
Proceedings of the 2002 International Conference on Machine Learning 7 Applications 
 

Using Genetic Algorithm Based Variable Selection 
to Improve Neural Network Models 

for Real-World Systems 
 

Donald A. Sofge 
Navy Center for Applied Research in Artificial Intelligence 

Naval Research Laboratory 
Washington, D.C., U.S.A. 

 
Abstract1 

Real-world systems are often modeled by sampling sensor data taken during system operation. System 
states may not be all known or measurable, sensor data may be biased or noisy, and it is not often 
known which sensor data may be useful for predictive modeling. Neural network models generated 
from this data must therefore rely on how effectively the chosen sensor data represents the system. 
Genetic algorithms may help to address this problem by determining a near optimal subset of sensor 
variables most appropriate to produce good models.  This paper describes the use of genetic 
algorithms to optimize variable selection to determine inputs into a neural network system model. The 
use of this technique for modeling a typical industrial application, a liquid fed ceramic melter, and the 
results of the genetic search to optimize the neural network model for this application, are described. 
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0ntroduction  
 
When modeling a complex system (such as a 
chemical reactor), it is not generally known a 
priori which system states are necessary to 
develop a good model, or which states are 
observable based upon available sensor 
technology (although it is often known that 
many system states are not observable).  In 
addition, there is a greater problem in 
identifying useful data.  Complex dynamic 
systems such as the chemical reactor may be 
instrumented with tens, hundreds or even 
thousands of sensors. The problem with so much 
sensor information is that most of it will be 
irrelevant.  Worse still, unfiltered incorporation 
of irrelevant data will adulterate a model, 
eroding its predictive capabilities. 
 A key data pretreatment problem is 
sensor redundancy.  It is well known that smaller 
models are often better models [5], [4].  This 

translates to fewer inputs and fewer hidden layer 
nodes.  While it may be nice to have highly 
redundant data from a large number of sensors, 
in reality we may only need a few key sensors in 
order to produce a good model.  The problem is 
in determining which few sensors to choose, and 
ignoring most of the remaining sensors.  This is 
confounded by the fact that due to differing 
sensor response characteristics and noise, in the 
aggregate there is a considerable amount of 
noise and bias in the data. 
 In this study modeling of a liquid fed 
ceramic melter (LFCM) process was undertaken 
in order to predict the surface level.  The melt 
chamber was instrumented with 20 
thermocouple sensors placed at different sites 
within the chamber. Each sensor may have a 
slightly different characteristic response curve 
due to differences in manufacturing, usage 
history, etc.  Each sensor also is susceptible to 



 

some level of noise.  A time history of data is 
taken from all 20 sensors and stored in a 
database used to train a neural network model. 
 Some sensors, such as those near the 
surface in the reactor vessel, may offer fairly 
high-variance data throughout the process, but 
be largely irrelevant to accurately predicting 
final product quality.  We would like to select a 
near-optimal set of sensor variables in order to 
train a neural network model with the greatest 
predictive accuracy 
 
5ariable Selection 8sing :As 
 
Variable selection (or feature selection) may be 
performed in an automated way using genetic 
algorithms (GAs). The genes need to be defined 
for a given application such that finding a better 
or more optimal set of genes means finding a 
better solution to the problem. A GA may 
perform variable selection if each gene in a 
chromosome represents an available sensor 
variable.    
 Fitness is judged for each chromosome 
by determining how good the models are 
(accuracy, robustness) generated by that 
combination of variables. An initial population 
of chromosomes is generated by choosing a 
string length (# of genes) and randomly 
assigning a variable to each gene.  The GA 
search is then set in motion and the 
chromosomes compete, reproduce, and die off as 
they are replaced by more fit chromosomes. It is 
usually desirable to maintain a fixed-size 
population in order to make sure that the fitter 
chromosomes quickly replace the less fit ones.   
 An occasional mutation is introduced to 
make sure that certain genes (variables) which 
may be really useful aren't quickly eliminated 
(possibly because they are randomly combined 
with really noisy variables early on) and then 
never incorporated again.  This is referred to as a 
population in danger due to lack of genetic 
variation, and to avoid this situation a mutation 
rate is predetermined and mutated chromosomes 
are introduced into the population at regular 
intervals during GA search. As these parameters 
are application dependent, it is not possible to 
know beforehand which values will work best.  
 The GA process is implemented with 

automatic sequence selection, model building 
and discarding, and evaluation of accuracy and 
robustness of the models (scoring). Successive 
generations will inherit the best characteristics 
from the previous generation, while eliminating 
the less valuable characteristics. 
 
:A ;epresentation = >perators 
 
Genetic algorithms are often thought of, 
discussed and implemented using binary strings, 
or bit strings.  Each gene or bit represents the 
expression of a state.  If the bit is turned on, then 
the gene corresponding to that bit can be said to 
be "expressed". In this application a bit 
represents the state of either a variable being 
included (“1”) or not included (“0”) in the final 
solution. 
 Genetic algorithms sometimes require 
the use of special operators in order to simulate 
the evolutionary processes which they emulate.  
The most common operators are crossover and 
mutation.  The crossover operator takes two 
parent chromosomes (in this application, each 
parent chromosome represents a group of input 
variables used to build a neural network model), 
and combines them to produce an offspring.  A 
common form of crossover operator is uniform 
crossover [6].  In uniform crossover, if a specific 
gene is turned on in both parents, then it will be 
turned on in the offspring.  If a gene is turned on 
in only one of the parents, then it may be turned 
on (with a predetermined probability, usually 
0.5) in the offspring. Uniform crossover was 
used in this project. 
 The mutation operator is applied 
independently but immediately following the 
crossover operator.  A mutation is a random 
change of a gene in a chromosome, and is 
applied according to a preset mutation rate 
(usually quite low, e.g. 0.001). An elitist policy, 
or survival rate, that determines what percentage 
of the population (the fittest members) would 
survive into the next generation was employed. 
 Because the computational cost of 
building and training neural network models 
from scratch can be high, another feature 
employed in this work was to guarantee that 
when a new offspring is generated it does not 
duplicate any chromosome currently in the 



 

population or which has been previously built 
and tested.  A graveyard was used to store old 
chromosomes which represent models which 
have been built, tested, and then discarded.  
 Each new offspring is compared with 
chromosomes in the graveyard to make sure that 
it hasn't been tested before in a previous 
generation.  Since we assume that all of the 
neural network models use the same superset of 
data (same output data, input data includes 
sensor streams for all possible input variables), 
then the process of choosing variables for a 
particular model is deterministic, so there is 
never a need to retest a chromosome once its 
corresponding model has been built and scored.   
 This promotes better crossover by 
preventing the generation of chromosomes 
which are already represented or have been 
generated and tested in prior generations. 
Chromosomes which are carried from one 
generation to the next are stored along with their 
scores, but are not retested since this would 
unnecessarily duplicate computations. 
 
;esults 
 
The process being modeled in this effort is a 
liquid fed ceramic melter (LFCM). The LFCM 
is instrumented with 20 thermocouples 
distributed throughout the melt chamber which 
provide temperature feedback during the 
process.  Data from these 20 sensors, 200 
samples of each taken at a specific interval of 
time, is collected along with a measurement of 
level in the melt chamber (Figure 1).  This data 
was used to train the neural network models. 
 As shown in the top part of Figure 1, the 
thermocouple readings (20 readings overlaid 
onto the same plot) are quite noisy.  In some 
there is no apparent correlation between the 
sensor readings and the level measurement 
shown in the bottom part of the figure.  Also, 
there is considerable variability in the response 
of various sensors (which may be due to each 
sensor's location in the chamber, or due to the 
response characteristics of the sensor itself, or 
both).   

 
Figure 1. Training Data for LFCM Process 

 
In order to examine every possible grouping of 
input variables (not including permutations, only 
combinations) to find the optimal subset of input 
parameters for modeling the level in the LFCM, 
it is useful to think of a bit string of length 20.  
A bit turned on would indicate that that variable 
was included in the solution.  Excluding the all 
zeros case (where no inputs are used), there are 
2^20-1 or 1,048,575 unique models which can 
be formed using these inputs. It is clearly 
unreasonable to try to build, train and test this 
many neural network models. Since we don't 
know a priori which inputs will be used, we 
need a procedure for finding a near optimal 
subset. The GA provides the solution. 
 Each chromosome is represented as a 
20-bit string. The models were trained on the 
training data (200 exemplars), and then tested 
using an independent cross-validation dataset 
not used for training.  The cross-validation data 
consisted of 200 exemplars. The neural networks 
all used the same number of hidden-layer and 
output nodes, and the same non-linear activation 
function.  The neural networks were multilayer 
perceptrons trained using the Levenberg-
Marquardt algorithm. Each network was allowed 
to train to completion. The score for each model, 
or chromosome, is the sum-squared-error (SSE) 
obtained from applying each network to the 
cross-validation dataset. The goal of the genetic 
search then is to find the model with the 
minimum total SSE on the cross-validation 
dataset. 



 

The population was initialized using a 
combination of ordered and random selection of 
chromosomes.  Various runs were made using 
population ranges from 30 to 100 chromosomes.  
The survival rate was varied between 20% and 
50%, and various mutation rates were tried.  
Crossover was achieved by random selection of 
the fittest chromosomes from the previous 
generation.  As noted in GA literature [1], [2] 
use of a uniqueness operator as employed in this 
effort allows higher crossover and mutation 
rates, and enables more rapid convergence of the 
genetic search procedure.  A mutation rate of 0.1 
(usually the mutation rate is closer to 0.001) was 
found to work quite well in this instance. 
 After several runs of 20 to 30 
generations (1000-2000 models built and tested 
for each run) the genetic search returned the 
same result each time as the best solution, 
despite use of different randomly generated 
populations, different population sizes, and 
different GA operator settings.  Out of 20 input 
variables, numbered 1 through 20, it found that 
the best model resulted from selection of 11 of 
these variables: 1-2-3-4-5-8-9-14-16-18-19.  The 
genetic search procedure excluded the 9 
variables 6-7-10-11-12-13-15-17-20.  Whether 
this is the optimal solution is an open question 
without exhaustively testing all 1,048,575 
possible models and comparing their scores. The 
final solution on the cross-validation dataset is 
shown in Figure 2. 

 
Figure 2. Final Solution:  Model Tested on  

Cross-Validation Data 
 

Conclusions 
 
This paper presents a solution to the problem of 
trying to build neural network models of real-
world systems, such as chemical and industrial 
processes, using data from numerous sensors 
where sensor data may be noisy, biased, 
corrupted, or even irrelevant to the parameter(s) 
being modeled.  The use of genetic search makes 
it possible to find a near-optimal subset of 
variables for use in model-building under 
conditions where the data may make this quite 
difficult. The technique of GA based variable 
selection may be applied to numerous 
application areas where models (neural network 
or other) are required, the selection of input 
variables is not always clear, and the data may 
be noisy.  A typical example of this would be in 
financial forecasting.  
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