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Abstract
This paper introduces a hybrid learning methodology

that integrates genetic algorithms (GAs) and decision
tree learning (ID3) in order to evolve optimal subsets of
discriminatory features for robust pattern classification.
A GA is used to search the space of all possible subsets
of a large set of candidate discrimination features.  For a
given feature subset, ID3 is invoked to produce a
decision tree.  The classification performance of the
decision tree on unseen data is used as a measure of
fitness for the given feature set, which, in turn, is used
by the GA to evolve better feature sets.  This GA-ID3
process iterates until a feature subset is found with
satisfactory classification performance. Experimental
results are presented which illustrate the feasibility of
our approach on difficult problems involving
recognizing visual concepts in satellite and facial image
data. The results also show improved classification
performance and reduced description complexity when
compared against standard methods for feature selection.

1 Introduction
Pattern classification, a difficult but fundamental task in AI,
depends heavily on the particular choice of features used by the
classifier.  One usually starts with a given set of features and
then attempts to derive an optimal subset of features leading to
high classification performance. A standard approach involves
ranking the features of a candidate feature set according to some
criteria involving 2nd order statistics (ANOVA) and/or
information theory based measures such as "infomax", and
then deleting lower ranked features.  Ranking by itself is
usually not enough because the criteria used do not measure
the effectiveness of the features selected on the actual
classification task itself, nor do they capture possible non-
linear interactions among the features.

This paper provides specific answers to the problems raised
above and describes a hybrid learning approach for optimal
feature selection and the derivation of robust pattern classifiers.
Our novel approach, which includes a genetic algorithm (GA)
and a tree induction system (ID3), minimizes the number of
features used for classification while simultaneously achieving

improved classifications rates. A GA is used to search the
space of all possible subsets of a large set of candidate
discrimination features.  For a given feature subset, ID3 is
invoked to produce a decision tree. The classification
performance of the decision tree on unseen data is used as a
measure of fitness for the given feature set, which, in turn, is
used by the GA to evolve better feature sets. This GA-ID3
process iterates until a feature subset is found with satisfactory
classification performance. Experimental results are presented
which illustrate the feasibility of our approach on difficult
problems involving recognizing visual concepts in satellite
and facial image data. The results also show improved
classification performance and reduced description complexity
when compared against standard methods for feature selection.

2 Background
Any object or pattern that has to be recognized and/or classified
must possess a number of discriminatory properties or
features. The first step in any recognition process, performed
either by a machine or by a human being, is to choose
candidate discriminatory features and evaluate them for their
usefulness. Feature selection in pattern recognition involves
the derivation of salient features from the raw input data in
order to reduce the amount of data used for classification and
simultaneously provide enhanced discriminatory power. The
number of features needed to successfully perform a given
classification task depends on the discriminatory qualities of
the selected features.

The selection of an appropriate set of features is one of the
most difficult tasks in the design of pattern classification
system. At the lowest level, the raw feature data is not nice
clean symbolic data like "green", but rather noisy sensor data
(e.g., spectral properties) the characteristics of which are
complex and irregular.  In addition, there is considerable
interaction among low level features which must be identified
and exploited.  However, the typical number of possible
features is so large as to prohibit any systematic exploration of
all but a few possible interaction types (e.g., pairwise
interactions).  Large feature sets with noisy numerical data also
provide considerable difficulty for traditional symbolic
inductive learning systems. The running time of the learning
system and the accuracy and complexity of the output  rapidly



fall below an acceptable level.
The rationale behind our approach is the belief [Michalski,

1994] that further advances in pattern analysis and
classification require the integration of various learning
processes in a modular fashion. Learning systems that employ
several strategies can potentially offer significant advantages
over single-strategy systems. Since the type of input and
acquired knowledge are more flexible, such hybrid systems can
be applied to a wider range of problems. Examples of such
integration include combinations of genetic algorithms and
neural networks [Gruau and Whitley, 1993] and genetic
algorithms and rule-based systems [Bala et al, 1994] [Vafaie
and De Jong, 1994].

The integration of genetic algorithms and inductive decision
tree learning for optimal feature selection and pattern
classification is a novel application of such an approach and is
the topic of this paper.  We have selected ID3-like induction
algorithms, which use entropy as an information measure
during tree derivation.  This same entropy underlies also the
infomax principle - maximum information preservation
between successive processing layers. Self-organization in
perceptual networks and the development of receptive fields has
been shown to be  driven by such a principle. Specifically,
Linsker (1988) has reported that a perceptual system develops
to recognize relevant features of its environment using the
infomax principle.

The integration of genetic algorithms and decision tree
learning advocated in this paper is also part of a broader issue
being actively explored, namely, that evolution and learning
can work synergistically [Hinton and Nowlan, 1987].  The
ability to learn can be shown to ease the burden on evolution.
Evolution (genotype learning) only has to get close to the
goal; (phenotype) learning can then fine tune the behavior
[Muhlenbein and Kinderman, 1989].  Although Darwinian
theory does not allow for the inheritance of acquired
characteristics (Lamarckian evolution), learning (acquired
behaviors) can still influence the course of evolution. The
Baldwin effect where local search is employed to change the
fitness of strings, but the acquired improvements do not
change the genetic encoding of the individual is under active
study [Whitley et al, 1994].  One can gain a further perspective
on the Lamarckian hypothesis by moving up from the
individual chromosome (agent) to ecosystems (species) and

addressing cultural evolution as well [Wechsler, 1993].

3 GA-ID3 Hybrid Learning
The basic idea of our hybrid system is to use GAs to
efficiently explore the space of all possible subsets of a given
feature set in order to find feature subsets which are of low
order and high discriminatory power.  In order to achieve this
goal, we felt that fitness evaluation had to involve direct
measures of size and classification performance, rather than
measures such as the ranking methods discussed in the
previous section.  The speed of ID3 suggested the feasibility of
the approach shown in Figure 1.

An initial set of features is provided together with a training
set of the measured feature vectors extracted from raw data
corresponding to examples of concepts for which the decision
tree is to be induced. The genetic algorithm (GA) is used to
explore the space of all subsets of the given feature set where
preference is given to those features sets which achieve better
classification performance using smaller dimensionality feature
sets. Each of the selected feature subsets is evaluated (its
fitness measured) by testing the decision tree produced by ID3
[Quinlan, 86]. The above process is iterated along evolutionary
lines and the best feature subset found is then recommended to
be used in the actual design of the pattern classification
system.

In order for a GA to efficiently search such large spaces, one
must give careful thought to both the representation chosen
and the evaluation function.  In this case, there is a very
natural representation of the space of all possible subsets of a
feature set, namely, a fixed-length binary string representation
in which the value of the ith gene {0,1} indicates whether or
not the ith feature from the overall feature set is included in the
specified feature subset.  Thus, each individual in a GA
population consists of fixed-length binary string representing
some subset of the given feature set.  The advantage of this
representation is that a standard and well understood GA can be
used without any modification.

Each member of the current GA population represents a
competing feature subset that must be evaluated to provide
fitness feedback to the evolutionary process.  This is achieved
by invoking ID3 with the specified feature subset and a set of
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Figure 1: Hybrid Learning System Using Genetic Algorithms and Decision Trees



training data (reduced to include only the feature values of the
specified features).  The decision tree produced by ID3 is then
tested for classification accuracy on a set of unseen evaluation
data.  Its accuracy together with the size of the feature subset is
used as the GA fitness measure.

Our belief is that such a hybrid learning system will identify
significantly better feature subsets than those produced by
existing methods for two reasons.  First, we are exploiting the
power of GAs to efficiently explore the non-linear interactions
of a given set of features.  Second, by using ID3 in the
evaluation loop, we have an efficient mechanism for directly
measuring classification accuracy.

In order to test our ideas we have implemented a prototype
version of the system.  For the GA component, we used
without modification GENESIS [Grefenstette, 1991], a
standard GA implementation.  Similarly, we used without
modification C4.5, a standard implementation of ID3
[Quinlan, 1986], to build up the decision trees for the
evaluation procedure.  For both components, standard default
parameter settings from the literature were used.  For the GA
module, this resulted in a constant population size of 50, a
crossover rate 0.6 and a mutation rate 0.001   For C4.5, the
pruning confidence level was set to default 25%.
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Figure 2: Setup for GA-ID3 Experiments

4 Experimental Results
An initial set of experiments has been performed to assess the
performance of the hybrid GA-ID3 learning system. Subsets of
optimal features for recognizing visual concepts in satellite and
facial image data have been learned and compared against
standard methods for feature selection. The error rates on
unseen image data and the tree description complexity
(measured as the number of nodes) have been used as the basis
for comparison.

In order to apply cross validation of the learning process, the
learning data was randomly shuffled to generate two sets
(Figure 2).  In each set 40% of examples were used for
inducing decision trees and the other 60% for evaluation of the
learned description. Ten experiments were performed on each
set in order to find the best average performance. The set that
produced the best result, i.e.  the lowest error rate, was selected
as the training set. The tree generated during the best run of
that set (one of ten runs) is applied to the unseen test data.

Results obtained by the GA-ID3 system have been compared
with two other sets of results. The first one was obtained by
using all features (36 for the satellite date and 105 for facial
data). To generate the second result a set with features reduced
to the same number as the one produced by the GA-ID3
experiment was used. This reduction was achieved by an
independent ranking of each feature using an information
theory based entropy measure (infomax) to estimate which
features are the most discriminatory. Features that lead to the
greatest reduction in the estimated measure of the training
examples are chosen.  The exact criterion is to choose that
feature vector X with values {xv 1, xv2, ..., xvm} that

minimizes the expression
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class with values xvi, and xi
- is the number of negative

examples (all the examples not belonging to this class) with
the value xvi.

4.1 Experiments with the Satellite  Data

The satellite image database consists of the multi-spectral
values of pixels in 3x3 neighborhoods, and the classification
associated with the central pixel in each neighborhood. The
aim is to predict this classification, given the multi-spectral
values. In the sample database used in experiments, the class
of a pixel is coded as a number.

One frame of Landsat MSS imagery consists of four digital
images of the same scene in different spectral bands. Two of
these are  the visible region (corresponding approximately to
green and red regions of the visible spectrum) and two are in
the (near) infra-red. Each pixel is a 8-bit binary word, with 0
corresponding to black and 255 to white. The spatial
resolution of a pixel is about 80m x 80m. Each image
contains 2340 x 3380 such pixels.



The original data for the database used in our experiments
was generated from data purchased from NASA by the
Australian Center for Remote Sensing. One frame of imagery
consists of four digital images of the same scene in different
spectral bands. Two of these are in the visible region
(corresponding approximately to green and red regions of the
visible spectrum) and two are in the (near) infra-red. Each pixel
is a 8-bit binary word, with 0 corresponding to black and 255
to white.  Each example of data corresponds to a 3x3 square
neighborhood of pixels completely contained within the
82x100 sub-area and it contains the pixel values in the four
spectral bands  (converted to ASCII) of each of the 9 pixels in
the 3x3 neighborhood and a number indicating the
classification label of the central pixel. Tables 1 and 2
characterize the data. Figure 3 shows average performances on
the evaluation sets over 10 runs using the GA-ID3 system.
Table 3 shows the results of the GA-ID3 experiment together
with the corresponding performances for (i) the set with all the
features and (ii) the set with features reduced to the number
obtained in the GA-ID3 experiment and ranked using the
(entropy) infomax measure.

CHARACTERISTIC DESCRIPTION

NUMBER OF EXAMPLES learning set of 4435 examples and
test set of 2000 examples

NUMBER OF FEATURES 4 spectral bands * 9 pixels in
neighborhood = 36 features

FEATURE VALUES The feature value is numerical, in
the range 0 to 255

NUMBER OF CLASSES There are 6 decision classes: 1 to 6

Table 1: Characteristics of the Satellite Data

CLASS NAME LEARNING SET TESTING SET

Red soil 1072 (24.17%) 461 (23.05%)
Cotton crop 479 (10.80%) 224 (11.20%)

Gray soil 961 (21.67%) 397 (19.85%)

Damp gray soil 415 (09.36%) 211 (10.55%)

Soil with vegetation stubble 470 (10.60%) 237 (11.85%)

Very damp gray soil 1038 (23.40%) 470 (23.50%)

Table 2: Number of Examples in the Learning and Test Sets for
Satellite Data

FULL FEAURE SET

36 Features

REDUCED FEATURE
SET BY THE GA-ID3

SYSTEM

17 Features

REDUCED FEATURE
SET BY FEATURE

RANKING

17 Best Features Chosen

Error
Rate

Tree
Complexity

Error
Rate

Tree
Complexity

Error
Rate

Tree
Complexity

18.5% 99 nodes 16.9% 72 nodes 20.6% 83 nodes

Table 3: Experiment Results for Satellite Data
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Figure 3: Average Error Rate for 10 Runs of Satellite Data Sets 1, 2

4.2 Experiments with Face Data

The ability to detect salient facial features is an important
component of any face recognition system. Among the many
facial features available it appears that the eyes play the most
important role in both face recognition and social interaction. 

Detecting the eyes serves first of all an important role in
face normalization and thus facilitates further localization of
facial landmarks.  It is eye detection that allows one to focus
attention on salient facial configurations, to filter out
structural noise, and to achieve eventual face recognition.  For
these purposes, we applied the hybrid learning system to
accomplish feature selection on eye detection problem.

102 eye, 102 nose and 102 other facial region examples are
made available as learning and 52 eyes, 52 nose and 52 other
facial region examples are used as test data in our experiments.
The original eye image, nose image or the image of other
regions has resolution 16 by 12 (column by row) pixels,
which is cut from human face images (64x72 pixels).  105
features are produced for each example. The configuration of
those features follows the rules listed in Table 4, while Table
5 gives the characteristics of the face data.

Figure 4 shows average performance on the evaluation sets
over 10 runs using the GA-ID3 system. Table 6 shows the
results of the GA-ID3 experiment together with the
corresponding performance for (i) the set with all the features
and (ii) the set with features reduced to the number obtained in
the GA-ID3 experiment and ranked using the (entropy)
infomax measure.

Figure 5 represents graphically a comparison of various
results obtained in experiments. Both for the satellite and face
data an improvement of recognition rate (lower error rate) has
been observed for sets with features reduced by the GA-ID3



system. Our method has also reduced tree complexity for the
satellite data. The reduction of complexity for the face data has
not been observed. However, all generated trees for the facial
data are fairly simple (about 10 nodes). The number of features
was reduced by 60% for the facial data and by 52% for the
satellite data.

FEATURES DESCRIPTION

From x
1
 to x

35

Obtained by averaging a 4x4 window which
has 50% (2 pixels) overlap in each shift.

From x
36
 to x

70

They represent the standard deviation of a
4x4 window.

From x
71 to x

105

They represent the entropy for a 4x4
window.

Table 4: Configuration of 105 features

CHARACTERISTIC DESCRIPTION

NUMBER OF EXAMPLES Learning set of 102 examples and
test set of 52 examples.

NUMBER OF FEATURES 105 features.

FEATURE VALUES The feature value is numerical, in
the range 0 to 255.

NUMBER OF CLASSES There are 3 decision classes: 1 to
3 .

Table 5: Characteristics of the Facial Data

FULL
FEATURE SET

105 Features

REDUCED
FEATURE SET BY

THE GA-ID3 SYSTEM

41 Features

REDUCED
FEATURE SET BY

FEATURE RANKING

41 Best Features Chosen
Error
Rate

Tree
Complexity

Error
Rate

Tree
Complexity

Error
Rate

Tree
Complexity

38.4% 8 nodes 27.5% 13 nodes 38.5% 11 nodes

Table 6: Experimental Results for Face Data
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Fi g ure  4 : Average Error Rate for 10 Runs of Face Data Sets 1, 2
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5 Conclusions
This paper introduced a hybrid learning methodology that
integrates genetic algorithms (GAs) and decision tree learning
(ID3) for evolving optimal subsets of discriminatory features
for robust pattern classification. Experimental results have
been presented which illustrate the feasibility of our approach
on difficult problems involving recognizing visual concepts in
satellite and facial image data. The results have also shown
significant improvements in classification performance and
reduced description complexity when compared against standard
methods for feature selection.

Clearly more work needs to be done. Although these two
data sets are quite complex in comparison with symbolic
machine learning data sets, they are still modest from an image
processing point of view.  We are currently involved in
refining the system described here as we test it on larger and
more complex  problems.

An interesting extension to be explored is the possibility of
additional feedback from ID3 concerning the evaluation of a
feature set.  Currently only classification accuracy is returned.
However, there is potentially exploitable information with
respect to which features were actually used to build the
decision tree and their relative positions in the tree.
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