
Proceedings of the 2002 International Conference on Machine Learning 7 Applications

Using Genetic Algorithm Based Variable Selection
to Improve Neural Network Models

for Real-World Systems

Donald A. Sofge
Navy Center for Applied Research in Artificial Intelligence

Naval Research Laboratory
Washington, D.C., U.S.A.

Abstract1

Real-world systems are often modeled by sampling sensor data taken during system operation. System
states may not be all known or measurable, sensor data may be biased or noisy, and it is not often
known which sensor data may be useful for predictive modeling. Neural network models generated
from this data must therefore rely on how effectively the chosen sensor data represents the system.
Genetic algorithms may help to address this problem by determining a near optimal subset of sensor
variables most appropriate to produce good models. This paper describes the use of genetic
algorithms to optimize variable selection to determine inputs into a neural network system model. The
use of this technique for modeling a typical industrial application, a liquid fed ceramic melter, and the
results of the genetic search to optimize the neural network model for this application, are described.

Keywords/ neural network, genetic algorithm, optimization, variable selection, feature selection

1 This research was supported by the Office of Naval Research work requests N0001402WR20090 and
 N0001402WX20003.

0ntroduction

When modeling a complex system (such as a
chemical reactor), it is not generally known a
priori which system states are necessary to
develop a good model, or which states are
observable based upon available sensor
technology (although it is often known that
many system states are not observable). In
addition, there is a greater problem in
identifying useful data. Complex dynamic
systems such as the chemical reactor may be
instrumented with tens, hundreds or even
thousands of sensors. The problem with so much
sensor information is that most of it will be
irrelevant. Worse still, unfiltered incorporation
of irrelevant data will adulterate a model,
eroding its predictive capabilities.
 A key data pretreatment problem is
sensor redundancy. It is well known that smaller
models are often better models [5], [4]. This

translates to fewer inputs and fewer hidden layer
nodes. While it may be nice to have highly
redundant data from a large number of sensors,
in reality we may only need a few key sensors in
order to produce a good model. The problem is
in determining which few sensors to choose, and
ignoring most of the remaining sensors. This is
confounded by the fact that due to differing
sensor response characteristics and noise, in the
aggregate there is a considerable amount of
noise and bias in the data.
 In this study modeling of a liquid fed
ceramic melter (LFCM) process was undertaken
in order to predict the surface level. The melt
chamber was instrumented with 20
thermocouple sensors placed at different sites
within the chamber. Each sensor may have a
slightly different characteristic response curve
due to differences in manufacturing, usage
history, etc. Each sensor also is susceptible to

some level of noise. A time history of data is
taken from all 20 sensors and stored in a
database used to train a neural network model.
 Some sensors, such as those near the
surface in the reactor vessel, may offer fairly
high-variance data throughout the process, but
be largely irrelevant to accurately predicting
final product quality. We would like to select a
near-optimal set of sensor variables in order to
train a neural network model with the greatest
predictive accuracy

5ariable Selection 8sing :As

Variable selection (or feature selection) may be
performed in an automated way using genetic
algorithms (GAs). The genes need to be defined
for a given application such that finding a better
or more optimal set of genes means finding a
better solution to the problem. A GA may
perform variable selection if each gene in a
chromosome represents an available sensor
variable.
 Fitness is judged for each chromosome
by determining how good the models are
(accuracy, robustness) generated by that
combination of variables. An initial population
of chromosomes is generated by choosing a
string length (# of genes) and randomly
assigning a variable to each gene. The GA
search is then set in motion and the
chromosomes compete, reproduce, and die off as
they are replaced by more fit chromosomes. It is
usually desirable to maintain a fixed-size
population in order to make sure that the fitter
chromosomes quickly replace the less fit ones.
 An occasional mutation is introduced to
make sure that certain genes (variables) which
may be really useful aren't quickly eliminated
(possibly because they are randomly combined
with really noisy variables early on) and then
never incorporated again. This is referred to as a
population in danger due to lack of genetic
variation, and to avoid this situation a mutation
rate is predetermined and mutated chromosomes
are introduced into the population at regular
intervals during GA search. As these parameters
are application dependent, it is not possible to
know beforehand which values will work best.
 The GA process is implemented with

automatic sequence selection, model building
and discarding, and evaluation of accuracy and
robustness of the models (scoring). Successive
generations will inherit the best characteristics
from the previous generation, while eliminating
the less valuable characteristics.

:A ;epresentation = >perators

Genetic algorithms are often thought of,
discussed and implemented using binary strings,
or bit strings. Each gene or bit represents the
expression of a state. If the bit is turned on, then
the gene corresponding to that bit can be said to
be "expressed". In this application a bit
represents the state of either a variable being
included (“1”) or not included (“0”) in the final
solution.
 Genetic algorithms sometimes require
the use of special operators in order to simulate
the evolutionary processes which they emulate.
The most common operators are crossover and
mutation. The crossover operator takes two
parent chromosomes (in this application, each
parent chromosome represents a group of input
variables used to build a neural network model),
and combines them to produce an offspring. A
common form of crossover operator is uniform
crossover [6]. In uniform crossover, if a specific
gene is turned on in both parents, then it will be
turned on in the offspring. If a gene is turned on
in only one of the parents, then it may be turned
on (with a predetermined probability, usually
0.5) in the offspring. Uniform crossover was
used in this project.
 The mutation operator is applied
independently but immediately following the
crossover operator. A mutation is a random
change of a gene in a chromosome, and is
applied according to a preset mutation rate
(usually quite low, e.g. 0.001). An elitist policy,
or survival rate, that determines what percentage
of the population (the fittest members) would
survive into the next generation was employed.
 Because the computational cost of
building and training neural network models
from scratch can be high, another feature
employed in this work was to guarantee that
when a new offspring is generated it does not
duplicate any chromosome currently in the

population or which has been previously built
and tested. A graveyard was used to store old
chromosomes which represent models which
have been built, tested, and then discarded.
 Each new offspring is compared with
chromosomes in the graveyard to make sure that
it hasn't been tested before in a previous
generation. Since we assume that all of the
neural network models use the same superset of
data (same output data, input data includes
sensor streams for all possible input variables),
then the process of choosing variables for a
particular model is deterministic, so there is
never a need to retest a chromosome once its
corresponding model has been built and scored.
 This promotes better crossover by
preventing the generation of chromosomes
which are already represented or have been
generated and tested in prior generations.
Chromosomes which are carried from one
generation to the next are stored along with their
scores, but are not retested since this would
unnecessarily duplicate computations.

;esults

The process being modeled in this effort is a
liquid fed ceramic melter (LFCM). The LFCM
is instrumented with 20 thermocouples
distributed throughout the melt chamber which
provide temperature feedback during the
process. Data from these 20 sensors, 200
samples of each taken at a specific interval of
time, is collected along with a measurement of
level in the melt chamber (Figure 1). This data
was used to train the neural network models.
 As shown in the top part of Figure 1, the
thermocouple readings (20 readings overlaid
onto the same plot) are quite noisy. In some
there is no apparent correlation between the
sensor readings and the level measurement
shown in the bottom part of the figure. Also,
there is considerable variability in the response
of various sensors (which may be due to each
sensor's location in the chamber, or due to the
response characteristics of the sensor itself, or
both).

Figure 1. Training Data for LFCM Process

In order to examine every possible grouping of
input variables (not including permutations, only
combinations) to find the optimal subset of input
parameters for modeling the level in the LFCM,
it is useful to think of a bit string of length 20.
A bit turned on would indicate that that variable
was included in the solution. Excluding the all
zeros case (where no inputs are used), there are
2^20-1 or 1,048,575 unique models which can
be formed using these inputs. It is clearly
unreasonable to try to build, train and test this
many neural network models. Since we don't
know a priori which inputs will be used, we
need a procedure for finding a near optimal
subset. The GA provides the solution.
 Each chromosome is represented as a
20-bit string. The models were trained on the
training data (200 exemplars), and then tested
using an independent cross-validation dataset
not used for training. The cross-validation data
consisted of 200 exemplars. The neural networks
all used the same number of hidden-layer and
output nodes, and the same non-linear activation
function. The neural networks were multilayer
perceptrons trained using the Levenberg-
Marquardt algorithm. Each network was allowed
to train to completion. The score for each model,
or chromosome, is the sum-squared-error (SSE)
obtained from applying each network to the
cross-validation dataset. The goal of the genetic
search then is to find the model with the
minimum total SSE on the cross-validation
dataset.

The population was initialized using a
combination of ordered and random selection of
chromosomes. Various runs were made using
population ranges from 30 to 100 chromosomes.
The survival rate was varied between 20% and
50%, and various mutation rates were tried.
Crossover was achieved by random selection of
the fittest chromosomes from the previous
generation. As noted in GA literature [1], [2]
use of a uniqueness operator as employed in this
effort allows higher crossover and mutation
rates, and enables more rapid convergence of the
genetic search procedure. A mutation rate of 0.1
(usually the mutation rate is closer to 0.001) was
found to work quite well in this instance.
 After several runs of 20 to 30
generations (1000-2000 models built and tested
for each run) the genetic search returned the
same result each time as the best solution,
despite use of different randomly generated
populations, different population sizes, and
different GA operator settings. Out of 20 input
variables, numbered 1 through 20, it found that
the best model resulted from selection of 11 of
these variables: 1-2-3-4-5-8-9-14-16-18-19. The
genetic search procedure excluded the 9
variables 6-7-10-11-12-13-15-17-20. Whether
this is the optimal solution is an open question
without exhaustively testing all 1,048,575
possible models and comparing their scores. The
final solution on the cross-validation dataset is
shown in Figure 2.

Figure 2. Final Solution: Model Tested on

Cross-Validation Data

Conclusions

This paper presents a solution to the problem of
trying to build neural network models of real-
world systems, such as chemical and industrial
processes, using data from numerous sensors
where sensor data may be noisy, biased,
corrupted, or even irrelevant to the parameter(s)
being modeled. The use of genetic search makes
it possible to find a near-optimal subset of
variables for use in model-building under
conditions where the data may make this quite
difficult. The technique of GA based variable
selection may be applied to numerous
application areas where models (neural network
or other) are required, the selection of input
variables is not always clear, and the data may
be noisy. A typical example of this would be in
financial forecasting.

;eferences

 [1] Davis, L., Handbook of Genetic Algorithms,
 Van Nostrand Reinhold, 1991.

[2] Goldberg, D.E., Genetic Algorithms in
 Search, Optimization, and Machine
 Learning, Addison-Wesley, 1989.

[3] Holland, J.H., Adaptation in Natural and
 Artificial Systems, University of Michigan
 Press, 1975.

[4] Sofge, D. and D.L. Elliott, "An Approach to
 Intelligent Identification and Control of
 Nonlinear Dynamical Systems," Neural
 Adaptive Control Technology, Chapter 9,
 World Scientific, 1996.

[5] Sofge, D. and D. White, (Eds.), Handbook
 of Intelligent Control/ Neural, Fuzzy, and
 Adaptive Approaches, New York: Van
 Nostrand Reinhold, 1992.

[6] Spears, W.M. and K.A. De Jong, "On the
 Virtues of Parameterized Uniform Cross-
 over", Proc. of the 4th Int. Conf. on Genetic
 Algorithms, San Diego, 1991.

