
Self-Cleansing Systems for Intrusion Containment

Yih Huang
Computer Science Department

George Mason University
Fairfax, VA 22030

(703) 993 1540

huangyih@cs.gmu.edu

Arun Sood
Computer Science Department

George Mason University
Fairfax, VA 22030

(703) 993 1524

asood@cs.gmu.edu

ABSTRACT
In this paper, we discuss the application of high-

availability computing systems to intrusion containment.
Intrusion Management Systems (IMS) serve to protect
complex computer systems from unauthorized intrusions.
The traditional IMS approaches rely on intrusion
prevention and detection, followed by implementation of
intrusion resistance procedures. A key assumption of a
traditional IMS is that it is possible to detect all intrusions.
We believe that the sophistication and rapid evolution of
information warfare require the more pessimistic
assumption that undetected intrusions will occur and must
be guarded against as well.
Our approach, called Self-Cleansing Intrusion Tolerance
(SCIT), pushes the concept of high-availability computing
one step further. In a SCIT system, a server is periodically
assumed to have "failed," namely, comprised by undetected
intrusion. Consequently, the server is brought off-line for
cleansing and integrity checking while a backup takes over.
Indeed, it is more appropriate to see a SCIT system as two
mirror servers working alternatively than as a primary
server and its backup. In this paper, we define the concept
of SCIT, present our experiences in building a SCIT
firewall prototype, and discuss the future work in more
advanced SCIT servers.

Keywords
high-availability computing, computer security, intrusion
containment, self-cleansing systems.

1. INTRODUCTION
Computer systems are becoming more complex and are
increasingly vulnerable to cyber warfare. Typical
(traditional) Intrusion Management Systems (IMS) are
based on intrusion prevention and detection followed by
implementation of intrusion resistance procedures [1,2].
The latter generally includes intrusion tracking and

This research is supported by US Army’s Telemedicine and
Advanced Technology Research Center (TATRC), under contract
number DAMD 17-01-1-0825.

subsystem isolation. Such an IMS approach relies heavily
on the ability to detect intrusion events in the first place.

We however make the pessimistic but realistic assumption
that not all intrusion activities can be detected and blocked
(at least not in a timely manner to avoid significant damage)
and seek technologies to build secure systems which
constantly assume the compromise of the system and
perform self-cleansing, regardless of whether intrusion
alarms actually occur or not. We argue that such an
assumption is appropriate given the sophistication and rapid
evolution of information warfare. It is especially important
for critical distributed computing systems: To achieve the
highest level of security, we must not be overconfident in
either our knowledge of enemy tactics and technologies or
our capability to fend off all attacks.

One implementation of self-cleansing involves rebooting
the subsystem from a trusted storage device followed by, if
necessary, system recovery, checkpoint, rollback, and data
integrity checking routines. (A trusted storage device can be
either a read-only storage device or any nonvolatile storage
where information is cryptographically signed.) System
availability is achieved by means of redundancy, that is, a
second mirror system is brought online to provide services.
In this way, SCIT can be considered as a branch of high-
availability computing [3,4]: In a highly available system,
sufficient hardware redundancy is built into the system so
that a backup can immediately replace a failed system. In
SCIT, the switching from one system to its mirror is not
only triggered by failures; it is a regular routine designed to
root out undetected intrusion activities.

To illustrate, we apply the SCIT approach to firewalls.
Here we assume that the decision of whether to drop a
packet is strictly made on a per-packet basis.1 Firewalls are
widely used to block undesirable, potentially hostile packets
at the entry to a secure site. A successful and unnoticed
firewall subversion will leave the door to the site open,
exposing the internals of the victimized site to the outside

1 The cases of stateful firewalls, which maintain state information

of ongoing TCP connections, will be more involved. Also, we
do not consider proxy servers as part of the firewall.

world. As seen in Figure 1, we simply use two identical
firewalls, called f-boxes in the figure. When one f-box is
working, the other box will be performing self-cleansing by
rebooting itself. Assuming that rebooting is from read-only
devices, a rebooted f-box will be in a clean state and can
perform packet filtering needed to protect the site. As such,
even if the enemy managed to break into one f-box, its
control over that box is limited to one self-cleansing cycle.
More complicated SCIT systems will be discussed later.

Figure 1. SCIT Firewall

System self-cleansing limits the amount of time that a
successful intruder has to stay in the system and inflict

damages. The longer this Intruder Residence Time the
greater the damage and loss. We anticipate that the loss
curve will be an S-curve of the form in Figure 2. If the
Intruder Residence Time is less than the low loss threshold,
then the cost of the intrusion is low, while an Intruder
Residence Time greater that the high loss threshold will
lead to near max loss. The steep slope between the two
thresholds indicates that it is necessary to limit the Intruder
Residence Time to less than low loss threshold. The low
loss threshold reflects the reality that it takes a certain time
window for a hacker to be able to issue malicious
commands, exploit backdoors, install Trojan horse
programs, and/or steal/destroy data. A conservative
estimate of the low loss threshold is in the range of minutes.
Although there is no hard data for building the loss curve,
there are reports that can help the process of building such a
curve. For example, in [5] it is reported that in the context
of on-line banking, security experts believe that a theft of
$5,000 to $10,000 can be carried out over a few weeks,
while larger losses up to $1 million are likely to take four to
six months. In this context it is emphasized that the loss

curve must account for the possibility that the Intruder
Residence Time is spread over more than one successful
breach of the system.

Figure 2: Loss curve: Loss in dollars vs. Intruder
Residence Time in minutes

Lastly, we point out that SCIT complements and
strengthens existing intrusion prevention and detection
technologies [1,2]; we do not eliminate the use of the
current intrusion management systems, but rather add
another layer of defense, extending the idea of system
"defense-in-depth" through periodic system cleansing. The
effectiveness of SCIT depends on fast self-cleansing cycles,
restricting the attackers to a very short time window to
breach the system and cause harms.

The remainder of the paper is organized as follows. In
Section 2, we present our experiences in building a
prototype of SCIT firewalls. In Section 3, we discuss the
feasibility of "SCIT-izing" more complicated systems, such
as file servers. We give concluding remarks and outline
future work in Section 4.

2. SCIT FIREWALLS
We chose firewalls as the first application of SCIT. The
rational is twofold. First, the operation of stateless firewalls
lends itself to SCIT, owing to the relative ease for a backup
or mirror system to take over without disrupting ongoing
traffic. Second, firewalls form the first line of defense for
many private networks and thus are obvious targets of
intrusion attacks. Strengthening the defense of firewalls
significantly reduces the risk of security breaches in the
whole network. The applications of the SCIT approach to
more complex systems, such as NFS, DNS, and Web
servers, will be discussed later.

Our testbed is based on the Virtual Machine software from
VMWare, Inc. [6]. The virtual machine technology enables
multiple guest operating systems to be installed and
executed on top of a host operating system. In our demo, a
client uses the Explorer on Windows 2000 to surf the web.

Intruder Residence Time

L
o

ss
 in

 D
o

lla
rs

Low loss
threshold

High loss
threshold

Box in operation
Box in self-
cleansing

f-box

f-box 2

Packets
admitted

Inbound
traffic

SCIT Firewall

(a) f-box 1 in operation

f-box 1

f-box 2

Packets
admitted

Inbound
traffic

SCIT Firewall

(b) f-box 2 in operation

The client Windows is protected by SCIT firewalls. Both
the client Windows machine and its SCIT firewalls are
implemented as virtual machines. The underlying host
machine is a Pentium 4 PC running RedHat 7.2 Linux.
VMWare supports not only virtual machines but also
virtual networks, which are emulated switched Ethernet
networks. As seen in Figure 3, we use this feature to build
two virtual networks, one with subnet ID 192.168.181.0/24
and the other 192.168.202.0/24. The first subnet connects
the host system to the two firewalls. Both firewalls use a
specialized version of RedHat 7.2 Linux. The latter subnet
connects the firewalls to the client Windows. Inbound
traffic are received by the host and relayed to one of the
firewalls, which filters and relays the traffic to the client
Windows. A third subnet, 192.168.200.0/24, is used by the
two firewalls to probe each other. To enable the client
Windows to communicate with the public Internet, its
private IP address is translated to a public IP address by IP
Masquerading, a form of network address translation that is
supported by Linux kernels.

When a newly cleansed firewall is ready for operation, it
must take over the IP addresses used by the presently
running firewall. The firewall achieves this by issuing
Gratuitous ARP messages using the Fake package [7]. The
firewall rules are implemented in IPCHAINS. A shell
script that executes the following steps controls the
operations of each firewall. In the script, the first step is
executed immediately after the underlying firewall has
completed rebooting.

Pentium 4 PC Hardware

RedHat 7.2 Linux (Host OS)

VMWare Workstation 3.0

192.169.181.0/24

SCIT Firewall 1
RH 7.2

SCIT Firewall 2
RH 7.2

Client Machine
Windows 2000

192.168.225.0/24

Virtual machines
and networks

192.168.88

Figure 3. SCIT firewall prototype

1. Setup firewall rules using the ipchains command.
Start traffic filtering and relaying in the background.
The two tasks will continue to be performed in the
background until the machine is shutdown for
rebooting in Step 5.

2. Broadcast on subnets 192.168.225.0/24 and
192.168.181.0/24 Gratuitous ARP messages to

announce the ownership of firewall IP addresses.
This step lasts 10 seconds, one ARP message per
second.

3. Wait for 10 seconds. This delay gives the other
firewall extra times to detect the activities of this
firewall and to reboot.

4. This firewall now assumes the other firewall is
rebooting. It sends ping messages periodically over
the 192.168.88.0 network to probe the other firewall,
until a reply message is received. The receipt of a
reply indicates the other firewall has completed self-
cleansing and is ready to take over.

5. Reboot (and thus return to step 1 after completion).

From the client inside the SCIT firewall, the user opens a
browser window and begins web surfing. We open two
additional windows indicating which of the firewalls is
operational. In the screen capture shown in Figure 4, these
correspond to the black background windows on the top of
the screen. The left-upper window shows that the presently
running firewall is probing (unsuccessfully) the other
firewall. That is, the firewall is executing the Step 4 given
above. The right-upper window shows the booting message
of the second firewall. The client Windows 2000 displays
the CNN home page at the bottom. The page is, of course,
obtained through the SCIT firewalls.

In general, for a typical HTML encoded web page, a
firewall switch is barely perceptible. Examination of the
trace sometimes shows occasional losses of packets when
switching firewalls, but it appears that the retransmission of
the packets is fast enough that the user cannot perceive the
difference. Indeed, the setup is good enough for our own
production uses – our research assistant regularly uses the
setup for emails and web serving. With the setup, we
observed self-cleansing cycles in the vicinity of 90 seconds.

Finally, it is worth pointing out that the self-cleansing of a
firewall in the above steps comprises merely rebooting it.
Assuming that the firewall is booted entirely from read-only
storage, rebooting is sufficient to bring it to a clean state.
While this assumption is reasonable for relatively simple
devices like firewalls, in general cases more involved self-
cleansing procedures are needed. For instance, using a tool
called Tripwire, a system audit can be carried out after
rebooting to check the integrity of system files [8].

3. A DISCUSSION OF SCIT SERVERS
We have shown a prototype design of SCIT firewalls. In
this section we discuss the possibilities and difficulties of
extending the concept to various type of servers in
distributed computing environments. We call this task the
“SCIT-ization” of servers.

1. Stateless servers are relatively straightforward to
SCIT-ize. By stateless we mean the server does not

have to keep track of in memory the outcomes of
previous tasks in order to carry out new tasks. NFS
is a prominent example of stateless systems. Notice
that dependences on the previous outcomes
maintained in nonvolatile storage can be managed by
SCIT, for mirror systems can share the storage.
Storage sharing can be achieved by, for example, a
SCSI bus in a small-scale system or a system-wide
network (SAN) in a large cluster.

2. Servers that handle short sessions are relatively
straightforward to SCIT-ize. Such servers are
typically transaction oriented and process request-
and-response types of tasks. Examples include DNS
servers, some database servers, and certification
servers. Telnet, FTP, and many application proxy
servers are examples of long-session servers. A long
session in a SCIT system needs to be migrated to a
mirror system in the middle of the session. The task

involves at a minimum moving endpoints of TCP
connections on the fly and is unfeasible with the
standard TCP. We will not further consider long-
session servers for the time being.

3. Servers that manage static or semi-static data are
relatively easy to SCIT-ize. A DNS, LDPA, or
certification server, for instance, handles datasets
that are typically small and infrequently changed.
Static, small datasets enable efficient data mirroring
and thus facilitates the construction of identical
servers to operate alternatively. Due to the critical
roles played by DNS and certification servers, SCIT
technologies specifically developed for these servers
further strengthen overall system security.

Figure 4. Screen capture of the SCIT firewall prototype

Indeed, we do not expect that the concept of SCIT be
compatible with all types of computing systems. We do
believe that SCIT is applicable to many important servers in
distributed computing environments or Internet services,

such as file systems, web servers, DNS servers, and
certification services. The most important challenge in our
future research is to design efficient SCIT architectures for
these servers. To conclude this section, we present the

blueprint of our next SCIT system, a SCIT NFS server.
The design is based on a high-availability file server
architecture discussed in [9,10]. As shown in Figure 5, two
server machines connect to a SCSI bus to share a SCSI hard
drive that stores the file system data. Similar to the SCIT
firewalls, the two server boxes must share one IP address
using the technique described earlier. Also, a second set of
network interfaces is used by currently running server to
probe the status of the other server. At the time of this
writing, we are implementing the design using the virtual
machine technology.

SCSI
Hardrive

SCSI Bus

Networ that clients use to reach the servers

Server Box 1 Server Box 2

Probe signals

Figure 5. The blueprint of a SCIT NFS Server.

4. CONCLUSION
We have presented a novel application of high-availability
computing, namely, intrusion containment. Our SCIT
approach uses multiple, identical servers to execute in turn,
allowing off-line servers to be checked for integrity and
cleansed to return to a clean state. These self-cleansing
activities occur periodically, regardless the
presence/absence of intrusion alarms. As such, SCIT
provides a defense against unknown or severe attacks that
defeat the intrusion detection system. The effectiveness of
SCIT depends on fast self-cleansing cycles, restricting the
attackers to a very short time window to breach the system
and inflict damages. The cost of hardware redundancy in
SCIT systems can be avoided by using the virtual machine
technology, as demonstrated in our SCIT firewall
prototype.

At this early stage, we investigated only one self-cleansing
method in detail, that is, rebooting followed possibly by
data integrity checks and system audits. However, we
envision many layers of cleansing activities in an ultimate
SCIT system. In addition to rebooting the servers, one can
kill and re-launch the server daemon. This process-level
cleansing imposes less overhead, compared to system
rebooting. Yet another system cleansing method is to re-
load dynamic kernel modules, in the attempt to clean up

those kernel codes potentially contaminated by hostile
communications. With self-cleansing activities occurring at
several levels of the system and at different frequencies,
SCIT makes it very difficult for attackers to cause actual
harms, even if they are able to penetrate existing intrusion
defenses.

References
[1] M. Bishop, "Vulnerabilities Analysis," Recent

Advances in Intrusion Detection, September 1999.

[2] Common Intrusion Detection Framework,
http://www.gidos.org/.

[3] High-Availability Linux Project. Home page
http://linux-ha.org/.

[4] Peter S. Weygant, Clusters for High Availability,
Prentice Hall, 1996.

[5] Sandeep Junnarkar, “Anatomy of a hacking”, available at
http://news.com.com/2009-1017-893228.html, May 2002.

[6] VMware Inc. Home page http://www.vmware.com/.

[7] The Fake package. Home page
http://vergenet.net/linux/fake/.

[8] Gene H. Kim and Eugene H. Spafford, “Writing,
Supporting, and Evaluating Tripwire: A Publicly
Available Security Tool,” in Proceedings of USENIX
Applications Development Symposium, (Toronto,
Canada), April 1994. Also see
http://www.tripwire.com/.

[9] Steve Blackmon and John Nguyen, “High-Availability
File Server with Heartbeat,” System Admin, the
Journal for UNIX Systems Administrators, vol. 10, no.
9, September 2001.

[10] Richard Rabbat, Tom McNeal and Tim Burke, “A
High-Availability Clustering Architecture with Data
Integrity Guarantees,” Proceedings of IEEE
International conference on Cluster Computing, pages
178 – 182, (Newport Beach, California) October,
2001.

