Evolving Behaviors for Cooperating Agents

Jeffrey K. Bassett and Kenneth A. De Jong

George Mason University
Computer Science Department
Fairfax, VA 22030
jbassett@cs.gmu.edu, kde jongQgmu.edu

Abstract. A good deal of progress has been made in the past few years
in the design and implementation of control programs for autonomous
agents. A natural extension of this work is to consider solving difficult
tasks with teams of cooperating agents. Our interest in this area is moti-
vated in part by our involvement in a Navy-sponsored micro air vehicle
(MAV) project in which the goal is to solve difficult surveillance tasks
using a large team of small inexpensive autonomous air vehicles rather
than a few expensive piloted vehicles. Our approach to developing control
programs for these MAVs is to use evolutionary computation techniques
to evolve behavioral rule sets. In this paper we describe our architecture
for achieving this, and we present some of our initial results.

1 Introduction

One of the most challenging aspects of building intelligent systems is the design
and implementation of control programs for intelligent autonomous agents. Man-
ually designing and implementing control programs that are sufficiently robust
to handle dynamically changing environments and uncertainty has proved to be
extremely difficult. As a consequence, there has been considerable interest in the
use of machine learning techniques to help automate this process.

A good deal of progress has been made in this area in the past few years
using a variety of representations (rules, neural nets, fuzzy logic, etc.) and a
variety of learning techniques (symbolic, reinforcement, evolutionary, etc.). A
natural extension of this work is to consider solving difficult tasks with teams of
cooperating agents.

Our interest in this area is motivated in part by our involvement in a Navy-
sponsored micro air vehicle (MAV) project in which the goal is to solve difficult
surveillance tasks using a large team of small inexpensive autonomous air vehicles
rather than a few expensive piloted vehicles. Our approach to developing control
programs for these MAVs is to leverage off the successes in using evolutionary
computation techniques to evolve behavioral rule sets for single-agent systems.
In this paper we summarize related work, we describe our architecture, and we
present some of our initial results. We conclude with a discussion of future work.

Z.W. Ra$ and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 157-165, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

2 Background

Our approach to developing teams of cooperating agents is to represent agent
behaviors as sets of rules and evolve these rule sets using evolutionary computa-
tion techniques. There has been a good deal of work done in this area for single
agents, but not cooperating teams of agents. At the same time, there has been
work done on “collective robotics” using other techniques. In this section we
summarize relevant work in these two areas.

2.1 Rule Learning using Evolutionary Algorithms

One of the earliest rule evolving approaches is Holland’s classifier system [4]. In
this system a population of rules is maintained. These rules both compete for
space and priority, while also cooperating to produce an appropriate classification
for the given input.

An alternative approach is to maintain a population of rule-sets which can
vary in length. Examples of these are Smith’s LS-1 system [9], and the GABIL
system which uses a GA for concept learning [5]. Typically these types of systems
build rules which have more of a stimulus-response quality.

The SAMUEL system [3] [8], arguably one of the more successful rule evolving
systems, uses an interesting hybrid of these two approaches. Individuals are
implemented as rule-sets, but SAMUEL also uses a rule bidding system and
credit assignment mechanism similar to those found in a classifier system.

Wu, Schultz and Agah implemented a rule learning system for MAVs using
a GA [11]. Their GA implementation was very much a canonical GA, with a
binary representation, and proportional selection. Fitness was measured using a
simulated environment, and each individual defined a variable length rule-set.

2.2 Collective Robotics

Collective robotics involves the use of robot teams which cooperate to perform
a task or set of tasks [1]. Teams have several inherent advantages including the
ability to distribute themselves, do problem decomposition, and perform parallel
processing.

Robot soccer is one of the most popular domains for studying collective
robotics. Tucker Balch implemented a soccer simulation to study task differenti-
ation and specialization [2]. The robots were trained using Q-learning, and they
would often specialize to playing either a defensive or offensive position.

Other problem domains include multi-robot box pushing [6], and foraging
[7] tasks. These problems are often solved by implementing low level swarming
behaviors such as avoid or follow. A learning algorithm is then used to teach the
robots to select behaviors and coordinate with other robots.

A common problem in all these experiments was getting the robots to cooper-
ate, particularly when learning algorithms were used. In each case the researchers
found that evaluating individuals solely on their own performance wasn’t enough.
Only when the team was evaluated as a whole did cooperation occur.

3 Owur EA Architecture

Our ultimate goal is to evolve heterogeneous team of specialized agents that col-
lectively perform specific tasks. Our strategy for accomplishing this is to start
simple and incrementally add complexity. Our first simplification is to assume
that the teams consist of homogeneous agents, i.e., they are all executing the
same task program. This allows us to focus on evolving a single program which,
when simultaneously executed by a team of agents, produces collective cooper-
ative behavior, and it allows us to take advantage of existing work on evolving
single agent behaviors.

However, there are still a number of important design decisions that need
to be made, such as how rule sets are represented internally in our EA, how
rule sets are modified over time, etc. We discuss these design decisions in the
following subsections.

3.1 Representation

In our architecture an individual in the population represents a complete set of
rules, and its representation is a string in which all the rules are concatenated.
The ordering of the rules is not important. From generation to generation, the
length of individuals in the population will tend to vary in size. The system has
parameters which define a minimum and maximum size for an individual, as well
as an initial size.

Each rule is a fixed length binary string. Rules are composed of a condi-
tion clause and an action clause. The bits in the condition clause are mapped
to the agent’s sensors, while the bits in the action clause are mapped to the
agent’s actuators. This allows each agent to perceive its environment and take
a corresponding action.

The rule interpretor used by each agent operates as follows. In any given
situation, all the rules are compared to the current input from the sensors, and
the rule that has the highest match score is executed. There are several possible
ways of doing rule matching. For simplicity we have avoided using rule weights
and bidding techniques such as in SAMUEL or classifier systems. Rule matching
is described in more detail in the description of the agent environment.

3.2 Selection

Our population management scheme is different from a typical GA. We have im-
plemented an ES-like model involving p parents and A offspring. Parent selection
is deterministic: all individuals produce the same fixed number of offspring.
The selection bias in our architecture is implemented using survival selection.
In an ES survivors are chosen in one of two ways: using a “+” strategy involving
both the parent and child populations, or using a “” strategy involving only
the child population. The former converges more rapidly but is more likely to
find a local optimum, while the latter provides a broader but slower search. We

have both options implemented, and experimentally choose the one best suited
for the particular fitness landscape.

The ES community typically uses truncation selection for determining sur-
vivors. We have chosen to use a binary tournament instead because the selection
pressure is weaker, allowing for more exploration early in the search.

3.3 Operators

Since the internal representation is binary, we use a standard bit-flip mutation
operator. We also implemented both a 1-point and a 2-point crossover operator.

The 1-point crossover is the same operator as the one used by Wu et. al.
[11]. Crossover can only occur on rule boundaries. Because individuals can vary
in size, this crossover differs from the standard crossover operator used in most
GAs. Instead of selecting crossover points at the same location on both parents,
different crossover points are selected for each. This means that each child may
contain either more or fewer rules than the parents which spawned them. In fact,
this is the only mechanism by which rule sets can change in size.

The 1-point crossover operator does relatively little mixing of parental rules
and does not produce any new rules. Based on earlier experience, we felt it
would be useful to have a more disruptive crossover operator available as well.
We chose to implement a 2-point crossover operator that was not restricted to
crossing on rule boundaries. Crossover points are chosen by first picking random
rule boundaries in both parents, just as with the 1-point crossover. Then a
randomly chosen offset is applied to both crossover points to obtain the inter-
rule cut point. This is essentially the same crossover used in the GABIL system

[5].

3.4 Fitness

The fitness of a particular rule set is obtained via simulation. Agents within the
simulation use the rule set to control their behaviors. The agents have a task to
perform, and at the end of the simulation they are given a score which indicates
how well the task was performed. Since our intention is to have these agents
cooperate, they are all evaluated as a team, and all receive the same score. In
the current implementation, all agents use the same rule set, and the resulting
score from the simulator is used as the fitness of that rule set.

Without any sort of counteracting force, evolving rule sets tend to grow
uncontrollably, very much the way Genetic Programs (GPs) do [10]. Parsimony
pressure is used to discourage this growth by penalizing the fitness of larger
individuals. We have implemented parsimony pressure with the same approach
used by Wu, et. al. [11] as described by the formula f'(i) = f(i) — al; f(i). The
interesting thing to note about this equation is that the penalty gets stronger
as the raw fitness increases. This approach allows individuals to grow larger
early in the process, perhaps improving the exploration phase of the search. The
particular value used for « is experimentally determined.

4 Experimental Methods

4.1 Simulation

Currently all of our experiments involve the use of a simple micro air vehicle MAV
simulator. The simulation environment is a 2-D arena surrounded by walls. Nine
identical MAVs are placed into the simulator, and are allowed to move and turn
on each timestep. The MAVs are like helicopters in that they can hover or move
at a slow constant speed. As the MAVs move, they can potentially collide with
each other or with the walls surrounding the arena. Any MAV that is involved
in a collision is immediately destroyed and removed from the simulation.

Each MAV has 8 sonar sensors placed radially around the vehicle. These
sensors have no range information. They return either a 0 or a 1, indicating
whether or not there is an object in range in the direction the sensor is pointing.
The sensor range can be adjusted as a parameter of the simulation.

The robots also have a surveillance range. They can ”look” down and observe
objects on the ground. Currently the MAVs pay no attention to what they are
observing. Their only goal is to observe as much of the ground as possible at any
given time.

The behavior of the MAVs is defined by a set of stimulus-response rules.
Each rule is made up of 12 bits, and contains a condition and an action section.
The first 8 bits are the condition section, with one bit for each sensor. At each
timestep the current sensor readings are compared with all the conditions in the
rule set. The rule with the closest match is the winner. If there is a tie, a winner
is chosen randomly from among the best matches. There is also a minimum
threshold for matches. At least half of the condition bits must match the current
sensor configuration. If the winning rule exceeds this threshold, its action is
executed.

Applet Applet | Applet

© o 71
2 L
]
e} I 8 © o
e} G
¢ G ¢
e} © o o
.

fe) -
o © e o
O O O

st | o 1. Resume seat | 0] 1. Resume seat | 0] 1. Resume
Reset| CurrentStep: | 34 Reset| CurrentStep: | 11d Reset| CurrentStep: | 427

Applet started. Applet started. Applet started.

Fig. 1. MAV Simulator

The action section of the rule consists of two parts, a speed and a turn angle.
The speed can have a value of either 0 or 1, where 0 indicates that the plane will
not move in the current timestep, and 1 indicates that it will. The second part
of the action is the turn angle. This indicates the number of degrees the plane
will turn relative to its current heading.

Figure 1 provides a more concrete picture of an MAV simulation via a se-
ries of three snapshots from an example run involving a reasonably good set of
evolved rules. The goal in this case is for a team of nine MAVS, starting from an
initial configuration on the left edge of a surveillance area, to dynamically con-
figure itself (without collisions!) in such a way as to obtain maximal surveillance
coverage.

The simulator is stochastic in that the results of a simulation using the same
rule set can change from run to run, resulting in a “noisy” fitness evaluation.
Consequently, we typically run an individual through several trials. We then
assign the average of all the trials as the fitness for the individual.

5 Initial Experimental Results

The goal of our initial experiments was to test our design decisions, tune our
system, and evaluate its ability to evolve effective rule sets for teams of homo-
geneous agents. We describe these experiments in the following subsections.

The following parameters were used for our experiments unless stated other-
wise. We set both p and A to 100. The number of trials was 5, while the crossover
and mutation rates were 1.0 and 0.001 respectively. Individuals were limited to
between 1 and 200 rules, with an initial starting size of 5 rules.

5.1 Population Management

Recall that we have both “+” and “,” population management strategies avail-
able for use. The goal of our first set of experiments was to determine how
sensitive the results are to this design choice. In general (u +) slightly outper-
formed (p, A), although not by much. As a consequence we adopted the (u+)
strategy for the remaining experiments.

5.2 Parsimony Pressure

Another important design choice is the amount of parsimony pressure used. In
general, too little parsimony pressure allows the length of individuals to grow
indefinitely, and too much parsimony pressure produces compact individuals
with suboptimal fitness. What is needed is a pressure point in between these
two extremes. The goal of our second set of experiments was to get a rough
sense of how parsimony pressure affected our system. We used three different
values for parsimony pressure initially: 0, 1/2400 and 1/300. Figures 2 and 3
show that the parsimony pressure does work as expected. Higher parsimony
pressures tend to produce smaller individuals, but at the expense of fitness.

pp=0 —
pp = 1/2400 ------
Pp = 11300

Length

pp=0 — -
pp = 112400 -------
PP = 1/300

Fig. 2. Length of the best individual aver- Fig. 3. Best-so-far curves of raw fitness
aged over 5 runs for three parsimony pres- averaged over 5 runs for three parsimony
sures. pressures.

5.3 Crossover

Recall that we have both a one and two point crossover operator implemented.
The experiments so far have used the default 1-point crossover operator. Our
third set of experiments involved testing the sensitivity of the results to these
operators. Since we felt there could be some interaction with parsimony pressure,
we tested sensitivity at a variety of pressure points: 0, 1/24000, 1/2400, 1/1200,
1/600 and 1/300. Five runs are performed for 200 generations at each parsimony
pressure value.

In figure 4 we plot the raw fitness after 200 generations versus the parsimony
pressure used. Again we see that higher parsimony pressures yield individuals
with lower raw fitness values. However, we also see that 2-point crossover out-
performs the 1-point crossover consistently at all levels of parsimony pressure.
Consequently, we made 2-point crossover the default.

5.4 Generalization

Although our system is at this point evolving interesting and effective rule sets,
figure 4 is somewhat disconcerting in that fitness declines steadily with increas-
ing parsimony pressure. Ideally, one would hope to see shorter rule sets emerging
with more general rules that achieve comparable performance. One possible ex-
planation for why we don’t see this is that the rule language itself is not well
suited for generalization.

To test this we added classifier-like wildcards to our system by allowing the
genes in the condition section of the rules to take on three values: 0, 1 and "*".
We also modified the random initialization and mutation operators so that we
could adjust the number of wildcards in our individuals. We added a parameter
called ”wildcard ratio” which allows us to adjust the bias for the number of
wildcards which end up in our rules. It can take a value between 0 and 1. A

pp = 1124000 ——
Pp = 112400 ——x-—-
bp = 1/600 x|

Raw Fitness
Length (rules)

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 [02 04 06 [
Parsimon y Pressure Wildcard Ratio

Fig. 4. Raw fitness vs. parsimony pressure Fig. 5. Length vs. wildcard ratio bias is
is plotted for both the 1-point and 2-point plotted using 3 different parsimony pres-
crossover operators. sures: 1/24000, 1/2400, 1/600.

value of 0.4, for example, would mean that on average 40% of the genes in the
condition sections of the rules will be a '*’.

We ran experiments using several values for the wildcard ratio and parsimony
pressure. In figure 5 we plot length vs. wildcard ratio for the three different
parsimony pressures. Each point on the graph represents the best individual at
the end of 200 generations, and is an average of five runs.

As one can see, adding wildcards to the system had little effect on our ability
to evolving smaller rule sets. A wild card ratio of zero is equivalent to having
no wild cards. As we increase the wild card ratio the evolved rule lengths are
basically unchanged regardless of the parsimony pressure. We see two possible
explanations for this. First, our rule matching approach differs from the one used
in classifier systems. We allow partial matches, and that acts as an alternative,
and perhaps competing method of rule generalization. Another more likely ex-
planation is that the problem domain we’ve chosen is just too simple. We believe
that wildcards would be more useful if given a more difficult problem.

6 Conclusions and Future Work

We have completed our initial design and evaluation of an EA designed to evolve
behavioral rules for teams of cooperating agents. Building on the work done for
single agent systems, we were able to relatively quickly make and test design
choices that resulted in the ability to evolve effective rule sets for teams of homo-
geneous agents. We are now continuing to develop the system further in several
ways. First, we believe that the ability to evolve shorter and more general rule
sets is important. Our initial experiments with wild cards were not successful.
We are working on understanding this better.

Our ultimate goal is to work toward evolving heterogeneous cooperating
agents. This initial work involving homogeneous provides a foundation for doing

S0, but needs further development. Extending our system to include notions of
cooperative co-evolution seem quite appropriate here. We will be reporting on
this in the near future.

Acknowledgments

This research was funded by a grant from the Naval Research Laboratory.

References

1.

10.

11.

R.C. Arkin and T. Balch. Cooperative multiagent robotic systems. In David
Kortenkamp, R.P. Bonasso, and R. Murphy, editors, Artificial Intelligence and
Mobil Robots, Cambridge, MA, 1998. MIT/AAAI Press.

T. Balch. Learning roles: Behavioral diversity in robot teams. In Collected Papers
from the 1997 AAAI Workshop on Multiagent Learning, pages 7-12, Cambridge,
MA, July 1997. AAAI Press.

J. Grefenstette. Learning rules from simulation models. In Proceedings of the
1989 International Association of Knowledge Engineers Conference, pages 117—
122, Washington, DC, 1989. IAKE.

J. Holland. Escaping brittleness: The possibilities of general-purpose learning al-
gorithms applied to parallel rule-based systems. In J. Carbonell R. Michalski and
T. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, vol-
ume II, pages 593-623, Los Altos, 1996. Morgan Kaufman.

K. A.De Jong and W. M. Spears. Learning concept classification rules using genetic
algorithms. In IJCAT 91, Proceedings of the 12th International Conference on
Artificial Intelligence, pages 651-656, Sydney, Australia, 1991. Morgan Kaufmann
Publishers, Inc.

C. Kube and H. Zhang. Collective robotics: From social insects to robots. Adaptive
Behavior, 2(2):189-219, 1993.

M. Mataric. Learning to behave socially. In D. Cliff, P. Husbands, J.A. Meyers, and
S. Wilson, editors, From Animals to Animats & (Third International Conference
on Simulation of Adaptive Behavior), pages 453-462. MIT Press, 1994.

A. Schultz and J. Grefenstette. Using a genetic algorithm to learn behaviors for
autonomous vehicles. In Proceedings of the American Institute of Aeronautics and
Astronautics Guidance, Navigation and Control Conference, pages 739749, Hilton
Head, SC, 1992. ATAA.

S. Smith. Flexible learning of problem solving heuristics through adaptive search.
In William Kaufman, editor, Proceeding of the Eighth International Joint Confer-
ence on Artificial Intelligence, pages 422-425, Karlsruche, Germany, 1983.

T. Soule and J.A. Foster. Effects of code growth and parsimony pressure on pop-
ulations in genetic programming. Evolutionary Computation, 6(4):293-309, 1999.
A. Wu, A.C. Schultz, and A. Agah. Evolving control for distributed micro air ve-
hicles. In IEEE Computational Intelligence in Robotics and Automation Engineers
Conference, 1999.

