
To appear in Proc The Second International Conference on Dependability (DEPEND 2009)June
18-23, 2009 - Athens/Vouliagmeni, Greece

Securing Web Servers Using Self Cleansing Intrusion Tolerance (SCIT)
Anantha K. Bangalore and Arun K Sood
George Mason University, Fairfax, Virginia

{bangondrum@gmail.com, asood@gmu.edu}

Abstract— The number of malware attacks is

increasing, Companies have invested millions of dollars in
intrusion detection and intrusion prevention (ID/IP)
technologies and products, yet many web servers are
hacked every year. The current reactive methods of
security have proven to be inadequate because the “bad
guys” are always one step ahead of the Intrusion
Detection/Intrusion Prevention community. Our research
seeks to prove the feasibility of a completely new and
innovative theory of server security called “Self-Cleansing
Intrusion Tolerance” (SCIT). SCIT shifts the focus from
detection and prevention to containing losses. SCIT uses
virtualization technology in a new and unique way to
make it more difficult for attackers to do damage/acquire
data by reducing a server’s exposure time from several
months to less than a minute. In this way we increase the
dependability of the server and provide a new way to
balance the trade-off between security and availability.

We have applied SCIT to multiple types of servers
(DNS, SSO and Web), in this paper we will focus on
securing web servers using SCIT. Based on the results of
load testing of a web application for various load scenarios
under both scit and non-scit environments, we will clearly
show that SCIT provides a high degree of security with
little degradation in overall response time of the
application.

Keywords:SCIT,exposuretime,virtualization,vmware,persist
ence,pro-active,web server,response time

I. INTRODUCTION
The complexity of modern information services,

and the sophistication, pace, and variety of hacking and
malware attack techniques requires a new approach to
the challenge of server security. Despite large
investments in computer security infrastructure,
attackers continue to evade and outperform the most
advanced intrusion prevention and detection systems.
The problem stems, in large part, from: (1) constant
innovation and evolution of attack techniques, (2) rapid
development of exploits based on recently discovered
software vulnerabilities, and (3) reliance of most
defense approaches on detecting “signatures” of an
attack to mount an effective defense. The current
intrusion prevention or detection approaches require
prior knowledge of all potential attack modalities and
their own software vulnerabilities. These approaches

are good at fighting yesterday’s wars, but are totally
ineffective against serious current and future threats.

Today’s servers are on-line for extended periods –
often several months at a time. In general, servers are
brought off-line only for patch application or upgrades.
Thus, attackers have ample time to explore, experiment
and understand target server configurations. In this
sense, the servers are sitting ducks, making easy targets
for hackers. The SCIT approach is tailored to make it
more difficult for attackers to do damage/acquire data
by reducing a server’s exposure time from several
months to less then a minute. The key differences
between current approaches (firewall, IDS, IPS) and the
SCIT approach can be summarized as follows:

1. Current approaches are reactive and motivated by
risk prevention; SCIT is a proactive risk
management approach.

2. IPS and IDS depend on a priori information, like
attack models and software vulnerabilities. SCIT
requires the selection of an exposure time 1 and
specification of maximum transaction size. We
utilize exposure time as a metric that defines the
security – availability tradeoff. For example,
higher exposure time leads to less security and
more availability.

3. In current approaches, the goodness of the packet
requires packet examination. SCIT does not
require packet inspect. We emphasize that unlike
other intrusion tolerance approaches (see Section)
SCIT does not require intrusion detection – we
make no attempt to determine if an intrusion has
occurred or not.

4. With reactive approaches, patches for
vulnerabilities need to be applied immediately;
there is no protection between the detection of the
vulnerability and the application of the patch. SCIT
provides protection while patches are developed,
tested and applied.

Two trends impact on the performance of IDS and
IPS – (1) the increasing bandwidth increases the

1 Exposure time is defined as the time that the server is
continuously connected to the internet.

mailto:bangondrum@gmail.com

number of packets that must be examined; (2) the
number of threats is increasing and this implies that the
black list of signatures is increasing. Thus for current
IDS and IPS more and more cycles need to be expended
for performing packet inspections and comparisons
with a black list of threats. The SCIT approach is based
on measuring exposure time, and hence is independent
of packet inspection time.

Our experiments have shown that SCIT web servers
recover very quickly (minute or so) from defacement
and software deletion attacks. A video of a demo
showing the launching and recovery from such attacks
has been posted at [10]. SCIT web servers provide the
following protections:

• Delete malware every minute.
• Restore defaced website to pristine state every

minute.
• Recover from software deletion attacks every minute.
• Work with IDS to reduce data ex-filtration.

As in the case of any security system, there is a cost
associated with using SCIT. A study of the SCIT
performance is the focus of this paper. In this paper we
will demonstrate that the overhead cost incurred in
terms of slower response times by a “scitized” system is
quite small. The results will also show that lower
exposure times will result in slightly higher response
times, but yields higher security. Higher exposure times
result in lower response times at the cost of security.

The rest of the paper is divided into 6 sections. In
Section II we give a quick introduction to how SCIT
works. We describe the core components of SCIT
architecture relevant to Web servers in Section III. The
design of the SCIT Web server is discussed in Section
IV. We choose a simple persistence storage based web
application running on a tomcat server. Short term
persistence based storage is commonly used in web
applications to implement shopping cart type
functionality. Section V discusses our test
methodology, and the test results are in Section VI. We
finally discuss the results and related and future work.

II. HOW SCIT WORKS
When a server is booted up, SCIT software launches

a pristine, malware-free copy of the server’s operating
system (OS) into a Virtual Machine. After a certain,
potentially random, exposure time to the Internet
(usually less than a minute) the virtual server is taken
offline and a new, pristine virtual server replaces the
prior one. The decommissioned virtual server is wiped
clean, loaded with a pristine copy of the OS and placed
in a queue for re-activation.

The SCIT research has mainly focused on those
servers which are most exposed to malicious intruders.
Such servers are located in a network’s Demilitarized
Zone (DMZ). SCIT focuses on containing any losses
resulting from an intrusion without knowing that an
intrusion has occurred, i.e. unlike other intrusion
tolerant architectures SCIT does not require the
intrusion detection step — it just assumes attacks to be
continually in progress.

Using virtualization technology, SCIT rotates
pristine virtual servers and applications every minute,
or less. In Figure 1, we show 3 different time period.
At any given time, there are 5 servers online and 3
servers being wiped clean. In each case a different set
of servers is being cleaned. Eventually every server will
be taken offline, cleaned and restored to its pristine
state. [1,2]

Figure 1: SCIT Software commissions and
decommissions virtual servers at sub minute
intervals.

We emphasize two scenarios that are relevant to the
SCIT research.

(1) Single function SCIT servers have at least one
virtual server online (red) that is receiving incoming
messages, processing these messages, and sending the
results; another virtual server (red) not receiving any
more incoming messages but finishing up unprocessed
requests before this server is cleaned; and a third virtual
server (green) has been restored to pristine state and is
ready to come on-line, in effect a live spare.

(2) Multiple function SCIT servers have each of the on-
line virtual servers performing a different function.
Since each of the virtual servers may have different
computational loads, we need special algorithms to
decide which server will be swapped next.

The key idea of the SCIT approach is to, at a
minimum, contain any losses that occur because of an
intrusion. SCIT achieves this goal by reducing the
exposure time of the server to the Internet.

III. SCIT ARCHITECTURE
The 3 core components of the SCIT Architecture

are:

1. Virtualization layer - VMware
2. Persistent short term (session) memory
3. SCIT controller

3.1 Virtualization layer – VMware
In the past 5 years, the virtualization technology has

matured to the point where it is widely being adopted
commercially. So far VMware seems to be industry
leader in the Virtualization product space. We have
implemented and validated SCIT using multiple
VMware products. We emphasize that SCIT technology
is independent of the virtualization platform.

VMware software provides a completely virtualized
set of hardware to the guest operating system. VMware
software virtualizes the hardware for a video adapter, a
network adapter, and hard disk adapters. The host
provides pass-through drivers for guest USB, serial, and
parallel devices. In this way, VMware virtual machines
become highly portable between computers, because
every host looks nearly identical to the guest. In
practice, a systems administrator can pause operations
on a virtual machine guest, move or copy that guest to
another physical computer, and there resume execution
exactly at the point of suspension. VMware
Workstation, Server, and ESX take a more optimized
path to running target operating systems on the host
than emulators. VMware ESX (formerly called “ESX
Server”), an enterprise-level product, can deliver
greater performance than the freeware VMware Server,
due to lower system overhead. In addition, VMware
ESX integrates into VMware Virtual Infrastructure,
which offers extra services to enhance the reliability
and manageability of a server deployment.[4]

SCIT prototype servers have been ported to the ESX
platform, and our tests have been performed with this
system. This effort was necessary to ensure that SCIT
technology can be readily applied in an enterprise
environment. The ESX server used in our experiments
is an Intel Xeon based Dell server with 8CPU’s and
4GB of memory.

3.2 Persistent short term (session) memory
In large scale systems, e.g. e-commerce, two kinds

of “persistent” data is handled. First, the long-term
persistent data, like customer order information, is
stored for long-term retention on devices like disks,
tapes, etc. Second, the short-term session information is
retained for the duration of the customer session.
Putting this data on the disk is computationally
expensive involving disk access related delays, so
typically this is retained in main memory.

Handling the persistent session information in SCIT
is a challenge. Typically, session information is small

and the persistence is limited to the session duration.
The difficulty is that in the SCIT servers, the exposed
virtual machine is destroyed and a new virtual machine
is exposed every minute. In this process the temporary
memory is lost. Typically, session information is shared
between tomcat servers either by using the multicast
protocol or by using an external server which can very
quickly store and retrieve short term transient session
information associated with a web application. We used
an open source version of a tool called Terracotta for
our purpose.

Terracotta is based on the concept of Network
Attached Memory (NAM). NAM is best suited for
storing short term memory, like session data. A NAM
implementation as defined by terracotta must meet 2
requirements: (i) NAM must look just like RAM to the
application - Constructors, Wait / Notify,
synchronized(), == and .equals() should all work as
expected. (ii) NAM must work as an infrastructure
service, i.e. NAM must run as a driver inside the JVM
but also as a separate process apart from the application
cluster. This is because, like networked file systems, the
memory must survive whether or not your application is
running. [5]

3.3 SCIT Controller
The SCIT controller is the central component of the

SCIT architecture. The controller is a java program that
controls the rotation and exposure times of the Virtual
Machine. The controller is installed on a secure
machine within the internal network of an organization.
In our current implementation, during a single cycle of
rotation each of the virtual machines are in one of the
following states:

1. Active: virtual machine is online and
accepts/processes any incoming requests.

2. Grace Period: virtual machine processes any
existing requests, but does not accept any new
requests.

3. Inactive: virtual machine is offline.
4. Live Spare: virtual machine has been restored

to pristine state and is ready to come on-line.
The transitions between the states are shown in the

following state diagram.

Active Grace
Period

Inactive Live
Spare

Figure 2 SCIT virtual server state diagram
In each rotation only one VM is on-line accepting

queries. The state of this VM is considered Active. The
other VM’s will be in one of the above mentioned states
except the load balancer which will at any given time
be pointing to only one VM in Active state.

IV. SCIT PERSISTENT SESSION WEBSERVERS
Persistent session tracking enables web servers to

track a user’s progress over multiple servlets or HTML
pages, which, by nature, are stateless. A session is
defined as a series of related browser requests that
come from the same client during a certain time period.
In a typical e-commerce application, a user adds or
removes items from a shopping cart, while browsing
through the site’s inventory. This shopping cart is
active only during this session. and is considered
transient. i.e. only valid during the lifetime of the
session. Once the user is done shopping, he or she
checks out . At this point the user is billed for the
contents of the shopping cart.

In order to “scitize” an application that uses
persistent sessions, the session information has to be
shared between the multiple copies of the web servers
running on each of the virtual machines that are part of
the SCIT cluster. We use a simple web application to
demonstrate that any persistent session based web
application can be scitized.

Figure 3 SCIT Web Server

As shown in figure 3, in our SCIT set up we have 3
application virtual machines VM0, VM1 and VM2.
Each of these 3 virtual machines is running
Slackware11 as the Operating System. Each of the
VM’s are also running Jakarta tomcat 5.5.12 as the web
server. The web application is running under tomcat
web server. The Load Balancer VM LB is running Cent
OS as the operating system. It is also running the
terracotta server. Ideally the terracotta server should be
running in a separate virtual machine on the host only
network. An Apache server running on the LB VM
performs the function of load balancing across the 3
tomcat servers. The tomcat servers on startup connect to
the terracotta server. All the VM’s are running on a
stand alone VMware ESX server. VM0, VM1 and VM2
are connected to a host only network. This ensures that
these VM’s that are hosting the application cannot be
directly accessed from the internet. The LB VM is
connected to a bridge network as well as to the host
network to which the application VM’s are connected.
The LB VM on the bridge network can be accessed
from the internet. During each rotation cycle the load
balancer points to only one of the application VM’s.
This VM is considered to be in the active state. After
the active VM is exposed for a predetermined exposure
time, it is taken off-line to be cleaned and returned to
the previous clean state of the VM. When the VM is
taken off-line, it is said to be in the inactive state.
During the same period, the LB is made to point to
what was the live spare VM, which at this point
becomes the active VM.

V. PERFORMANCE TESTS
The average query response time 2 is used as the

performance measure in our tests. We employ an open
source load generation tool called Open System
Testing Architecture (OpenSTA) for workload
generation. OpenSTA is a distributed software testing
architecture designed around CORBA. The current
toolset of OpenSTA has the capability of performing
scripted HTTP and HTTPS heavy load tests with
performance measurements from Win32 platforms. To
simulate a realistic test, we model the typical scenario
including “think” time necessary in between
transactions.

OpenSTA remotely generates a work load of virtual
users whose life cycle is to complete a script of HTTP
requests and responses. The start and completion time
of the test script is recorded for each user by OpenSTA
for later analysis.

2 In our analysis the response time is the time taken for
completing each session. Details of the activities in a
session are described below.

In each of our tests we use the following framework:

1. The workload is measured in terms of the number
of users per minute. In each experiment we use 3
levels for users per minute (U). We tested for
scenarios involving 50, 100, 125 users/min.

2. Each user session includes a series of requests and
responses from the server. We model the “think”
time that is required between each of the requests.
The “think” time for the web server averages 2
seconds between requests Each session involves
selecting an item from a drop down list and adding
it into the persistent storage. For our test, in each
session we add three items to the persistent
storage.

3. OpenSTA is used to generate workload for each of
the scenarios. To minimize the impact of the
random behavior for each case we conducted 3
runs. The duration (D) of each run is three times
the exposure time (E), D = 3 * E. This choice
makes sure that each virtual server is tested at least
once. Higher values of D are advisable for future
testing. The workload is generated in batches.
Each batch consists of N user requests, and a new
batch is released every 10 seconds. Thus U = N *
6, and total number of requests in a scenario (T) is
given by T = U * D.

4. We choose an exposure time – minimum exposure
time is 1 min, but as the server computational
complexity increases a higher exposure time is
necessary. The exposure time for tests was 2, 3
and 4 minutes. We also conducted a test in which
there was no rotation of the servers. This can be
viewed as a baseline test, and the performance can
be compared to this baseline.

5. A total of 36 runs were performed.

6. For testing in a non-scit environment we set up a
tomcat server running on a stand alone dual core
machine with the same simple persistence storage
based web applicationAs in the case of the tests
conducted for the “scitized” web server, OpenSTA
was used to generate workload for each of the
scenarios. To minimize the impact of the random
behavior for each case we conducted 3 runs. The
workload is generated in batches. Each batch
consists of N user requests, and a new batch is
released every 10 seconds.

7. OpenSTA crashed for scenarios involving excess
of 250 users/minute.

VI. TEST RESULTS
Table 1: Average Response Times for SCIT

Persistent Web server tests

Exposure
Time Users

Average
Response

Time
STD.
Dev.

2 mins 50 6.16 0.07
2 mins 100 6.10 0.05
2 mins 125 6.08 0.04
3 mins 50 6.03 0.01
3 mins 100 6.02 0.02
3 mins 125 6.24 0.01
4 mins 50 6.16 0.02
4 mins 100 6.15 0.02
4 mins 125 6.03 0.00
NR 50 6.02 0.01
NR 100 6.27 0.02
NR 125 6.31 0.05
Standalone 50 6.14 0.02
Standalone 100 6.04 0.00
Standalone 125 6.02 0.00

Response time with Rotation

5.8

5.9

6

6.1

6.2

6.3

6.4

2
m

in
s

3
m

in
s

4
m

in
s

N
R

S
ta

nd
al

on
e

2
m

in
s

3
m

in
s

4
m

in
s

N
R

S
ta

nd
al

on
e

2
m

in
s

3
m

in
s

4
m

in
s

N
R

S
ta

nd
al

on
e

50 50 50 50 50 100 100 100 100 100 125 125 125 125 125

Users/Minutes

S
ec

on
ds

Run1 Run2 Run3
Figure 4 Average User Session Response Time for
different workloads

Response Time (secs) vs Users (per min)

5.85
5.9

5.95
6

6.05
6.1

6.15
6.2

6.25
6.3

6.35

50 100 125

Users per min

Re
sp

on
se

 T
im

e
(s

ec
s)

2 mins
3 mins
4 mins
NR
Standalone

Figure 5 Response Time for users/min

Based on the results summarized in the table and
graph above, for the exposure time of 2 minutes, the
response time is slightly higher than exposure time of 3
minutes which in turn is higher than exposure time of 4
minutes. The No Rotation (NR) response time seems to
be closer to the 4 minute exposure time as is the
response times for the tests conducted on the stand
alone server (SA) in a non-scit environment. There is
little difference between the no rotation response times
and the response times conducted under the non-scit
environment. We note that the last column contains the
standard deviation for each of the test scenarios. This
supports our hypothesis that low exposure times lead to
larger response times, but the low exposure times of the
VM’s lead to increased security of the scitized server.
On the other hand, increasing exposure time, leads to
lower response time, but the exposed servers are
obviously more susceptible to being hacked under
higher exposure times. Based on the results, we
conclude, the impact of scit on performance is mild.

VII. RELATED AND FUTURE WORK
Intrusion tolerance is a new approach that has

slowly emerged during the past decade, and is steadily
gaining momentum in the field of security. Some of the
related work in this domain are:

1) MATIA: Malicious- and Accidental-Fault Tolerance
for Internet Applications is a European project that
aims to build conceptual models, mechanism and
protocols for achieving tolerance.[9]

2) OASIS: Organically Assured and Survivable
Information Systems was a DARPA project. A number
of intrusion tolerant architectures were developed in
this program[6]. DPASA was a result of this effort.

3) SITAR: Scalable Intrusion-Tolerant Architecture for
Distributed Services was developed at Duke University
aims to use redundancy to reconfigure systems to
increase security.[7,8]

As mentioned before, along with Web servers, we
have successfully applied SCIT to DNS[3] as well as
Single-Sign-On systems. In the future we want to apply
SCIT to other servers (Email, etc). We are also looking
at methods by which the exposure time is reduced even
further. One way of achieving this is perhaps by having
multiple VM’s in live spare mode at any given time. In
our experiments to secure web servers, all the VM’s run
the same OS with the same configuration. Hackers
could potentially exploit this fact. This can be mitigated
by using diversity principals. In each rotation cycle the

operating system, application or the memory image can
be changed to further confuse the intruder. This
approach also makes it more difficult for one virtual
server to infect another virtual server on the host
network. Another point of vulnerability is malicious
alteration of the session information that is shared
among all the virtual servers The SCIT solution does
not provide any additional capability for the intruder to
maliciously alter the session data. The constant rotation
potentially reduces the scope of the alteration. We note
that the session information is relatively small and well
structured. This enables the validation of the data as it
is transferred from one server to the other. We plan to
address these issues in future implementations of SCIT.

ACKNOWLEDGMENT
This research was partially supported by a contract

from Lockheed Martin and a contract from Virginia
Center for Innovative Technologies.

REFERENCES
[1] Yih Huang, Arun Sood, and Ravi K. Bhaskar, “Countering

Web Defacing Attacks with System Self-Cleansing”,
Proceedings of 7th Word Multiconference on Systems,
Cybernetics and Informatics, pp. 12?16, Orlando, Florida, July
2003.

[2] Yih Huang and Arun Sood, "Self-Cleansing Systems for
Intrusion Containment", Proceedings of Workshop on Self-
Healing, Adaptive, and Self-Managed Systems (SHAMAN),
New York City, June 2002..

[3] Yih Huang, David Arsenault, and Arun Sood, “SCIT-DNS:
Critical Infrastructure Protection through Secure DNS Server
Dynamic Updates”, Journal of High Speed Networking, vol 15
No 1, pp 5 � 19, 2006.

[4] VMware documentation, http://www.vmware.com
[5] Terracotta documentation, http://www.terracotta.org
[6] Foundations of Intrusion Tolerant Systems, Edited by

Jaynarayan H. Lala, DARPA Organically Assured and
Survivable Information Systems (OASIS), IEEE Computer
Press, 2003.

[7] Feiyi Wang; Jou, F.; Fengmin Gong; Sargor, C.; Goseva-
Popstojanova, K.; Trivedi, K.; “SITAR: a scalable intrusion-
tolerant architecture for distributed services”, Foundations of
Intrusion Tolerant Systems, 2003 Page(s):359 – 367.

[8] Dazhi Wang, Bharat B. Madan, and Kishor S. Trivedi,
“Security Analysis of SITAR Intrusion Tolerance System”,
Proceedings of the 2003 ACM workshop on Survivable and
self-regenerative systems: in association with 10th ACM
Conference on Computer and Communications Security,
Fairfax, Virginia.

[9] I. Welch, J. Warne, and P. Ryan, and R. Stroud, “Architectural
Analysis of MAFTIA Intrusion Tolerance Capabilities”.
Technical Report CS-TR-788, University of Newcastle upon
Tyne. Feb 2003.

[10] http://www.youtube.com/watch?v=gIN6JWInuv8

	I. Introduction
	3.1 Virtualization layer – VMware
	3.2 Persistent short term (session) memory
	3.3 SCIT Controller
	Acknowledgment
	References

