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Abstract - Cooperative coevolutionary architectures provide a 
framework for solving complex problems by decomposing them 
into constituent subproblems, solving the subproblems, and then 
reintegrating the solutions. This paper presents a  blended 
cooperative coevolution model which offers advantages over 
traditional evolutionary algorithms and currently used 
cooperative coevolutionary architectures.  
 
1  INTRODUCTION 
 
In order to extend the usefulness of evolutionary algorithms 
to address challenging real world problems, we need to 
endow these methods with the ability to automatically 
decompose complex problems. While there are many 
definitions for complexity, a common aspect of problems that 
are generally agreed to be “complex” is that brute force 
solutions are not practical or desirable because the search 
space is too large for any reasonably powerful computer to 
examine every possible solution in a lifetime. 

Recent cooperative coevolutionary architectures (CCAs) 
have been proposed as (at least partial) solutions to the 
decomposition of complex problems for evolutionary 
algorithms [6],[2],[7]. These CCAs combine the advantages 
of evolutionary algorithms with the advantages of iterated 
line search procedures by decomposing the genome 
representation of the problem into a number of subspecies, 
which are then coevolved in parallel. More advanced versions 
of these architectures have been demonstrated which 
dynamically create new subspecies based upon measured 
stagnation in the evolutionary process, and destroy subspecies 
which are no longer making significant contributions. In this 
way the CCA is able to dynamically evolve the appropriate 
number of interacting subspecies to solve a problem [8].   
 The Potter CCA method decomposes the genome into a 
number of subspecies (initially the same as the number of 
variables) with the best (using the “greedy” collaboration 
method) individuals from each subpopulation collaborating 
together for fitness evaluation. For each subpopulation being 
evolved, all of the other subpopulations are held fixed. The 
subpopulations are each evolved in a round-robin fashion, 
performing mutation, crossover, and/or whatever other 
genetic operators are designed for the evolutionary process. 
Credit is assigned to each subspecies by pairing each 
individual from the subspecies with an individual from each 
of the remaining subspecies and assigning fitness.  

 While this architecture offers significant advantages over 
traditional EAs for many problems, a difficulty encountered 
is that if there is a high degree of interaction between the 
subspecies (epistasis), use of the simple collaboration 
mechanism (best individual from each subspecies) can lead to 
poor performance [6]. This effect can be somewhat mitigated 
by using a different collaboration mechanism [6], [7], [10] in 
which random individuals from each subpopulation are 
selected for collaboration (the “less greedy” collaboration 
method).  
 The alternative approach presented in this paper is to 
change the nature of the search procedure by combining the 
advantages of both CCAs with traditional EAs by coevolving 
separate populations that are blended together into a single 
common population during the course of the evolutionary 
cycle. This approach makes use of both the cooperative 
coevolutionary architecture as well as island model 
approaches to coevolution [3], [1] where individuals are 
allowed to periodically migrate from one subpopulation to 
another. The island model methods rely upon the competition 
of subpopulations, with migration used to maintain 
subpopulation diversity. However, a key difference between 
the blended population approach and coevolution using the 
island model methods is that in the blended population 
approach migration is not used as a tool to maintain 
subpopulation diversity. Instead, migration encourages 
greater mixing of subspecies components later in the 
evolutionary cycle to better facilitate epistatic interactions 
between the subcomponents (once they are merged in the 
Common population). This allows the evolutionary process to 
avoid getting stuck in local optima, an affliction caused by 
greediness of the CCA approach.  
 
 

2  COMPLEXITY AND DECOMPOSITION 
 
The notion of solving large complex problems by 
decomposing them into simpler subproblems that may be 
solved and then recombined to solve the larger problems 
probably dates to the origins of human problem solving. 
Engineers are commonly taught that to solve a difficult 
problem they need to first break it down into smaller, more 
manageable subproblems that may be individually solved.  
 Recent work by Kauffman introduced the NK landscape 
model as a means to build fitness landscapes with tailored  
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properties such as the number of genes or variables and the 
ruggedness of the landscape [5]. While the NK model allows 
one to build up landscapes of varying complexity, little is 
said of how to decompose complex landscapes of already 
existing problems. In fact, Kauffman’s work on Complexity 
Theory suggests that evolved systems are naturally chaotic 
and may not be deconstructed, and therefore may not be 
decomposable [4]. A counter-argument is that while the 
complex system may not be mathematically decomposable, it 
may still be possible to evolve decompositions of the 
complex problem such that it is effectively decomposed into 
constituent subcomponents.  
 Perhaps the strongest argument in favor of the 
decomposability of complex problems is that humans solve 
complex problems by decomposing them, solving the 
subproblems and then combining the subproblem solutions 
together to solve the larger complex problems. If we want to 
have machines that exhibit human-like intelligence, then we 
need to endow these machines with the same capabilities. The 
following sections will detail an approach to improve upon 
the decomposition capabilities of cooperative coevolutionary 
algorithms through use of a blended population model.  
  
3 BLENDED POPULATION MODEL FOR  

COOPERATIVE COEVOLUTION  
 
The goal of this paper is to present a blended population 
approach to cooperative coevolution by combining both CCA 
and standard EA methods together in a single evolutionary 
process, and introducing a migration operator to allow 
populations to move from CCA subpopulations to a standard 
EA population. One population is made up of subspecies and 
is implemented as a Potter CCA, and the other population 
(Common) is a traditional EA. The two populations may then 
be blended together over the course of the evolutionary 
process by allowing individuals to migrate from the CCA 
subpopulations to the Common population (Figure 1). 
Migration between the CCA and the EA is stochastic with the 
rate of migration determined by migration parameter M, 
where 0 !M !1. For M=0 no migration occurs.  
 For M=1 one member of each subspecies migrates to the 
Common population (and leaves its respective subpopulation) 
each generation. For values of M between 0 and 1, a random 
number between 0 and 1 is generated each generation. If the 
random number is less than M, then migration occurs that 
generation.  
 The total combined population size is held constant, and 
the sizes of the subpopulations (not including Common) are 
constrained to be the same. Thus, for each migration to take 
place, each subspecies population is depleted by 1 individual, 
and the Common population gains a number of new 
individuals equal to the number of subpopulations present in 
the CCA model. Migration is only permitted for the best 
individual from each subspecies (exception noted below). 
Therefore, the best individuals migrate to the Common 
population where they are mutated and crossed over with 
other members of the Common population. As an individual 

migrates from the subspecies population to the Common 
population, it may be either deleted from the subspecies 
population (lower selection pressure) or simply copied from 
the subspecies population (higher selection pressure). If it is 
simply copied, then the current least fit member of the 
subspecies population will be killed off in order to maintain a 
constant total population size.  

 
 

Figure 1: Blended Population Model for Cooperative Coevolution 
  
4 EXAMPLE: FUNCTION OPTIMIZATION  
 
 In order to test the proposed technique and provide a basis 
for comparison with previously published results in 
cooperative coevolution, a series of function optimization 
tasks were selected. The functions in the test suite were 
chosen to be consistent with the 1994 study [6] including the 
Rosenbrock, Rastrigin, Schwefel, Griewangk, and Ackley 
functions, as well as an Off-Axis Quadratic studied in [10] 
and [9]. While previous studies by Potter have included n-
dimensional versions of some of these functions, this study, 
like the [10] study, restricted the test suite functions to 
functions of two independent variables. That is, fitness = 
f(x1,x2). A common characteristic of each of these functions 
is that the global minimum is zero. Therefore the 
optimization task may be cast as minimizing fitness. The 
results shown in this paper are consistent with this approach.  
 In contrast to the previous studies on these functions, the 
evolutionary algorithm selected here was an evolutionary 
strategy utilizing real-valued vectors. The ES was selected 
since real-valued vectors are the most direct and natural 
representation for the functions being optimized. The ES 
utilized both mutation and crossover operators, as well as a 
migration operator to stochastically allow individuals to 
migrate from the subspecies populations to the Common 
population. Further details of the implementation are 
discussed below in Section 4.2.     
  
4.1 Test Suite 
 

The first function in the test suite was the Rosenbrock 
function, defined as 
 

f(x1,x2) = 100*(x1
2-x2)2 + (1-x1)2   -2.048 !xi !2.048  (1) 



 
Figure 2: Inverted Rosenbrock Function 

 
This function was included in the 1994 Potter study as well as 
several cooperative coevolution studies since ([2],[7],[8], 
[10]). This function was part of the original De Jong test suite 
(F2), and is known to have strong variable interactions. An 
inverted form of this function (suitable for maximization 
instead of minimization) is shown in Figure 2. The second 
function in the test suite was the Rastrigin function, defined 
 
 f(x1,x2) = 6+(x1

2-3*cos(2"x1))  +  (x2
2-3*cos2"x2))        (2) 

     where  -5.12!xi!5.12   
 

 
Figure 3: Inverted Rastrigin Function 

 
This function is known to be linearly separable but exhibits 
many local optima. This function was also used in the 1994 
study [6] as well as several studies since ([2],[7]-[10]).  

The third function in the test suite was the Schwefel 
function, which was also part of the 1994 Potter study. This 
function was designed to trap optimization procedures on a 
local peak where the second best optima is far away from the 
global optimum. The two variable form of the function used 
in this study is defined as 

 
 f(x1,x2) = 837.9658+x1sin(sqrt(|x1|)) + x2sin(sqrt(|x2|))    (3) 
     where -500!xi!500  
 
The global optimum can be seen in the bottom center of the 
figure, whereas the second best peak is near the top center. 

 
Figure 4: Inverted Schwefel Function 

 
The fourth function in the test suite was the Griewangk 
function in two variables, defined 
 
 f(x1,x2) = 1 + (x1

2+ x2
2)/4000 - cos(x1)*cos(x2/sqrt(2)) (4) 

     where  -600!xi!600   
 
This function, part of the 1994 Potter study, was designed to 
exhibit interactions between the product terms. This effect 
may be substantially lessened in the simplified form of the 
function (two-dimensional rather than thirty-dimensional) 
used in this study and shown in Figure 5 below. While slight 
interaction effects are noticeable upon close inspection, the 
function mostly appears unimodal, nearly taking the form of a 
parabolic surface. 

 
Figure 5: Inverted Griewangk Function 

 
The fifth function in the test suite was the Ackley function, 
also used in the 1994 Potter study [6]. It has the characteristic 
that while it appears unimodal at low resolutions, at higher 
resolutions it appears more complex. The Ackley function 
was defined as 
 
 f(x1,x2) = 20+e-20*exp(-0.2*sqrt((x1

2+ x2
2)/2))       

      - exp((cos(2"x1) + cos(2"x2))/2)    -30!xi!30  (5) 
 
 
The final function included in the test suite was an off-axis 
quadratic shown to introduce problems for some evolutionary 

 



 
Figure 7: Inverted Ackley Function 

 
algorithms [9] due to the lack of axis alignment with the 
principal axes of the subspecies (assuming decomposition of 
the landscape into x-axis and y-axis domains). This function 
was also used in the 2001 study of collaboration methods for 
cooperative coevolution [10]. It is defined as 
 
  f(x1,x2) = x1

2  + (x1
 + x2)2      -65.536!xi!65.536  (6) 

 

 
Figure 8: Inverted Off-Axis Quadratic Function 

 
4.2 Implementation Details 
 
 Evolutionary Strategy (generational)  
 Representation: real-valued vectors 
 No fitness scaling  
 Selection: fitness proportionate  
 Elitist Strategy: single most fit parent survives  
 Operators: mutation (Gaussian random) 

cross-over (avg. of parents) 
 Migration: (move from subpops to common pop)  
 Mutation Probability: 0.9  
 Mutation Step-size (var): 0.1  
 Crossover Probability: 0.2  
 Population Size (total): 100  
 Maximum Generations: 100 (10,000 Function Evals.)  
  

These parameters were used uniformly for the cooperative 
coevolution evolutionary strategy (CCES) model (for 
evolving each of the subspecies) as well as the ES used on the 
Common population. The same parameters were used for the 
ES used in isolation (no CCES) for comparison purposes. No 
attempt was made to tune the parameters to any particular 
optimization task or for any of the algorithms.  
 Each function was optimized using a range of blended 
population models, both with and without migration, as well 
as with CCES and standard ES models. In the cases where 
migration was turned off, a fixed Common population size 
(denoted by C on the graphs) was used, and the sizes of the 
subspecies populations were also held constant. This 
approach is equivalent to having the CCES model and ES 
model compete for best-so-far, but have no actual exchange 
of genetic material take place. This approach, while more 
simplistic than the migration model, has advantages over both 
standard ES and CCES approaches in that it combines the 
best attributes of each in finding the global optima. By setting 
the Common population size C, one can smoothly vary the 
search from a mostly CCES approach (small C) to a mostly 
ES approach (large C).  
 The second method used with the blended population 
models made use of a nonzero migration rate setting. The 
Common population was seeded with 10 individuals (out of a 
total population of 100), with the remaining 90 individuals 
divided evenly between the two subspecies populations (one 
for each variable). Thus, there are 3 subpopulations 
altogether. The migration parameter M, where 0!M!1, 
governs the rate of mutation.  
 Migration between the CCA and the EA is stochastic. A 
random number between 0 and 1 is generated each 
generation. If the random number is less than M, then 
migration occurs that generation.  
 Each time migration is activated one member of each 
subspecies migrates to the Common population. The first 
individual selected for migration is the fittest individual from 
the first species and its most recent mate from the second 
species. The second individual would normally be the fittest 
individual from the second species and its most recent mate 
from the first species. However, what often happens in the 
CCES process is that the fittest individual of the first species 
mates with the fittest from the second species. Migrating both 
of them with their mates would be the equivalent of adding 
two identical individuals to the Common population. When 
the fittest individuals point to one another, the second 
individual selected for migration is a randomly selected 
pairing from each of the two subpopulations.  
 Two alternatives exist with respect to deletion of the 
migrating individuals from the subspecies populations. The 
greedy approach (higher selection pressure) is to simply copy 
the best individual from each subpopulation to the Common 
population, and then rebalance the total population by killing 
off the least fit member of each of the subspecies populations. 
The less greedy approach is to kill off the migrating 
individuals from the subspecies populations. The greedy 
method was used for the results shown  below.  



4.3 Simulation Results  
 
Each of the simulation runs was repeated 50 times with the 
random number generator reseeded each time based upon the 
system clock. The results shown are the means of those 50 
runs. For each mean 95% confidence intervals were 
calculated. On the results graphs certain means are shown 
with error bars. These error bars are the 95% confidence 
intervals. Where no error bars are shown, the lines still 
indicate means over 50 trials, but for clarity of presentation 
their confidence intervals were not included on the graphs.  

 
Figure 9: Rosenbrock Optimization Results 

 
4.3.1 Rosenbrock Function Optimization Results  
 
As shown in Figure 9, the Blended Cooperative Coevolution 
Evolutionary Strategy (BCCES), 0.1!M!0.9, outperformed 
the Cooperative Coevolution Evolutionary Strategy (CCES).  
In fact the CCES usually failed to converge while the other 
techniques all converged within the 10,000 function 
evaluations (100 generations). This is consistent with the 
result found by Potter [6] using a CCGA with the simple 
(greedy) collaboration method. The greedy collaboration 
method was also used for these trials.  
 It is interesting to note that the best technique on this task 
was the standard Evolutionary Strategy (ES). This is probably 
due to the fact that the ES can easily find the optimum of 
such a small surface, with a population size of 100, after only 
a few generations.  
  
4.3.2 Schwefel Function Optimization Results  
 
From Figures 10 we can see that CCES and ES both out-
performed the BCCES strategies with no migration. 
However, once migration was turned on (Figure 11), the 
BCCES strategies did as well or better than the CCES 
strategy. Once again, they were all outperformed by the 
simple ES on this task. It appears at first glance that none of 
the techniques actually reached the zero minimum over the 
10,000 allocated function evaluations. In fact most of them 
did, but not consistently so. Often they would get stuck on a 

local minima (fitness range was 0-1700). The results show 
means across 50 trials.  

 
Figure 10: Schwefel Optimization Results, No Migration 

 

 
Figure 11: Schwefel Optimization Results with Migration 

 
4.3.3 Rastrigin, Griewangk, OAQ, and AckleyResults 
 
On each of these remaining surfaces all of the techniques 
were able to find the optimum quickly such that there was no 
statistically significant difference between the various 
techniques, as shown in Figure 12 for the Rastrigin function. 

 
Figure 12: Rastrigin Optimization Results with Migration 
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No conclusions can be drawn from the results on these 
functions with regard to the relative strengths and weakness 
of each approach.  
  
5  RESULTS AND CONCLUSIONS  
  
5.1 Summary of Experimental Findings  
 
Of the six test functions included in the test suite, only two 
(Rosenbrock and Schwefel) produced “interesting” results 
which might shed light on the advantages and/or 
disadvantages of the BCCES model when compared with a 
standard ES and with a CCES model. The remaining four test 
functions (Rastrigin, Griewangk, Ackley, and Off-Axis 
Quadratic) were trivially solved in less than 30 generations 
each time by each technique, with the exception that in 
certain cases the BCCES model with migration turned on 
performed better than with it turned off. It should be noted 
that only the simplest (two variable) versions of these 
functions were used.  
 With regard to performance on the Rosenbrock and 
Schwefel functions, on the Rosenbrock function the BCCES 
model significantly outperformed the CCES model both with 
migration turned off and with it turned on. On the Schwefel 
function the BCCES model performed the same as the CCES 
model (within the bounds of statistical significance) with 
migration turned off. With migration turned on BCCES 
performed as well or better than CCES (depending upon the 
migration rate parameter setting).  
  
5.2 Conclusions  
 
In this paper a blended population cooperative coevolution 
model was presented which combines the advantages of the 
Potter cooperative coevolutionary architecture with those of a 
standard evolutionary architecture. In addition, the use of a 
migration operator (similar to that used for island model type 
competitive coevolutionary architectures) allows the 
population mass to shift from the CCA subspecies 
populations to a Common population during the course of 
evolution. The effect of this shift is that as evolution 
progresses, the model is able to better handle epistatic 
interactions between the subcomponents.  
 Preliminary experimental results on a somewhat simplified 
test suite that includes functions used for evaluating previous 
cooperative coevolutionary architectures indicates that the 
blended population model offers clear advantages over the 
standard CCA approach for at least some problems which 
exhibit a high degree of coupling or epistatic interaction 
between components.  
 The motivation behind this effort is to enhance the 
capabilities of coevolutionary architectures to better evolve 
solutions to complex problems through emergent 
decomposition of the problems into constituent 
subcomponents, evolution of these subcomponents, and 
recombination of the results. The use of a migration operator 
for allowing movement of individuals between the subspecies 

populations and the Common population mirrors this 
approach to decomposition (breaking the domain into 
subspecies), evolution of the subcomponents (the subspecies 
are coevolved in parallel) and recombination (subspecies are 
rejoined in the Common population).   
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