. Once a server is
rebooted, it enters a bootstrapping process followed by
cleansing routines. A simple way to enforce Primitive P3 is
that the entire system uses read-only storage for system
state. For instance, all system components and service
software are stored on a CD-ROM. In this case, rebooting
and loading the system from the CD-ROM is the entire
cleansing process; afterward the system is in a known clean
state. This solution has potential performance problems,
due to the slowness of optical drives. Also, many services
require the predefined “system state” to cover (some) data.

A more flexible approach is to bootstrap a server from
a read-only device. However the application data and the
binaries that the server needs to perform its online functions
are stored in a write-able storage, called the root hard drive.
When the server enters an online mode, it switches to the
hard drive as the root file system. The self-cleansing
procedure checks the integrity of the root hard drive and
restores it to a clean state if corruptions are detected. In the
self-cleansing mode, all executables (the kernel, utilities,
system check tools, etc.) are retrieved from the read-only
device. We notice that before a server goes online, it
cannot be reached by exposed nodes and all its
configurations and binaries are from read-only storage;
hence the fulfillment of Primitive P3.

SCIT/HES
Cluster

Offline

Online Central
Controller

Reset

Toggle

Clients

Clients

(a) a server presently online

(b) the server after a toggle signal and a reset signal;
now offline

Lastly, it is the (never exposed) central controller that
assigns a role to a newly cleansed server. While receiving
directions of its new role from the controller, the server is
disconnected from exposed nodes. The process of role
assumption is not subject to external influence, and
Primitive P4 is fulfilled.

V. INCORRUPTIBLE INTRUSION CONTAINMENT
A DNS EXAMPLE

To illustrate the use of the SCIT/HES framework, we
present its application in a critical part of the Internet, the
domain name systems. A SCIT/HES DNS cluster includes
three servers (S0, S1, and S2) and a central controller that
executes the algorithm presented below to coordinate server
rotations. There are two forms of communications in the
algorithm. First, the controller uses unidirectional signals to
reset a server and change its network communication paths.
Second, the controller uses two-way TCP/IP message
exchanges to communicate the designation of an online
role/identity with a newly cleansed server. When receiving
a role message from the controller, the server acknowledges
only after it has completed its self-cleansing.

Centralized Server Rotation Algorithm
Variables:

Toggle[0,2]: toggle signals to servers S0, S1, S2
Reset[0,2]: reset signals to servers S0, S1, S2
P: integer in [0,2] for the ID of the primary server
S: integer in [0,2] for the ID of the secondary server
C: integer in [0,2] for the ID of the cleansing server
T1 and T2: two timers

Initializations:
P = 0, S = 1, and C = 2.
Set timer T1.

When T1 fires // switch primary with cleansing
Send signal Reset[P].
Send signal Toggle[P].
Send role ‘Primary’ to Server[C].
Wait for an ack from Server[C].
Send signal Toggle[C]
Swap the values of P and C.
Set timer T2.

When T2 fires // switch secondary with cleansing
Send signal Reset[S].
Send signal Toggle[S].
Send role ‘Secondary’ to Server[C].
Wait for an ack from Server[C].
Send signal Toggle[C]
Swap the values of S and C.
Set timer T1.

Following the algorithm, the central controller
alternates between two timers T1 and T2 so that role
rotations alternate between Primary↔Cleansing switches
and Secondary↔Cleansing switches. The system starts

with the configuration (P,S,C), where server S0 is the
primary (P), S1 the secondary (S) and S2 in cleansing (C).
(Due to space limits, the steps whereby servers enter their
respective initial roles have been omitted in the above
presentation.) After the first timeout event (T1 fires), the
primary server S0 and the cleansing server S2 switch mode,
resulting in the configuration (C,S,P). A complete cycle of
server rotations is given in Figure 5.

Fig. 5: A cycle of SCIT DNS server rotations

VI. CONCLUSION
We have shown that with simple hardware

enhancements strategically placed in a server cluster, it is
possible to build intrusion containment mechanisms that
cannot be corrupted. We have presented a SCIT/HES DNS
cluster as an example of our framework. It is our belief that
incorruptible intrusion containment as presented constitutes
a new, effective layer of defense for critical information
systems against undetected and unknown attacks, the
unknown unknowns in computer system security.

REFERENCES

[1] Yih Huang and Arun Sood, “Self-Cleansing Systems for
Intrusion Containment,” Proceedings of Workshop on Self-
Healing, Adaptive, and Self-Managed Systems (SHAMAN),
New York City, June 2002.

[2] Yih Huang, Arun Sood, and Ravi K. Bhaskar, “Countering
Web Defacing Attacks with System Self-Cleansing,”
Proceedings of 7th Word Multiconference on Systemics,
Cybernetics and Informatics, pp. 12—16, Orlando, Florida,
July 2003.

[3] Yih Huang, David Arsenault, and Arun Sood, “SCIT-DNS:
Critical Infrastructure Protection through Secure DNS Server
Dynamic Updates,” presented at the Trusted Internet
Workshop Conference, Bangalore, India, December 2004.
(Also to appear in Journal of High Speed Networking)

[4] Peter S. Weygant, Clusters for High Availability, Prentice
Hall, 1996.

[5] Yih Huang, David Arsenault, and Arun Sood, “Securing
DNS Services through System Self Cleansing and Hardware
Enhancements” Proceedings First International Conference
on Availability, Reliability and Security (ARES 2006),
Vienna, Austria, April 2006 (accepted).

(P,S,C) (S,P,C)

(P,C,S) (C,P,S)

(C,S,P) (S,C,P)

T1 T1

T2

T1

T2

initialization

timer fires

T2

