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Abstract. The increasing availability of finely-grained parallel architec-
tures has resulted in a variety of evolutionary algorithms (EAs) in which
the population is spatially distributed and local selection algorithms op-
erate in parallel on small, overlapping neighborhoods. The effects of de-
sign choices regarding the particular type of local selection algorithm as
well as the size and shape of the neighborhood are not particularly well
understood and are generally tested empirically. In this paper we extend
the techniques used to more formally analyze selection methods for se-
quential EAs and apply them to local neighborhood models, resulting
in a much clearer understanding of the effects of neighborhood size and
shape.

1 Introduction

Adapting evolutionary algorithms to exploit the power of finely-grained parallel
architectures poses a number of interesting design issues. A standard approach
is to use spatially structured populations in which local selection algorithms
operate in parallel on small, overlapping neighborhoods [4, 7, 8, 9]. The effects
of design choices regarding the particular type of local selection algorithm as well
as the size and shape of the neighborhoods are not particularly well understood
and generally tested empirically.

An EA, whether serial or parallel can be effective only when a proper balance
between exploration (via well chosen operators) and exploitation (well chosen
selection pressure) is maintained. Having some insights as to how the selection
pressure can be varied in local neighborhood EAs will help in designing better
parallel EAs.

In De Jong and Sarma 1995 [5] we studied the emergent global selection pres-
sure induced on the entire population by standard local selection algorithms.
Using standard small neighborhood sizes and shapes we presented results which
indicated that the emergent global selection pressure of a particular local se-
lection algorithm was qualitatively similar to its sequential counterpart, but
quantitatively weaker.

In this paper we extend these results by looking more closely at the effects of
local neighborhood size and shape. Our approach involves generalizing the tech-
niques used to analyze selection methods for sequential EAs and apply them to



local neighborhood models. In particular, we extend growth curve analysis to
local neighborhood models resulting in a much clearer quantitative understand-
ing of the effects that neighborhood size and shape have on the emergent global
selection pressure.

2 Finely-grained Parallel EAs

There are a variety of finely-grained parallel EAs which have been proposed
and studied (see, for example, [2, 4, 7, 10].) For this study we have adopted a
fairly standard model to analyze. We assume a two-dimensional toroidal grid as
the spatial population structure in which the neighborhood of a particular grid
point is defined in terms of the number of steps taken (up, down, left, right)
from that grid point. Every grid point has a neighborhood which overlaps with
the neighborhoods of nearby grid points, and all neighborhoods are of identical
size and shape.

Each grid point contains one individual of the population and, in addition,
an evolutionary algorithm is assumed to be running simultaneously on each grid
point, continuously selecting parents from the neighborhood of that grid point
in order to produce offspring which replace the current individual assigned to
that grid point. The overlapping neighborhoods provide an implicit mechanism
for migration of genetic material throughout the grid. The amount of overlap is
a function of the neighborhood size and shape.

Figure 1 illustrates four of the five neighborhood configurations used in this
paper and these are neighborhoods that are typically used in the literature. The
shape label L (linear) is assigned to neighborhoods defined as all points reachable
in < n steps taken in a fixed axial direction (north, south, east, or west) from the
central grid point, while C (compact) neighborhoods contain the closest n — 1
points to the central grid point.
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Fig. 1. Neighborhood Patterns

The selection algorithms used on the local neighborhoods are typically the
same ones used for sequential EAs. In this paper we focus on just two: fitness
proportional and linear ranking selection.



3 Growth Curve Analysis

A standard technique for studying and comparing selection algorithms for serial
EAs is to characterize the selection pressure they induce on the individuals in
a population in which only reproduction is active (i.e., no mutation, crossover,
etc.). Of particular interest is the growth rate of the best individual in the initial
population. For the standard selection algorithms, such as fitness proportional
and linear ranking, these growth curves are logistic in nature but vary in their
growth rates [1, 6]. Since the growth rate of fitness proportional selection is
dependent on the fitness ratio, we kept the fitness ratio constant at 2.0 in all our
studies in this paper.

Figure 2 illustrates how these growth rates change when we move to spatially
structured populations with local neighborhood selection. In this particular case
the growth curves exhibited by the best individual in a serial EA with a popula-
tion size of 1024 using rank and fitness proportional selection are compared with
the growth curves obtained from a parallel EA using a 2-dimensional 32 x 32
toroidal grid and a local neighborhood size of 9.
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Fig. 2. Sequential (population 1024) and emergent (32 x 32 grid, neighborhood size 9)
growth curves for fitness proportional and linear ranking selection.

Figure 2 is typical of what is consistently observed, namely the spatially
structured EAs exhibit the familiar logistic growth curves but with lower growth
rates. Note also that the rank order of the selection intensity is preserved: using
weaker local selection pressure (in this case, proportional selection) induces a
weaker emergent global selection pressure.

The intuitive explanation for this phenomenon is that it is the result of
the combined effects of logistic growth occurring in each of the local neighbor-
hoods and the propagation times necessary to spread the best individual globally



throughout a spatially structured population. In De Jong and Sarma 1995 [5] we
confirmed the first of these two hypotheses showing that the emergent global
selection pressure of a local selection algorithm such as fitness proportional or
linear ranking selection is qualitatively similar to that produced by fitness pro-
portional or linear ranking in standard serial EAs with global mating pools. In
this paper we focus on the second hypothesis involving the effects of propagation
times on growth rates.

4 Effect of Neighborhood Size

Increasing the neighborhood size creates a larger overlap and decreases the prop-
agation time. Thus one can see that propagation times are closely related to
neighborhood size. Hence increasing local neighborhood sizes while keeping the
grid size fixed should result in corresponding increases in selection intensity re-
flected by higher growth rates of the best individual.

Figures 3 and 4 illustrate typical results obtained on the same 32 x 32 toroidal
grid used in the previous section. For both ranking and fitness proportional
selection we analyzed the growth curves for five neighborhoods of different sizes

(5, 9, and 13) and shapes (C and L).

1.0
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -

0

Best Proportion

No. of Generations

Fig. 3. Emergent growth curves for fitness proportional selection using different neigh-
borhood sizes.

The results are fairly consistent with our expectation that selection intensity
increases with increasing neighborhood size. However, there is an interesting
“anomaly” in both Figure 3 and Figure 4. The L9 and C13 neighborhoods exhibit
nearly identical growth curves even though C13 is almost 50% larger than L9.
This suggests that neighborhood shape also plays an important role.
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Fig.4. Emergent growth curves for linear ranking selection using different neighbor-
hood sizes.

5 [Effects of Neighborhood Shape

In attempting to explain why the L9 produces a growth rate significantly higher
than C9 and nearly identical to C13, the intuitive notion is that what is really
important here is the radius of a neighborhood. If we consider the radius of a
neighborhood to be defined as the radius of the smallest hypersphere containing
the neighborhood, then C9 has a radius of /2 while L9 and C13 have radii of
2. This correlates reasonably well with the observed differences in growth rates
noted in the previous section.

However, this simple definition of neighborhood radius does not distinguish
between L9 and C13 which have identical radii, but have slightly different growth
rates resulting from the finer interior details of neighborhood shape. To account
for this we adopted an alternative definition for neighborhood radius based on
a standard distance measure used in spatial analysis [11]:

rad = \/ (i =) +3 (v — 9)°

n

which measures the spatial dispersion of a point pattern and can be thought of
as the radius of the circle centered on the mean center (Z,y) of a neighborhood
pattern of n points where
Z?:l g g — E?:l Yi

n n
Using this definition, the radii of C9, L9, and C13 are 1.16, 1.49, and 1.47

respectively. A closer look at Figure 3 and Figure 4 indicates that this correlates

xr =



well with the observed growth curves, with L9 actually exhibiting slightly higher
growth rates than C13.

6 Effects of Neighborhood Radius

The results of the previous sections suggest a simple, intuitive model in which
selection intensity varies as a function of radius of the local neighborhoods and
can be driven arbitrarily close to the selection intensities of the corresponding
serial EAs by choosing sufficiently large radii. Figure 5 illustrates this for three
different radii on the same 32 x 32 grid as before using fitness proportional
selection. Figure 6 shows the same results for linear ranking selection.
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If our hypothesis is correct, we should observe similar effects if we keep the
neighborhood radius fixed and decrease the grid size. Figures 7 and 8§ illustrate
that this is precisely what happens when the radius is kept fixed at 0.89 and the
grid sizes are changed.

This in turn suggests that the key factor in controlling selection intensity
is the ratio of the neighborhood radius to the grid radius. Figures 9 and 10
illustrate that this is precisely the case. Here an L5 neighborhood on a 32 x 32
grid with a ratio of 0.06815 produces a growth curve nearly identical to a C21
neighborhood on a 64 x 64 grid with a ratio of 0.06891.

7 A Simple Quantitative Model for Selection Intensity

The observations of the previous section suggest how one might derive a simple
quantitative model of selection intensity for these local neighborhood models.
Like their sequential counterparts, all of the growth curves generated by the



growth curves for fitness proportional
selection using different grid sizes and
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local neighborhood models are well approximated by a logistic equation of the
form:

N*

N = -
L4 (5 — e~

where N* is the asymptotic value of N for very large ¢t and Ny is the initial value
of N [3]. Since in our case we know that N* is 1.0 we can rewrite the equation

as:

1
Py =
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where a is the growth coefficient and P; ; is the proportion of the best in the pop-
ulation at time ¢. In this case the growth rate is controlled by a single parameter
a, the coefficient in the exponent of the above equation.

In the case of sequential EAs the values of a is the natural logarithm of the
fitness ratio for proportional selection and 1 for linear ranking [1, 6]. However,
for spatially structured populations the growth coefficient a is dependent on the
ratio of the neighborhood radius to the grid radius. It is fairly straight forward
to plot the growth curves associated with various radius ratios in the interval
(0,1) and estimate the associated value of a by using a least squares fit of the
best logistic curve to the generated growth curves.

If we then plot the value of a as a function of increasing ratio r we obtain
data of the sort illustrated in Figure 11. The perhaps not too surprising result
is a very clear inverse exponential relationship between r and a with the case of
r = 1 and the value of a corresponding to the sequential case.
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Fig.11. Emergent growth coefficients for fitness proportional selection plotted against
radii ratios.

As one might expect, selection intensities comparable to sequential EAs are
achieved already with radii ratio () values of 0.5 (see Figure 11).

8 Discussion and Conclusions

Previous studies involving local neighborhood EAs selected the size and shape
of local neighborhoods primarily on the basis of empirical tuning studies. The
results presented in this paper provide a much clearer and more systematic way
to make such decisions. It is shown that the critical parameter is the ratio of the
radius of the neighborhood to the radius of the underlying grid. By varying this
ratio the emergent selection intensity induced on the global population can be
directly controlled. Moreover, a quantitative model of this relationship has been



presented in which the coefficient of the growth rate of the best individual in the
population is shown to be an inverse exponential function of this ratio.

A direct consequence of this analysis is the observation that typical neigh-
borhood sizes and shapes used in the literature result in much lower selection
pressures than their serial counterparts, but that comparable selection intensities
can be obtained (if desired) by simply increasing this ratio to 0.5.

Effective EAs, whether serial or parallel, maintain a balance between explo-
ration (via well chosen operators) and exploitation (well chosen selection pres-
sure). Understanding how selection pressure can be directly controlled in local
neighborhood EAs via a single parameter provides a simple means for adjusting
that balance.

We believe that these observations will hold for other topologies and other
local selection algorithms as well and are currently working on these issues.
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