
Learning Ant Foraging Behaviors

Liviu A. Panait and Sean Luke

George Mason University, Fairfax, VA 22030
lpanait@cs.gmu.edu, sean@cs.gmu.edu

Abstract

Insects are good at cooperatively solving many complex
tasks. For example, foraging for food far away from a nest
can be solved through relatively simple behaviors in combi-
nation with pheromones. As task complexity increases, how-
ever, it may become difficult to find individual agent rules
which yield a desired emergent cooperative behavior, or to
know if any such rules exist at all. For such tasks, machine
learning techniques like evolutionary computation (EC) may
prove a valuable approach to searching the space of possi-
ble rule combinations. This paper presents an application of
genetic programming to search for foraging behaviors. The
learned foraging behaviors use only pheromone information
to find the path to the nest and to the food source.

Introduction
Artificial Intelligence has drawn many ideas from biology:
evolutionary computation, neural networks, robotics, vision,
and cooperative problem solving all steal liberally from
Mother Nature. One such area of particular recent inter-
est in AI has been in algorithms inspired from social insects
such as ants, termites and bees. The interest stems from the
capacity of such simple organisms to collaboratively work
together to solve problems no one individual could. Some
social-insect-inspired AI literature has focused on foraging
and related tasks through the use of pheromones (Bonabeau
et al., 1999). The social memory mechanism of pheromones
is an inviting paradigm for designing multiagent systems
with blackboards, joint utility tables, and other global mem-
ory mechanisms. However, hand-coding of agent behaviors
using this paradigm can prove problematic given the unex-
pected emergent group behaviors that arise.

While previous work has applied machine learning meth-
ods to theuse of pheromone information, they have still
tended to hard-code the pheromone depositing procedure.
In contrast, this paper shows that it is possible to have the
entire foraging behavior discovered by the learning system.

The paper proceeds with a description of previous work
in learning foraging behaviors, and a description of an evo-
lutionary computation approach to the learning task. A set
of three experiments in increasingly difficult environments

shows that good foraging behaviors can be discovered. A
later experiment shows that behaviors learned for complex
domains are robust to simpler environments.

Previous Work

The specific problem at hand is calledcentral place food
foraging, and it consists of two main phases: an initial ex-
ploration for food, followed by carrying it back to the nest
(Sudd and Franks, 1987).

Various learning algorithms have been used to attack this
problem. Some algorithms related to reinforcement learn-
ing adopt a fixed pheromone laying procedure, then use the
sensed pheromone information to explore the space or to up-
date state-action utility estimates (Leerink et al., 1995;Mon-
ekosso et al., 2002). Evolutionary computation techniques
have also been applied to learn exploration/exploitation
strategies using pheromones deposited by hardcoded mech-
anisms. For example, Sauter et al show how EC can be used
to tune the action-selection behavior in an application in-
volving multiple “digital” pheromones (Sauter et al., 2002).
A similar idea applied to network routing is presented in
(White et al., 1998).

AntFarm (Collins and Jefferson, 1992) is another sys-
tem that combines communication via pheromones and evo-
lutionary computation, and it is the closest work to the
algorithm presented in this paper. AntFarm uses multi-
ple colonies of homogeneous ants, with each colony in a
separate 16x16 grid environment. The ants use a single
pheromone to mark trails to food sources, but use a com-
pass to point themselves along the shortest path back to the
nest. The system uses evolutionary computation to search
for foraging behaviors represented as neural networks.

A trend common to all previously described algorithms is
that the antsknowhow to return to the nest. This assumption
is mainly based on observations that ants use sophisticated
navigational techniques for this task, including orientation
based on landmark memorization or using the position of
the sun (Hölldobler and Wilson, 1990). However, we ar-
gue that most current robotics applications are still far from
that level of sophistication. Moreover, the discovery of pure-



Pheromone Depositing Tree Function Description
scalar←CurFoodPhLevel() Food pheromone at my location
scalar←CurHomePhLevel() Home pheromone at my location
scalar←LastDeposited() How much pheromone I deposited last time
scalar←DistanceFromSite() Number of time steps elapsed since I last visited the nest (orfood,

depending on state)
scalar←MaxDistanceFromSite() Max possible distance from site (depends on the maximum lifetime

of ants)
scalar←MaxLocalFoodPheromone() Max food pheromone at my eight neighboring locations
scalar←MinLocalFoodPheromone() Min food pheromone at my eight neighboring locations
scalar←MaxLocalHomePheromone() Max home pheromone at my eight neighboring locations
scalar←MinLocalHomePheromone() Min home pheromone at my eight neighboring locations
scalar←MaxPheromone() Max amount of pheromone possible
scalar←MaxPhomoneDividedByMaxDistanceFromSite() MaxPheromone() / DistanceFromSite()
scalar←MaxPheromoneDividedByMaxDistanceFromSite()MaxPheromone() / MaxDistanceFromSite()
scalar←Add(scalar, scalar) Add two scalars
scalar←Sub(scalar, scalar) Subtract two scalars
scalar←Max(scalar, scalar) Maximum of two scalars
scalar←Min(scalar, scalar) Minimum of two scalars

Behavior Selection Tree Function Description
vector←FoodPheromones() Amounts of food pheromones at the eight neighboring locations
vector←HomePheromones() Amounts of home pheromones at the eight neighboring locations
vector←AddV(vector, vector) Add two vectors
vector←SubV(vector, vector) Subtract two vectors
vector←Mul2V(vector) Multiply each component of a vector by 2
vector←Div2V(vector) Divide each component of a vector by 2
vector←SqrV(vector) Square each component of a vector
vector←Sqrt(vector) Take the square root of each component of a vector
direction←MinO(vector) Return the index of the smallest component of a vector
direction←MaxO(vector) Return the index of the largest component of a vector
direction←ProbO(vector) Return a random index, chosen using the normalized component

sizes as probabilities (+ .001)

Table 1: Function set for an ant’s GP pheromone-depositing and behavior-selection trees. Functions depicted take the form of
returnType←functionName(argumentTypes). Leaf nodes have no arguments.

pheromone behaviors is appealing in that its analysis seems
more likely to lead to useful applications of pheromone-like
global memories to problems for which such “hand-coded”
hacks are of less utility. Last, by usingonlypheromone func-
tions, we hope to move towards a formal description of the
system as a variation of dynamic programming.

The work in this paper is concerned with learning forag-
ing behaviors that can find food and nest locations in rel-
atively simple, obstacle-free environments. In an accom-
panying paper (Panait, 2004), we present a hard-coded ant
foraging algorithm for environments with obstacles.

Evolving Foraging Strategies
To evolve ant behaviors, we used a form of EC known as
“strongly-typed” genetic programming (GP) (Koza, 1992;
Montana, 1995). In the common form of genetic program-
ming, which we adopted, evolutionary individuals (candi-
date solutions) use a parse tree structure representation.Leaf
nodes in the parse tree return various external state values
for the ant. Internal nodes in the tree are passed by their
children and return the result of some function applied to
those values. Crossover swaps subtrees among individuals.

In strongly-typed GP, type constraints specify which nodes
may be children to various other nodes: we used strong typ-
ing to enable a large set of available functions operating on
vector, scalar, and directional information. Even so, the rep-
resentational complexity available to the GP learner was sig-
nificantly less than that afforded in the hand-coded design
presented in our accompanying poster paper.

The GP system uses three data types. The first data type is
scalar, representing any real valued information (for exam-
ple, the level of food pheromones at the current location).
A second data type isvector, representing a collection of
related scalar values (such as the food pheromone levels in
neighboring locations). The third data type isorientation,
used by ants to decide to which neighboring location (of the
possible eight) to move next.

In our approach, a GP individual consists of two trees: the
pheromone-depositing tree and the behavior-selection tree.
An ant is in one of two states: either he is laden with food,
or he is not. The pheromone-depositing tree tells the ant
how much pheromone to deposit; but the ant’s state tells it
which pheromone to deposit. Additionally, the trees con-
sist of nodes labeled by a given pheromone name (for ex-



Figure 1: Evolution of performance in the 10x10 grid world.Figure 2: The emergent foraging pattern for
LearnedBehavior10x10

LearnedBehavior10x10
If carrying a food item

Adjust the amount of food pheromones toMaxDistanceFromSite− DistanceFromSite)
Move to the neighboring location with most home pheromones

Else
Adjust the amount of home pheromones toMaxDistanceFromSite− DistanceFromSite)
Move to the neighboring location with most food pheromones

Figure 3: The learned behavior in the 10x10 environment.

ample,MaxLocalHomePheromonefor the pheromone to the
“home”, or nest). These labels are correct when the ant isnot
laden with food, but when the ant has food, the pheromones
actually dealt with by these nodes are swapped1. Thus
for example, when the ant is laden with foodMaxLocal-
HomePheromoneactually returns the max value of the local
pheromone to thefood, and not the nest.

The root node of the pheromone-depositing tree returns a
scalar value (the pheromone to deposit); the absolute value
is always used. The root node of the behavior-selection tree
returns a direction. Accordingly, these two trees are con-
structed out of two different sets of nodes. The sets are
shown in Table 1. The functions shown are admittedly sim-
ple; but for a first attempt we felt this was reasonable.

The algorithm the learning ants followed is:

Foraging-Behavior
Call the first tree to select the desired level of pheromones
Call the second tree to select where to move next
Deposit pheromones and move to desired location

The experiments were implemented using the MASON
(Luke et al., 2003) multi-agent simulator and the ECJ (Luke,
2002) evolutionary computation framework. The parame-
ters for the EC system were: elitism of size 2, 100 individ-

1We used this symmetry in the foraging task to reduce the size
of the search space.

uals per population, minimum/maximum depth for Ramped
Half-and-Half tree generation of 2/4, minimum/maximum
depth for Grow tree generation of 3/3, and re-attempting
unsuccessful crossover operations 100 times before giving
up and returning the original parents. All other parame-
ters have default values as specified in (Koza, 1992). The
fitness of an individual is computed as the average perfor-
mance of three trials. The performance in each trial is cal-
culated asFoodPickedUp+10∗FoodCarriedToNest. The pa-
rameters for the multiagent foraging simulation are: mini-
mum/maximum amount of a given type of pheromone per
location of 0/100, evaporation rate of 0.1%, and diffusion
rate of 0.1%. Demanding simulations resulted in an ex-
tremely slow evolutionary process, which limited the cur-
rent experiment to only a single run consisting of few gen-
erations. Additional runs are required to make statistically
significant conclusions; so this work should be considered
proof-of-concept only.

Likewise, this proof-of-concept experimentation relies on
three assumptions that we plan to eliminate in future work.
The first assumption is that the agents can move to any of the
eight neighboring locations (this eliminates obstacles and re-
quires the world to be toroidal). Second, ants die and new
ants are created at the nest. Third, ants cannot only add,
but can alsoremovepheromones from the environment (the
concept of anti-pheromones was previously used in (Mont-



Figure 4: Evolution of performance in the 33x33 grid world.Figure 5: The emergent foraging pattern for
LearnedBehavior33x33

LearnedBehavior33x33
If carrying a food item

Adjust the amount of food pheromones toMaxPheromoneDividedByDistanceFromSite
Move to the neighboring location with minimum value forFoodPheromones−3∗HomePheromones

Else
Adjust the amount of home pheromones toMaxPheromoneDividedByDistanceFromSite
Move to the neighboring location with minimum value forHomePheromones−3∗FoodPheromones

Figure 6: The learned behavior in the 33x33 environment.

gomery and Randall, 2002) to improve exploration and help
the system escape from local optima).

Experiments

The first experiment concerned learning foraging behaviors
in a small 10x10 toroidal grid world. Other parameters for
the ant foraging simulation were as follows: 501 simulation
steps, food source located at (5,3), nest located at (7,7), ant
lifespan of 50 simulation steps, one initial ant, one new ant
per time step, and maximum 50 ants in simulation at each
time step.

The performance of the best-so-far individuals and the av-
erage performance per generation are plotted in Figure 1.
The graph shows that a good solution is discovered rela-
tively easily, within two generations. The behavior of a well
performing forager, as well as an emergent foraging trail it
creates, are shown in Figures 2 and 3.

The second experiment concerned learning foraging be-
haviors in a larger 33x33 grid world. Other parameters for
the ant foraging simulation were as follows: 1001 simulation
steps, food source located at (17,10), nest located at (23,23),
ant lifespan of 50 simulation steps, one initial ant, one new
ant per time step, and maximum 50 ants in simulation at each
time step.

The performance of the best-so-far individuals and the av-
erage performance per generation are plotted in Figure 4.

The graph shows that a good solution is still discovered rel-
atively easily, within three generations. The new individual
contains a simple, but useful formula for exploring: when
searching for the food source, advance towards more food
pheromones and also less nest pheromones. This improves
the initial search process by guiding the ants away from the
nest, and it represents an interesting alternative to the explo-
ration strategy in our accompanying paper (Panait, 2004). A
behavior of a well performing ant forager is shown in Figure
6, and an emergent foraging trail in one application of the
specific learned foraging behavior is presented in Figure 5.

The third experiment concerned learning foraging behav-
iors in a 100x100 grid world. Other parameters for the ant
foraging simulation were as follows: 2501 simulation steps,
food source located at (50,30), nest located at (70,70), ant
lifespan of 500 simulation steps, one initial ant, one new ant
per time step, and maximum 500 ants in simulation at each
time step.

The performance of the best-so-far individuals and the av-
erage performance per generation are plotted in Figure 7.
The graph shows continual improvement over the first nine
generations, suggesting incrementally more complex forag-
ing strategies are discovered. A relatively similar, but some-
what more complex individual was discovered; its behav-
ioral algorithm is presented in Figure 9. Additionally, Figure
8 presents an emergent foraging trail obtained when using



Figure 7: Evolution of performance in the 100x100 grid
world.

Figure 8: The emergent foraging pattern for
LearnedBehavior100x100

LearnedBehavior100x100
If carrying a food item

Adjust the amount of food pheromones toMax(MinLocalFoodPheromone, MaxPheromoneDividedByDistanceFromSite)
Move to the neighboring location with minimum value forFoodPheromones−2∗HomePheromones

Else
Adjust the amount of home pheromones toMin(MinLocalHomePheromone, MaxPheromoneDividedByDistanceFromSite)
Move to the neighboring location with minimum value forHomePheromones−2∗FoodPheromones

Figure 9: The learned behavior in the 100x100 environment.

this behavior for the ants, and it shows how most of the ants
have converged on a straight trail connecting the nest to the
food source.

In the fourth experiment, we took the best evolved in-
dividuals from each of the three previous experiments and
tested them in all three environments. For each individual
and each grid size, we performed 10 runs. The results are
shown in Table 2.

As can be seen, the more difficult the training problem do-
main, the more general the solutions (they perform equally
well to other solutions specifically evolved for simpler do-
mains). This suggests that for simpler problems, there is no
learning gradient toward more sophisticated foraging behav-
iors. Rather, simple enough such strategies perform as well
as more advanced strategies, and the learning system is not
capable to distinguish among them. However, as the prob-
lem domain becomes more and more challenging, increas-
ingly general foraging strategies are discovered. Additional
experiments are required to support this hypothesis.

Conclusions and Future Work

This paper presented a successful application of evolution-
ary learning to search the space of foraging behaviors. The
results of the learning approach are agent behaviors capa-
ble of learning by themselves: they use pheromones to mark
trails connecting the nest to the food source such that they

can navigate faster between the two sites.
Additionally, the results suggest that behaviors learned in

more complex domains also have good performance in sim-
pler ones. However, the opposite does not hold: behaviors
learned with simpler settings have significantly worse per-
formance when tested on more complex problems.

Our future work will analyze representational bias, elimi-
nate some of the simplifying assumptions in our model, and
apply the learning approach to more complex domains pos-
sibly involving obstacles, multiple possibly-decaying food
sources, and predator agents, all of which may require the
system to develop specialized behaviors for different ants.

Acknowledgments
The authors would like to thank Elena Popovici, Gabriel
Balan, Zbigniew Skolicki, Jeff Bassett, Paul Wiegand and
Marcel Barbulescu for discussions and suggestions related
to the ant algorithms.

References
Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999).Swarm

Intelligence: From Natural to Artificial Systems. Santa Fe
Institute Studies in the Sciences of Complexity. Oxford
University Press.

Collins, R. J. and Jefferson, D. R. (1992). Antfarm : To-
wards simulated evolution. In Langton, C. G., Taylor, C.,



10x10 environment 33x33 environment 100x100 environment
LearnedBehavior10x10 2801.00 (27.91) 113.80 (281.78) 2.20 (3.52)
LearnedBehavior33x33 2800.50 (38.65) 929.80 (17.67) 3958.50 (2808.00)

LearnedBehavior100x100 2802.90 (26.77) 931.90 (18.10) 7098.90 (1636.22)

Table 2: The performance of evolved foraging behaviors across the three grid worlds. Numbers (mean performance, standard
deviation in parentheses) summarize food items returned tothe nest in 10 runs. Bold numbers represent statistically significantly
better performance (95% confidence) for a given grid size (down a column).

Farmer, J. D., and Rasmussen, S., editors,Artificial Life
II , pages 579–601. Addison-Wesley, Redwood City, CA.

Hölldobler, B. and Wilson, E. O. (1990).The Ants. Harvard
University Press.

Koza, J. (1992).Genetic Programming: on the Program-
ming of Computers by Means of Natural Selection. MIT
Press.

Leerink, L. R., Schultz, S. R., and Jabri, M. A. (1995). A
reinforcement learning exploration strategy based on ant
foraging mechanisms. InProceedings of the Sixth Aus-
tralian Conference on Neural Networks, Sydney, Aus-
tralia.

Luke, S. (2002). ECJ 9: A Java EC research system.
http://www.cs.umd.edu/projects/plus/ec/ecj/.

Luke, S., Balan, G. C., Panait, L. A., Cioffi-Revilla, C., and
Paus, S. (2003). MASON: A Java multi-agent simula-
tion library. InProceedings of Agent 2003 Conference on
Challenges in Social Simulation.

Monekosso, N., Remagnino, P., and Szarowicz, A.
(2002). An improved q-learning algorithm using synthetic
pheromones. In B. Dunin-Keplicz, E. N., editor,From
Theory to Practice in Multi-Agent Systems, Lecture Notes
in Artificial Intelligence LNAI-2296. Springer-Verlag.

Montana, D. J. (1995). Strongly typed genetic program-
ming. Evolutionary Computation, 3:199–230.

Montgomery, J. and Randall, M. (2002). Anti-Pheromone as
a Tool for Better Exploration of Search Spaces. In et al,
M. D., editor,Ant Algorithms: Third International Work-
shop (ANTS 2002), Lecture Notes in Computer Science
LNCS 2463. Springer-Verlag.

Panait, L. A. (2004). Ant foraging revisited. Submitted to
the Ninth International Conference on the Simulation and
Synthesis of Living Systems (ALIFE9).

Sauter, J., Matthews, R. S., Parunak, H. V. D., and Brueck-
ner, S. (2002). Evolving adaptive pheromone path plan-
ning mechanisms. InProceedings of First International
Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS-02), pages 434–440.

Sudd, J. H. and Franks, N. R. (1987).The Behavioral Ecol-
ogy of Ants. Chapman & Hall, New York.

White, T., Pagurek, B., and Oppacher, F. (1998). ASGA :
Improving the ant system by integration with genetic al-
gorithms. In et al, J. R. K., editor,Genetic Programming
1998: Proceedings of the Third Annual Conference, pages
610–617. Morgan Kaufmann.


