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Abstract

This paperintroducesa hybrid learningmethodology
that integratesgenetic algorithms (GAs) and decision
tree learning (ID3) in order to evolve optinalbsetsof
discriminatoryfeaturesfor robust patternclassification.
A GA is used to search the space ofpalksiblesubsets
of a large set of candidate discrimination featurfésr a
given feature subset, ID3 is invoked to produce a
decisiontree. The classification performanceof the
decisiontree on unseendatais usedas a measureof
fitness for the given featurget, which, in turn, is used
by the GA to evolve betterfeaturesets. This GA-ID3
processiterates until a feature subsetis found with
satisfactory classification performance. Experimental
resultsare presentedwvhich illustrate the feasibility of
our approach on difficult problems involving
recognizing visual concepts in satellgadfacial image
data. The results also show improved classification
performanceand reduceddescription complexity when
compared against standard methods for feature selection.

1 Introduction

Patternclassification,a difficult but fundamentaltask in Al,
depends heavily on the particular choice of features ligete
classifier. Oneausually startswith a given set of featuresand

then attempts to derive an optimal subset of features leéain

high classificationperformanceA standardapproachinvolves

ranking the features of a candidate feature set according to sorh

criteria involving 2nd order statistics (ANOVA) and/or
information theory based measuressuch as "infomax", and
then deleting lower ranked features. Ranking by itself is

usually not enoughbecausehe criteria useddo not measure
the effectivenessof the features selected on the actual
classificationtask itself, nor do they capture possible non-

linear interactions among the features.

This papemprovidesspecificanswerdo the problemsraised
above and describesa hybrid learning approachfor optimal
feature selection and the derivation of robust patttassifiers.
Our novel approachyhich includesa geneticalgorithm (GA)
anda tree induction system(ID3), minimizes the number of
features used for classificatiovhile simultaneouslyachieving
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improved classificationsrates.A GA is usedto searchthe
spaceof all possible subsetsof a large set of candidate
discriminationfeatures. For a given featuresubset,ID3 is
invoked to produce a decision tree. The classification
performanceof the decisiontree on unseendatais usedas a
measure of fitness for tigiven featureset, which, in turn, is
usedby the GA to evolve better feature sets. This GA-ID3
process iterates until a feature subset is fouitld satisfactory
classificationperformanceExperimentalresults are presented
which illustrate the feasibility of our approachon difficult
problemsinvolving recognizingvisual conceptsin satellite
and facial image data. The results also show improved
classificationperformanceand reduceddescriptioncomplexity
when compared against standard methods for feature selectic

2 Background

Any object or pattern that has to be recognized and/or classifi
must possessa number of discriminatory properties or
featuresThe first stepin any recognition process,performed
either by a machineor by a human being, is to choose
candidatediscriminatory featuresand evaluatethem for their
usefulnessFeatureselectionin patternrecognitioninvolves
the derivationof salient featuresfrom the raw input datain
orderto reducethe amountof datausedfor classificationand
simultaneouslyprovide enhanceddiscriminatory power. The
numberof featuresneededto successfullyperform a given
assificationtask dependson the discriminatory qualities of
the selected features.
e selection ofn appropriateset of featuresis one of the
most difficult tasks in the design of pattern classification
system.At the lowestlevel, the raw featuredatais not nice
cleansymbolic datalike "green”,but rathernoisy sensordata
(e.g., spectral properties) the characteristicsof which are
complex and irregular. In addition, there is considerable
interaction among lovievel featureswhich must be identified
and exploited. However, the typical number of possible
features is so large as to prohibit any systematic exploration
all but a few possible interaction types (e.g., pairwise
interactions). Large feature sets with noisy numerical data al
provide considerable difficulty for traditional symbolic
inductive learningsystems.The running time of the learning
system and the accuracy and compleritythe output rapidly



fall below an acceptable level.

The rationalebehindour approachs the belief [Michalski,
1994] that further advances in pattern analysis and 3 GA-ID3 Hybrid Learning
classification require the integration of various leaming The pasic idea of our hybrid system is to use GAs to
processes in a modular fashion. Learrsygtemsthat employ  gficiently explore the space all possiblesubsetsof a given
severalstrategiescan potentially offer significant advantages soaturesetin orderto find feature subsetswhich are of low

addressing cultural evolution as well [Wechsler, 1993].

over single-strategysystems. Since the type of input and
acquired knowledge are more flexible, sumtbrid systemscan
be appliedto a wider range of problems.Examplesof such
integrationinclude combinationsof genetic algorithms and
neural networks [Gruau and Whitley, 1993] and genetic
algorithmsandrule-basedsystems[Bala et al, 1994] [Vafaie
and De Jong, 1994].

The integration of genetialgorithmsandinductive decision
tree learning for optimal feature selection and pattern
classification is a novel application of suchapproachandis
the topic of this paper. We haveselectedD3-like induction
algorithms, which use entropy as an information measure
during tree derivation. This sameentropy underliesalso the
infomax principle - maximum information preservation
between successiveprocessinglayers. Self-organizationin

perceptual networks and the development of receptive fields[w

beenshownto be driven by such a principle. Specifically,
Linsker (1988)hasreportedthat a perceptuakystemdevelops
to recognizerelevantfeaturesof its environmentusing the
infomax principle.

The integration of genetic algorithms and decision tree
learning advocated in thjzaperis also part of a broaderissue
being actively explored, namely, that evolution and learning
can work synergistically[Hinton and Nowlan, 1987]. The
ability to learn can be shown &asethe burdenon evolution.
Evolution (genotypelearning) only hasto get close to the
goal; (phenotype)learning can then fine tune the behavior
[Muhlenbein and Kinderman, 1989]. Although Darwinian
theory does not allow for the inheritance of acquired
characteristics (Lamarckian evolution), learning (acquired
behaviors)can still influence the course of evolution. The
Baldwin effect wherelocal searchis employedto changethe
fithess of strings, but the acquired improvementsdo not
changethe geneticencodingof the individual is under active

order anchigh discriminatorypower. In orderto achievethis
goal, we felt that fithess evaluation had to involve direct
measuref size and classification performance,rather than
measuressuch as the ranking methods discussedin the
previous section. The speed of ID3 suggested the feasibility
the approach shown in Figure 1.

An initial set of features is provided togettveith a training
set of the measuredeaturevectors extractedfrom raw data
corresponding t@xamplesof conceptsfor which the decision
treeis to be induced.The geneticalgorithm (GA) is usedto
explore the space @fll subsetsof the given featureset where
preference igiven to thosefeaturessetswhich achievebetter
classification performance using smaller dimensionddifure
sets. Each of the selectedfeature subsetsis evaluated(its
fithess measured) by testitige decisiontree producedby ID3
nlan, 86]. The above process is iterated along evolutiona
lines and the best feature subset foimthen recommendedo
be usedin the actual design of the pattern classification
system.

In order for a GA to efficiently search sulzrge spacespne
must give careful thought to both the representatiorchosen
and the evaluationfunction. In this case,thereis a very
natural representation of tiepaceof all possiblesubsetsof a
feature set, namelwy fixed-lengthbinary string representation
in which the value of the ith gene{0,1} indicateswhetheror
not theith feature from the overall feature set is included in th
specified feature subset. Thus, each individual in a GA
populationconsistsof fixed-lengthbinary string representing
somesubsetof the given featureset. The advantageof this
representation is that a standard and well understooda@he
used without any modification.

Each memberof the current GA population representsa
competingfeature subsetthat must be evaluatedto provide
fitness feedback to thevolutionaryprocess. This is achieved

study [Whitleyet al 1994]. One can gain a further perspectiyg inyoking 1D3 with thespecifiedfeaturesubsetanda set of

on the Lamarckian hypothesisby moving up from the
individual chromosome(agent) to ecosystemgspecies)and
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Figure 1: Hybrid Learning System Using Genetic Algorithms and Decision Trees



training data (reducetb include only the featurevaluesof the
specified features)The decisiontree producedby ID3 is then

4 Experimental Results

tested for classification accuraoy a setof unseerevaluation apn initial set of experiments haseenperformedto assesshe
data. Its accuracy together with the size of the feature SUbﬁ%%rmance of the hybrid GA-ID3 learning system. Subsets |

used as the GA fitness measure.

Our belief is that such a hybrid learning system iditintify
significantly better feature subsetsthan those produced by
existing methods for two reasons. First, we exploiting the
power of GAs to efficiently explorthe non-linearinteractions
of a given set of features. Second,by using ID3 in the
evaluationloop, we havean efficient mechanismfor directly
measuring classification accuracy.

In order to test our ideas we have implementpdototype
versionof the system. For the GA component,we used
without modification GENESIS [Grefenstette, 1991], a
standardGA implementation. Similarly, we usedwithout
modification C4.5, a standard implementation of D3
[Quinlan, 1986], to build up the decision trees for the
evaluation procedure. For both components, stardifedilt

optimal features for recognizing visual concepts in satellite ar
facial image data have been learned and compared against
standardmethodsfor feature selection. The error rates on
unseen image data and the tree description complexity
(measured as the number of nodes) have beedas the basis
for comparison.

In order to apply cross validation of the learning procts,
learning data was randomly shuffled to generatetwo sets
(Figure 2). In eachset 40% of exampleswere used for
inducing decision trees and the other 60%«fealuationof the
learneddescription.Ten experimentswere performedon each
set in ordetto find the bestaverageperformanceThe setthat
produced the best result, i.e. the lowest error rate selasted
asthe training set. The tree generatediuring the best run of
that set (one of ten runs) is applied to the unseen test data.

parameter settings from the literature were used. For the GARaguits obtained by the GA-ID3 system have beenpared

module, this resulteth a constantpopulationsize of 50, a

with two othersetsof results. The first one was obtainedby

crossover rate 0.6 and a mutation rate 0.001 For C4.5, thiging all features(36 for the satellite date and 105 for facial

pruning confidence level was set to default 25%.

Learning Data

—

y

RANDOM GENERATION
OF TWO DATASETS

g

40%

!

60%  40%

St

Evaluation  Training
Data Data

4 N

60%

Evaluation Training
Data Data

DATASET 1

'

10 RUNS OF GA-ID3
WITH DIFFERENT SEEDS FOR
RANDOM GENERATOR

\_ DATASET2 /

10 RUNS OF GA-ID3
WITH DIFFERENT SEEDS FOH
RANDOM GENERATOR

A A

SELECTION OF THE BEST DATASET BASED
ON ITS AVERAGE PERFORMANCE OVER 10 RUNS
SELECTION OF THE BEST RUN FOR THIS SET

Final Tree Unseen Testing Da

—

Figure 2: Setup for GA-ID3 Experiments

data). To generate thsecondresulta setwith featuresreduced
to the same number as the one producedby the GA-ID3
experimentwas used. This reduction was achieved by an
independentranking of each feature using an information
theory basedentropy measure(infomax) to estimate which
featuresare the most discriminatory.Featureghat leadto the
greatestreductionin the estimatedmeasureof the training
examplesare chosen. The exactcriterion is to choosethat
feature vector X with values {xv1, Xvy, ..., Xvy} that

minimizes the expression

m + -
. X - %
[=X7 10, (—— —=) = X 10g,(—=——-)]
.Z X+ X X+ X
overn classes, wheng* is the number of examples ingaven
class with values xvj, and x;” is the number of negative

exampleqall the examplesnot belongingto this class)with
the value xy

4.1 Experimentswith the Satellite Data

The satellite image databaseconsists of the multi-spectral
valuesof pixels in 3x3 neighborhoodsand the classification
associatedvith the central pixel in eachneighborhood.The
aim is to predict this classification,given the multi-spectral
values.In the sampledatabaseisedin experimentsthe class
of a pixel is coded as a number.

One frame of Landsa#1SS imageryconsistsof four digital
imagesof the samescenein different spectralbands.Two of
theseare the visible region (correspondingapproximatelyto
greenandred regionsof the visible spectrum)andtwo are in
the (near)infra-red. Eachpixel is a 8-bit binary word, with 0
correspondingto black and 255 to white. The spatial
resolution of a pixel is about 80m x 80m. Each image
contains 2340 x 3380 such pixels.



The original datafor the databaseusedin our experiments
was generatedfrom data purchasedfrom NASA by the
Australian Center foRemoteSensing.One frame of imagery
consistsof four digital imagesof the samescenein different
spectral bands. Two of these are in the visible region
(correspondingapproximatelyto greenandred regions of the
visible spectrum) and two are in the (near) infra-red. Exodl
is a 8-bit binary wordwith O correspondingo black and 255
to white. Eachexampleof datacorrespond$o a 3x3 square
neighborhoodof pixels completely contained within the
82x100sub-areaandit containsthe pixel valuesin the four
spectral bands (converted to ASCII) of eafhthe 9 pixels in
the 3x3 neighborhood and a number indicating the
classification label of the central pixel. Tables 1 and 2
characterize the dat&igure 3 showsaverageperformance®n
the evaluationsets over 10 runs using the GA-ID3 system.
Table 3 showdhe resultsof the GA-ID3 experimenttogether
with the corresponding performances for (i) the set aittthe
featuresand(ii) the set with featuresreducedto the number
obtainedin the GA-ID3 experimentand ranked using the
(entropy) infomax measure.

Figure 3: Average Error Rate for 10 Runs of Satellite Data Sets 1,

CHARACTERISTIC DESCRIPTION

learning set of 4435 examplesand
test set of 2000 examples

NUMBER OF EXAMPLES

4 spectral bands * 9 pixels in
neighborhood = 36 features

NUMBER OF FEATURES

FEATURE VALUES The featurevalue is numerical, in
the range 0 to 255
NUMBER OF CLASSES There are 6 decision classes: 1 tol

Table 1. Characteristics of the Satellite Data

CLASSNAME
Red soil

LEARNING SET
1072 (24.17%)

TESTING SET
461 (23.05%)

Cotton crop 479 (10.80%) 224 (11.20%)

Gray soil 961 (21.67%) 397 (19.85%)

Damp gray soil 415 (09.36%) 211 (10.55%)

Soil with vegetation stubble || 470 (10.60%) 237 (11.85%)

Very damp gray soil 1038 (23.40%) || 470 (23.50%)

Error [%)]
17.25

—O—1st. data set
———[——2nd. data set
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4.2 Experimentswith Face Data

The ability to detectsalient facial featuresis an important
component ofany face recognitionsystem.Among the many
facial features availabli¢ appearghat the eyesplay the most

important role in both face recognition and social interaction.

Detectingthe eyesservesfirst of all an importantrole in
face normalizationand thus facilitates further localization of
facial landmarks. It is eye detectionthat allows oneto focus
attention on salient facial configurations, to filter out
structural noise, and to achieve eventaak recognition. For
these purposes,we applied the hybrid learning system to
accomplish feature selection on eye detection problem.

102 eye, 102 nosend 102 other facial region examplesare
made availablas learningand 52 eyes,52 noseand52 other
facial region examples are used as test dabairexperiments.
The original eye image, noseimage or the image of other
regionshas resolution 16 by 12 (column by row) pixels,
which is cut from humanface images(64x72 pixels). 105
featuresare producedfor eachexample.The configuration of

Table 2: Number of Examples in the Learning and Test Sets fepose features follows theiles listed in Table 4, while Table

Satellite Data

FULL FEAURE SET||REDUCED FEATURH
SET BY THE GA-ID3

SYSTEM

REDUCED FEATURE
SET BY FEATURE
RANKING
17 Best Features Cho

36 Features 17 Features

Error| Tree Error Tree Error Tree
Rate Complexity Rate Complexity Rate Complexity
18.5% 99 nodes|[16.9%] 72 nodes|| 20.6%| 83 nodes |

Table 3: Experiment Results for Satellite Data

5 gives the characteristics of the face data.

Figure 4 showsaverageperformanceon the evaluationsets
over 10 runsusing the GA-ID3 system.Table 6 showsthe
results of the GA-ID3 experiment together with the
correspondingerformancdor (i) the setwith all the features
and (ii) the set with features reducedhe numberobtainedin
the GA-ID3 experiment and ranked using the (entropy)
infomax measure.

Figure 5 representsgraphically a comparisonof various
results obtained in experimenBoth for the satellite and face
data anmprovementof recognitionrate (lower error rate) has
beenobservedfor setswith featuresreducedby the GA-ID3



system.Our methodhasalso reducedree complexity for the
satellite data. The reduction of complexity for faee datahas

not beenobservedHowever,all generatedreesfor the facial
data are fairly simple (about 10 nodes). The nunobdéeatures
wasreducedby 60% for the facial dataand by 52% for the
satellite data.

FULL REDUCED REDUCED
FEATURE SET FEATURE SET BY FEATURE SET BY
THE GA-ID3SYSTEM || FEATURE RANKING
105 Features 41 Features 41 Best Features ChosH
Error Tree Error Tree Error Tree
Rate |Complexi Rate Complexity Rate | Complexity
38.4%| 8 nodest)1 27.5% 13 nodes || 38.5%] 11 nodes

Table 6: Experimental Results for Face Data

FEATURES

DESCRIPTION

From x to X
1 35

Obtained by averaging a 4x4 window whi
has 50% (2 pixels) overlap in each shift.

From x to x
36 70

They represent the standard deviation of
4x4 window.

From x to X
71 105

They represent the entropy for a 4x4

Error [%
5 [%0]

36
35.5

window.

35

Table 4. Configuration of 105 features

345
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DESCRIPTION 32

NUMBER OF EXAMPLES

315
Learning set of 102xamplesand
test set of 52 examples.
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29.5
29

FEATURE VALUES The featurevalue is numerical,in
the range 0 to 255.
NUMBER OF CLASSES There are3 decisionclasses:1 to
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Table 5: Characteristics of the Facial Data
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Figure 4: Average Error Rate for 10 Runs of Face Data Sets 1, 2
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5 Conclusions [Michalski, 1994] R. Michalski, Inferential Theory of

This paperintroduceda hybrid learning methodologythat ~ L€&ming: Developing Foundations for Multistrategy
integratesgeneticalgorithms (GAs) and decisiontreelearning ~ -€@rming,in MachineLearning:A Multistrategy Approach,
(ID3) for evolving optimal subsetf discriminatoryfeatures  VO!- IV, R.S. Michalski and G. Tecuci (Eds.), Morgan
for robust pattern classification. Experimentalresults have ~ <aufmann, San Mateo, CA., pp. 3-61, 1994.

been presentedhich illustrate the feasibility of our approach ) . )

on difficult problems involving recognizing visuabnceptsn [Muhlenbeinand Kinderman, 1989] H. Muhlenbein, and J.
satelliteand facial image data. The results have also shown ~ Kinderman, The dynamics of Evolution and Learming.
significant improvementsin classification performanceand ~ 1oward Genetic Neural Networks R. Pfeifer,Z. Schreter,
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more complex problems. Mateo, CA, pp. 149-166, 1986.

An interesting extension to be explorsdthe possibility of . ,
additionalfeedbackfrom 1D3 concerningthe evaluationof a [Vafaie and De Jong, 1994] H. Vafaie and K. De Jong,
feature set.Currentlyonly classificationaccuracyis returned.  !MProving a Rule Induction System Using Genetic
However, there is potentially exploitable information with ~ Algorithms in Machine Learning: A Multistrategy

respectto which featureswere actually used to build the ~ APProach,\Vol. IV, R.S. Michalski and G. Tecuci (Eds.),
decision tree and their relative positions in the tree. Morgan Kaufmann, San Mateo, CA., pp. 453-469, 1994.
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