When Do Coevolutionary Algorithms Exhibit Evolutionary Dynamics?

Sean Luke R. Paul Wiegand

ECLab

Department of Computer Science George Mason University

R. Paul Wiegand - Evolutionary Computation Laboratory - p.1/16

Overview

- Preliminaries
- The Basic Question
- Objective Dynamical Equivalence
- Beyond Objective Dynamical Equivalence

Preliminaries Model and Assumptions

- Rank-Based Selection

 - Truncation Selection, Tournament Selection, Rank Selection, etc.
- Complete Mixing
 - $\vec{u} = A\vec{x}$
 - (genome utilities = payoff matrix × peer proportions)
- Either Finite or Infinite Populations
- Either Finite or Infinite numbers of different genomes

Preliminaries Ranking Functions \mathcal{R}

Objective

 Always establishes the same ordering among all individuals in an infinite population regardless of the proportions in the population vector *x*.

• ... $\mathcal{R}_i \stackrel{\geq}{\equiv} \mathcal{R}_j$ invariant even when $x_i = 0, x_j = 0$

Existentially Objective

 Always establishes the same ordering among individuals in an infinite population which have non-zero proportions in *x*

• ... $\mathcal{R}_i \stackrel{\geq}{\equiv} \mathcal{R}_j$ consistent only when $x_i \neq 0, x_j \neq 0$

Objective => Existentially Objective

Preliminaries The Payoff Matrix A

- Weakly Transitive
 - For distinct *i*, *j*, *k*: $\begin{array}{c}
 (A_{ij} > A_{ji} \land A_{jk} \ge A_{kj} \longrightarrow A_{ik} > A_{ki}) \land \\
 (A_{ij} = A_{ji} \land A_{jk} > A_{kj} \longrightarrow A_{ik} > A_{ki}) \land \\
 (A_{ij} = A_{ji} \land A_{jk} = A_{kj} \longrightarrow A_{ik} = A_{ki})
 \end{array}$

Strongly Transitive Weakly Transitive and $A_{ij} \neq A_{ji}, A_{jk} \neq A_{kj}, A_{ik} \neq A_{ki}$ The Basic Question... Rank Equivalence

Fitness measures *f* and *g* are rank equivalent if they order the genotypes in the same way.
 There exists an ordering of *f* and of *g* such that ∀*j*, *k* genotypes, (*f_j* > *f_k* ←→ *g_j* > *g_k*)
 f ≡_{*R*} *g*

When is a coevolutionary fitness measure rank equivalent to some Objective or Existentially Objective EA fitness measure? The Basic Question... Guaranteeing Rank Equivalence

- Why guarantee that a CEA subjective measure is Rank Equivalent to some [existentially-] objective EA measure?
- Dynamic equivalence to an EA
 "Safe in the Knowledge" that the CEA is "evolving" in the sense that an EA does
 (Both Objective and Existentially Objective)
 Context-independent objective measure
 Comparing algorithm performance
 Detecting arms races
 Validating the external measure itself
 (Objective only)

The Basic Question... Transitivity Is Insufficient

 Weak / Strongly Transitive ranking function cannot guarantee rank equivalence to an [Existentially] Objective EA fitness measure.

$$A = \begin{bmatrix} 0 & 6 & 3 \\ -6 & 0 & 18 \\ -3 & -18 & 0 \end{bmatrix} \qquad \vec{x} = \begin{bmatrix} x_i \\ x_j \\ x_k \end{bmatrix}$$

Objective Rank Equivalence

To show CEA rank equivalence to an objective measure:

• Must show that $\forall i, j : (f_i > f_j \longleftrightarrow \forall k : A_{ik} > A_{jk})$

- ...because *entire* population context could consist solely of a single genome k
- Consequences:
 - If: an objective measure exists which is rank equivalent to the subjective fitness measure of the CEA
 - Then: All possible genomes may be assigned a context-free "fitness" according to that ranking
 - And Thus: there exists an EA (using that "fitness") which is dynamically equivalent to the CEA

Objective Rank Equivalence

• The greater than game

- Individual *i* beats individual *j* when $A_{ij} > A_{ji}$
- e.g., *i* receives scaled difference between the payoffs
- More generally: when subjective utility is linearly related to some objective measure, $u \sim_L f$
 - $A_{ij} = \alpha f_i + \beta f_j$ (as long as $\alpha > 0$)
 - ... the CEA using A for fitness is dynamically equivalent to an EA using f for fitness

Existentially Objective Rank Equivalence

When is a CEA rank equivalent to an
 Existentially Objective EA ranking function?
 One necessary condition:

$$egin{aligned} &orall i, j,k: (\mathcal{R}_i > \mathcal{R}_j \longrightarrow (A_{ij} > A_{jj} \land A_{ii} \ge A_{ji}) ee \ & (A_{ij} \ge A_{jj} \land A_{ii} > A_{ji})) & \wedge \end{aligned}$$

$$(\mathcal{R}_i = \mathcal{R}_j \longrightarrow A_{ik} = A_{jk})$$

- Consequences
 - Ordering within the population will always be the same between the CEA and some EA
 - CEA will be dynamically equivalent to the EA
 - Does *not* guarantee that we may can *determine* the context-free rank of an individual.

Existentially Objective Rank Equivalence A Sufficient Condition

• A CEA is dynamically equivalent to an EA if payoff matrix *A* is:

• Weakly Transitive...

 Monotone... ∀*i*, *j*, *k* (not necessarily distinct): A_{ij} ≥ A_{ji} ∧ A_{jk} ≥ A_{kj} → A_{ik} ≥ max(A_{ij}, A_{jk})

 Constant-Sum Plus... (Constant Sum, with slightly looser restrictions along the diagonal of A)

Existentially Objective Rank Equivalence

GP Checkers Game

- Infinite kinds of players
- All players play all other players (including themselves)
- Winner of match gets +1, loser gets -1, draws get 0
- Weak Transitivity (such as: if A beats B, and B beats C, then A will beat C, etc.)
- ...then no reason to play all those games!
 - Just do tournament selection, and do lazy evaluation by directly playing A against B when in the tournament.

Conclusions Recap

Assumptions

Complete Mixing, Rank-Based Selection

• We show:

- Transitivity does not guarantee dynamic equivalence to an EA
- Necessary and sufficient conditions to guarantee a true objective function for full-mixing CEA
- Necessary conditions for guaranteeing dynamic equivalence to EA
- An example giving sufficient conditions

Conclusions Where To Go From Here?

- Permitting Intransitivity
 - Discovering "local" intransitive cycles and path-compressing them into transitive DAGs
- Experimental Analysis
 - How does deviating from the minimum conditions given affect the effectiveness of the CEA?
 - How does deviating from full mixing affect the dynamics of the CEA?

About Us

Sean Luke

 http://www.cs.gmu.edu/~sean/
 sean@cs.gmu.edu

 R. Paul Wiegand

 paul@tesseract.org

ECLab
 http://www.cs.gmu.edu/~eclab/