
WCSS 2008 MASON Tutorial

Sean Luke
George Mason University

http://cs.gmu.edu/~eclab/projects/mason/

MASON is a joint production of
	 the GMU Department of Computer Science and
	 the GMU Center for Social Complexity

The Example

• Student cliques
formed on the
schoolyard.

• Using:

• Students as Agents

• Embedded in continuous, unbounded 2D space

• Connected via weighted networks of mutual friends / enemies

The Tutorial

• Get MASON Running

• Create a Minimum Simulation

• Add a Field and some Agents in the Field which do nothing

• Make the Agents do something

• Fire up the GUI

• Portray the Field

• Add a Network Field

• Get the Agents to do things based on the Network

• Portray the Network

• Make the Agents inspectable and color them according to happiness

• Make the model inspectable and add Histogram and Time Series charts

The Point of MASON

• MASON was built to do many simultaneous simulations of many agents on
cluster computers, while visualizing the results on front-end machines.

• We began work on MASON because no other multiagent simulator met our
design constraints:

• Fast but replicable

• Sporting a small and cleanly designed model core

• Able to serialize and migrate models from machine to machine (and
platform to platform!) and keep them separate from visualization cruft.

• Sporting good quality parallelization

• Entirely self-contained (so it could be used as a subelement of another
program, or have two simulations run in parallel in separate threads)

• Sporting good quality, reasonably fast 2D and 3D visualization

Step 0:	Set up MASON

• Install Java3D

• The mason directory and each of the jar files in the “jar” directory must be
added to your CLASSPATH

• The WCSS tutorial code is in mason/sim/app/wcss

• The WCSS tutorial documentation is in tutorialDocs/tutorial

• To compile an example, copy its code out of its numbered subdirectory and
into the wcss directory, then compile the java files. Example:

1. delete the java and class files directly in mason/sim/app/wcss

2. copy the files from mason/sim/app/wcss/8 into mason/sim/app/wcss

3. compile the new java files in mason/sim/app/wcss

Step 1: Create a Minimum Simulation

• Create a directory in MASON
called mason/sim/app/wcss/

• In that directory,
create a file called Students.java

• Enter the text at right into the file

• Compile the file with
javac Students.java

• Run the simulation with
java sim.app.wcss.Students

• (All the examples for each step are
already in a subdirectory — you can
just pull them out to follow along).

package sim.app.wcss;
import sim.engine.*;

public class Students extends SimState
 {
 public Students(long seed)
 {
 super(seed);
 }

 public void start()
 {
 super.start();
 }

 public static void main(String[] args)
 {
 doLoop(Students.class, args);
 System.exit(0);
 }
 }

Students.java

Step 1: Create a Minimum Simulation

• What this means.

• SimState is the abstract class for
models. Your model subclasses it.

• The standard SimState constructor
requires a random number genrator
seed

• start is the method called when the
simulation starts but before any
agents have been pulsed.

• You can make your own main loop,
which calls start(), then pulses the
schedule some n times, then calls
finish(). But the provided doLoop
function does it with style.

package sim.app.wcss;
import sim.engine.*;

public class Students extends SimState
 {
 public Students(long seed)
 {
 super(seed);
 }

 public void start()
 {
 super.start();
 }

 public static void main(String[] args)
 {
 doLoop(Students.class, args);
 System.exit(0);
 }
 }

Output

MASON Version 12. For further options, try adding ' -help' at end.
Job: 0 Seed: 1215962773036
Starting sim.app.wcss.Students
Exhausted

• MASON fires up but since there’s nothing for the simulation, it quits again.

Step 2: Add a Field and some Agents

• We’ll start by defining the Agents. They’ll do nothing for the time being. In
fact they’re nothing more than empty classes.

• In the same directory, create a file called Student.java

• Add the following text to the file.

package sim.app.wcss;

public class Student
 {
 }

Student.java

Step 2: Add a Field and some Agents

• Modify the Students.java file

• Add the following new imports:

• Add two new instance variables:

import sim.util.*;
import sim.field.continuous.*;

 public Continuous2D yard = new Continuous2D(1.0,100,100);

 public int numStudents = 50;

Students.java

Step 2: Add a Field and some Agents

• What this means.

• Continuous2D is a Field: a representation of space. In particular,
Continuous2D represents continuous 2-dimensional space. It takes three
constructor arguments:

• The discretization level (for neighborhood lookup efficiency; we won’t
bother with this)

• The width

• The height

• Continuous2D is actually infinite: the width and height are just for GUI
guidelines. We set it to 100x100, which is a good schoolyard size.

 public Continuous2D yard = new Continuous2D(1.0,100,100);
 public int numStudents = 50;

Step 2: Add a Field and some Agents

• Revise the start() method:

• Compile (javac *.java) and run (java sim.app.wcss.Students)

 public void start()
 {
 super.start();

 // clear the yard
 yard.clear();

 // add some students to the yard
 for(int i = 0; i < numStudents; i++)
 {
 Student student = new Student();
 yard.setObjectLocation(student,
 new Double2D(yard.getWidth() * 0.5 + random.nextDouble() - 0.5,
 yard.getHeight() * 0.5 + random.nextDouble() - 0.5));
 }

 }

Students.java

Step 2: Add a Field and some Agents

• What this means.

• random is a MersenneTwisterFast random number generator.

• nextDouble returns a value between 0.0 and 1.0.

• setObjectLocation takes an object and puts it in the field at the given
location.

• For Continuous2Ds, locations are Double2D objects. These are immutable
instances holding an x and y value. They’re similar to
java.awt.Point2D.Double, but they’re not modifiable once created.

 yard.setObjectLocation(student,
 new Double2D(yard.getWidth() * 0.5 + random.nextDouble() - 0.5,
 yard.getHeight() * 0.5 + random.nextDouble() - 0.5));

Output

MASON Version 12. For further options, try adding ' -help' at end.
Job: 0 Seed: 1215964716844
Starting sim.app.wcss.Students
Exhausted

• Still boring! Note that the random number seed has changed due to the new
start time.

• By the way, if you’d like to fix the seed (to 1000 say), try
java sim.app.wcss.Students -seed 1000

Step 3: Make the Agents Do Something

• The students wander about randomly a tiny bit but not stray from the center
of the schoolyard too far. We’ll add two instance variables in Students.java:

• Now let’s add the students to our schedule. Each one will get get
“stepped” (pulsed, fired, whatever) repeatedly once every timestep. We add
the following line to the start() method:

 double forceToSchoolMultiplier = 0.01;
 double randomMultiplier = 0.1;

Students.java

 // add some students to the yard
 for(int i = 0; i < numStudents; i++)
 {
 Student student = new Student();
 yard.setObjectLocation(student,
 new Double2D(yard.getWidth() * 0.5 + random.nextDouble() - 0.5,
 yard.getHeight() * 0.5 + random.nextDouble() - 0.5));

 schedule.scheduleRepeating(student);
 }

Step 3: Make the Agents Do Something

• What this means.

• schedule is the simulator’s Schedule, a representation of time. You schedule
Steppable objects on the Schedule, to be stepped (fired, pulsed) at various
times.

• This version of scheduleRepeating schedules a Steppable to be repeatedly
stepped, forever, once per unit timestep, starting at the current time.

 schedule.scheduleRepeating(student);

Step 3: Make the Agents Do Something

• Now that the Students have been added to our schedule to be repeated once
every timestep, we need to make them actually capable of responding to a
pulsing call from the schedule. To do this we will make them implement the
Steppable interface. Then we’ll have the agents move themselves around
the yard when stepped. First add the following imports to Student.java:

• Now we will declare Students to be Steppable:

import sim.engine.*;
import sim.field.continuous.*;
import sim.util.*;

Student.java

public class Student implements Steppable

Step 3: Make the Agents Do Something

• The Steppable interface requires the method Step, which will be called by
the Schedule. Our agents will move randomly but not too far from the school.

 public void step(SimState state)
 {
 Students students = (Students) state;
 Continuous2D yard = students.yard;
 Double2D me = students.yard.getObjectLocation(this);
 MutableDouble2D sumForces = new MutableDouble2D();

 // add in a vector to the center of the yard, so we don't go too far away
 sumForces.addIn(new Double2D(

(yard.width * 0.5 - me.x) * students.forceToSchoolMultiplier,
 (yard.height * 0.5 - me.y) * students.forceToSchoolMultiplier));

 // add a bit of randomness
 sumForces.addIn(new Double2D(

students.randomMultiplier * (students.random.nextDouble() * 1.0 - 0.5),
 students.randomMultiplier * (students.random.nextDouble() * 1.0 - 0.5)));

 sumForces.addIn(me);
 students.yard.setObjectLocation(this, new Double2D(sumForces));
 }

Student.java

Step 3: Make the Agents Do Something

• What this means.

• getObjectLocation returns the current location of an object in a field.

• MutableDouble2D is a modifiable version of Double2D. Essentially it’s the
same concept as java.awt.Point2D.Double, but with more functionality.

• addIn adds a MutableDouble2D to a Double2D or similar object, and sets the
MutableDouble2D to the sum.

• Here we’re taking the force vector and adding in our current position,
resulting in a new position for us to assume.

 Double2D me = students.yard.getObjectLocation(this);
 MutableDouble2D sumForces = new MutableDouble2D();

Student.java

 sumForces.addIn(me);

 sumForces.addIn(new Double2D(
(yard.width * 0.5 - me.x) * students.forceToSchoolMultiplier,

 (yard.height * 0.5 - me.y) * students.forceToSchoolMultiplier));

Output

MASON Version 12. For further options, try adding ' -help' at end.
Job: 0 Seed: 1215966150794
Starting sim.app.wcss.Students
Steps: 25000 Time: 24999 Rate: 20,833.33333
Steps: 50000 Time: 49999 Rate: 21,626.29758
Steps: 75000 Time: 74999 Rate: 22,026.43172
Steps: 100000 Time: 99999 Rate: 22,104.33245
Steps: 125000 Time: 124999 Rate: 22,123.89381
Steps: 150000 Time: 149999 Rate: 22,026.43172
Steps: 175000 Time: 174999 Rate: 22,104.33245
...

• Now are agents are doing something! Nothing particularly complicated
though, since our frame rate is 22000 ticks per second!

• Press Control-c to cancel the simulation.

• By the way, if you’d like to run the simulation until timestep 100000 has
completed, you can say
java sim.app.wcss.Students -until 100000

Step 4: Fire up the GUI

• Create a file called StudentsWithUI.java This class is responsible for
handling the GUI for our simulation. Initially it will just be in charge of starting
and stopping the schedule; but later we’ll make it in charge of displaying the
fields as well. Add:

StudentsWithUI.java

package sim.app.wcss;
import sim.display.*;
import sim.engine.*;
import javax.swing.*;

public class StudentsWithUI extends GUIState
 {
 public static void main(String[] args)
 {
 Console c = new Console(new StudentsWithUI(););
 c.setVisible(true);
 }

 public StudentsWithUI() { super(new Students(System.currentTimeMillis())); }
 public StudentsWithUI(SimState state) { super(state); }
 public static String getName() { return "WCSS 2008 Tutorial"; }

}

Step 4: Fire up the GUI

• What this means.

• GUIState is the abstract superclass for the primary object for building and
managing the GUI. It holds a simulation (your SimState) and a Controller
which manages the schedule.

• Console is an elaborate GUI Controller. It needs the GUIState as a
parameter. This is the standard way of starting the UI.

public class StudentsWithUI extends GUIState

 public static void main(String[] args)
 {
 Console c = new Console(new StudentsWithUI(););
 c.setVisible(true);
 }

Step 4: Fire up the GUI

• What this means (part 2).

• One standard constructor for a GUIState takes a SimState.

• The default constructor creates the SimState on the fly, using the current
timestamp milliseconds as the random number generator seed.

• GUIStates have names. They appear as the title bar of the Console.

 public StudentsWithUI() { super(new Students(System.currentTimeMillis())); }
 public StudentsWithUI(SimState state) { super(state); }

public static String getName() { return "WCSS 2008 Tutorial"; }

Output

• Run as
java sim.app.wcss.StudentsWithUI

• Press the Play button
(the dark triangle)

• Change the Time pop-up menu to
Rate to see the frame rate

• 13,000 is slower than 22,000. This
is mostly due to the overhead of
managing the GUI event loop.

Step 5: Portray the Field

• Add some new imports

• Add instance variables for a Portrayal (which draws the field), a Display (the
GUI component which houses Portrayals), and a JFrame (the window which
houses the Display).

StudentsWithUI.java

import sim.portrayal.continuous.*;
import sim.portrayal.simple.*;
import java.awt.Color;

 public Display2D display;
 public JFrame displayFrame;
 ContinuousPortrayal2D yardPortrayal = new ContinuousPortrayal2D();

Step 5: Portray the Field

• What this means.

• Field Portrayals are classes responsible for drawing fields and letting the
user manipulate objects stored within them. ContinuousPortrayal2D is the
default portrayal for the Continuous2D field.

• A Display2D is a GUI widget which holds some number of Field Portrayals,
usually layered on top of one another.

• The JFrame will be the window which holds the Display2D. Usually
Display2Ds provide their own JFrames.

 public Display2D display;
 public JFrame displayFrame;
 ContinuousPortrayal2D yardPortrayal = new ContinuousPortrayal2D();

Step 5: Portray the Field

• Add an init method which creates the display, has the display generate a
frame for you, registers the frame with the Console, and attaches the
portrayal to the display. This method is called when the GUI is first fired up.

StudentsWithUI.java

 public void init(Controller c)
 {
 super.init(c);

 // make the displayer
 display = new Display2D(600,600,this,1);
 // turn off clipping
 display.setClipping(false);

 displayFrame = display.createFrame();
 displayFrame.setTitle("Schoolyard Display");

 // register the frame so it appears in the "Display" list
 c.registerFrame(displayFrame);
 displayFrame.setVisible(true);
 display.attach(yardPortrayal, "Yard");
 }

Step 5: Portray the Field

• What this means.

• A Display2D constructor takes
a width, a height, a GUIState,
and timesteps between redraws

• Ordinarily the Display2D clips
the drawing of its fields when
they’re zoomed out. But as our
Continuous2D is infinite, we’d
like to see objects outside the width x height box. We setClipping to false.

• Displays can sprout their own JFrames (windows) for us using createFrame.

• We register the JFrame with the Console to include it in the Console’s list.
This enables us to hide the JFrame and get it back via the Console. It also
lets the Console cleanly dispose of the window when we quit.

• We attach the Portrayal to the Display2D to display it inside the Display2D.

 display = new Display2D(600,600,this,1);
 display.setClipping(false);

 displayFrame = display.createFrame();
 displayFrame.setTitle("Schoolyard Display");

 c.registerFrame(displayFrame);
 displayFrame.setVisible(true);
 display.attach(yardPortrayal, "Yard");

Step 5: Portray the Field

• Add an quit method which destroys the display and frame. This method is
called when the program quits.

• Add default start() and load() methods. These methods are called when the
play button is pressed or when a simulation is loaded from a checkpoint file.
Typically they do the same thing, so we’ll have them call a method called
setupPortrayals which we’ll write next:

StudentsWithUI.java

 public void quit()
 {
 super.quit();

 if (displayFrame!=null) displayFrame.dispose();
 displayFrame = null;
 display = null;
 }

 public void start()
 {
 super.start();
 setupPortrayals();
 }

 public void load(SimState state)
 {
 super.load(state);
 setupPortrayals();
 }

Step 5: Portray the Field

• Add our setupPortrayals method. Here we will tell the Portrayal which field it
is portraying and how it’s doing it. We’ll also reset the display so it re-
registers itself with the console in preparation for being stepped each
timestep.

StudentsWithUI.java

 public void setupPortrayals()
 {
 Students students = (Students) state;

 // tell the portrayals what to portray and how to portray them
 yardPortrayal.setField(students.yard);
 yardPortrayal.setPortrayalForAll(new OvalPortrayal2D());

 // reschedule the displayer
 display.reset();
 display.setBackdrop(Color.white);

 // redraw the display
 display.repaint();
 }

Step 5: Portray the Field

• What this means.

• We first tell the portrayal which field it’s portraying.

• Most FieldPortrayals rely on underlying SimplePortrayals to draw the
individual elements in the field. Here we’re stating that all objects in the field
are to be drawn with OvalPortrayal2D.

• When you reset a display, it registers itself with the GUI system to be pulsed
every timestep. We need to do that.

• The backdrop is the background of the displayed region.

 yardPortrayal.setField(students.yard);
 yardPortrayal.setPortrayalForAll(new OvalPortrayal2D());

 display.reset();
 display.setBackdrop(Color.white);

 display.repaint();

Output

• Run again, and press Play.

• Note that now there’s a display
popped up which shows our
schoolyard. All the students are
clustered in the center of the
schoolyard, moving around slightly
randomly.

• Very exciting.

• The frame rate has dropped to
about 270. But if you close the
display window, it’s back up to
about 13,000.

• You can get the display window
back by choosing Displays, then
Show All.

Step 6: Add a Network Field

• We’ll add a Network of friendship among the students. It’ll be an undirected
weighted graph. Positive weights indicate friendship, negative weights
indicate dislike. First we add a new import:

• Next we create a new instance variable representing the Network. false
indicates that the Network graph structure is undirected.

Students.java

import sim.field.network.*;

public Network buddies = new Network(false);

Step 6: Add a Network Field

• Change the start method to clear out the network and add the students to it
as graph nodes:

Students.java

 // clear the yard
 yard.clear();

 // clear the buddies
 buddies.clear();

 // add some students to the yard
 for(int i = 0; i < numStudents; i++)
 {
 Student student = new Student();
 yard.setObjectLocation(student,
 new Double2D(yard.getWidth() * 0.5 + random.nextDouble() - 0.5,
 yard.getHeight() * 0.5 + random.nextDouble() - 0.5));
 buddies.addNode(student);
 schedule.scheduleRepeating(student);
 }

Step 6: Add a Network Field

• At the end of the start method, add some code to allow each student to have
at least one mutual like and one mutual dislike of another student (some
students will get more than one).

Students.java

 Bag students = buddies.getAllNodes();
 for(int i = 0; i < students.numObjs; i++)
 {
 Object student = students.objs[i];

 Object studentB = null;
 do // who does he like?
 {
 studentB = students.objs[random.nextInt(students.numObjs)];
 } while (student == studentB);
 double buddiness = random.nextDouble();
 buddies.addEdge(student, studentB, new Double(buddiness));

 do // who does he dislike?
 {
 studentB = students.objs[random.nextInt(students.numObjs)];
 } while (student == studentB);
 buddies.addEdge(student, studentB, new Double(-buddiness));
 }

Step 6: Add a Network Field

• What this means.

• This gets all the nodes in the network and returns it as a Bag. This function
presumes you will not modify this Bag — the network relies on it.

• A Bag is the same basic structure as an ArrayList or Vector. The difference
is that the Bag’s underlying array is public. It’s two variables: objs is the array
and numObjs is the number of elements in the array (which is often less than
the array size). Bag is much faster than ArrayList.

• We add an edge from one student to another in the graph. It’s undirected.
The edge is weighted with a Double representing friendship or hatred.

 Bag students = buddies.getAllNodes();

 for(int i = 0; i < students.numObjs; i++)
 {
 Object student = students.objs[i];

 buddies.addEdge(student, studentB, new Double(buddiness));

Output

• Nothing new. The students aren’t taking advantage of their relationships yet.

Step 7: Have the Students Use the Network

• The students will move away from their enemies and towards their friends. In
Student.java, add this import:

• Now we need to limit the amount of force the student hatred will impart, or
else they could wander off the yard. Add the following instance variable:

Student.java

import sim.field.network.*;

 public static final double MAX_FORCE = 3.0;

Step 7: Have the Students Use the Network

• We modify the step method to add some new forces. Here’s the first half.

Student.java

 public void step(SimState state)
 {
 Students students = (Students) state;
 Continuous2D yard = students.yard;
 Double2D me = students.yard.getObjectLocation(this);
 MutableDouble2D sumForces = new MutableDouble2D();

 // Go through my buddies and determine how much I want to be near them
 MutableDouble2D forceVector = new MutableDouble2D();
 Bag out = students.buddies.getEdges(this, null);
 for(int buddy = 0 ; buddy < out.numObjs; buddy++)
 {
 Edge e = (Edge)(out.objs[buddy]);
 double buddiness = ((Double)(e.info)).doubleValue();

 // I could be in the to() end or the from() end.getOtherNode is a
 //cute function which grabs the guy at the opposite end from me.

 Double2D him = students.yard.getObjectLocation(e.getOtherNode(this));

Step 7: Have the Students Use the Network

• Here is the back half, where the buddy force vectors are calculated.

Student.java

 if (buddiness >= 0) // the further I am from him the more I want to go to him
 {
 forceVector.setTo((him.x - me.x) * buddiness, (him.y - me.y) * buddiness);
 if (forceVector.length() > MAX_FORCE) // I'm far enough away
 forceVector.setLength(MAX_FORCE);
 }
 else // the nearer I am to him the more I want to get away from him, up to a limit
 {
 forceVector.setTo((him.x - me.x) * buddiness, (him.y - me.y) * buddiness);
 if (forceVector.length() > MAX_FORCE) // I'm far enough away
 forceVector.setLength(0.0);
 else if (forceVector.length() > 0)
 forceVector.setLength(MAX_FORCE - forceVector.length()); // invert the distance
 }
 sumForces.addIn(forceVector);
 }

 // add in a vector to the center of the yard, so we don't go too far away
 sumForces.addIn(new Double2D(... and so on....

Step 7: Have the Students Use the Network

• What this means.

• Since the network is undirected, we can get all edges attached to a node with
getEdges, which takes the node in question and an optional Bag (in this case
null), which it will use. It then returns a Bag. You can modify this Bag, it’s not
used internally.

• Edges have three values: to, from, and info (the weight or label). We extract
the weight here.

• Since the edge is undirected, we don’t know, without looking, if we were in
the to or from position. No big deal: just use the getOtherNode method to
return our partner on the other side of the edge.

 Edge e = (Edge)(out.objs[buddy]);
 double buddiness = ((Double)(e.info)).doubleValue();

 Bag out = students.buddies.getEdges(this, null);

 Double2D him = students.yard.getObjectLocation(e.getOtherNode(this));

Step 7: Have the Students Use the Network

• What this means.

• MutableDouble2D can be setTo new x and y values. (We could have also
said forceVector.x = ... and forceVector.y =)

• length is the sum squared magnitude MutableDouble2D. You can change
the length but keep the angle using setLength as long as the previous length
wasn’t 0 or infinity.

if (forceVector.length() > MAX_FORCE) // I'm far enough away
forceVector.setLength(MAX_FORCE);

forceVector.setTo((him.x - me.x) * buddiness, (him.y - me.y) * buddiness);

Output

• Run again, and press Play.

• Now we’ve got something! The
students are grouping into cliques.

• But it’d sure be nice to see the
relationships among them...

Step 8: Portray the Network

• It’s simple to overlay the network on Continuous region. In StudentsWithUI,
we start by adding a new import:

• Now we’ll add a new instance variable for the Portrayal for our network:

• In the init method, attach this portrayal before the Yard portrayal. This
causes it to be drawn first (so the students are drawn nicely on top of their
relationship lines).

StudentsWithUI.java

import sim.portrayal.network.*;

NetworkPortrayal2D buddiesPortrayal = new NetworkPortrayal2D();

 displayFrame = display.createFrame();
 displayFrame.setTitle("Schoolyard Display");
 c.registerFrame(displayFrame);
 displayFrame.setVisible(true);
 display.attach(buddiesPortrayal, "Buddies");
 display.attach(yardPortrayal, "Yard");

Step 8: Portray the Network

• Now we just need to attach the Network to the portrayal. To do this we
provide a SpatialNetwork2D object has both the node locations
(students.yard) and the collection of edges (students.buddies)

StudentsWithUI.java

 public void setupPortrayals()
 {
 Students students = (Students) state;

 // tell the portrayals what to portray and how to portray them
 yardPortrayal.setField(students.yard);
 yardPortrayal.setPortrayalForAll(new OvalPortrayal2D());
 buddiesPortrayal.setField(new SpatialNetwork2D(

 students.yard, students.buddies));
 buddiesPortrayal.setPortrayalForAll(new SimpleEdgePortrayal2D());

 // reschedule the displayer
 display.reset();
 display.setBackdrop(Color.white);

 // redraw the display
 display.repaint();
 }

Step 8: Portray the Network

• What this means.

• A NetworkPortrayal2D needs two things to draw its edges. First, it needs to
know where the nodes are located in space (using a Continuous2D or
discrete SparseGrid2D field) so it can determine where to draw the edges.
Second, it needs to know the Network so it can extract those edges and
nodes. Since the FieldPortrayal interface only passed one item into
setField, we pass in a special “Field” called a SpatialNetwork2D which
holds onto these two fields for us. The NetworkPortrayal2D is expecting it.

• The SimpleEdgePortrayal2D is a trivial edge portrayal which draws edges as
lines or as triangles, and can color them and label them in various ways. The
default just uses unlabelled black lines.

 buddiesPortrayal.setField(new SpatialNetwork2D(
 students.yard, students.buddies));

 buddiesPortrayal.setPortrayalForAll(new SimpleEdgePortrayal2D());

Output

• Run again, and press Play.

• Woohoo! A network of students.

Step 9: Inspect the Agents

• We’ll begin by adding some instance variables to Student.java which hold
statistics for each of our students: force, which is the average force exerted,
and friendsClose and enemiesCloser, which way the average weighted
distance to friends. These determine the happiness of the agent (lower
values are more happy). getHappiness() and getForce() are read-property
methods and will be recognized and displayed automatically by MASON.

• Reset these variables each step:

Student.java

 double friendsClose = 0.0; // initially very close to my friends
 double enemiesCloser = 10.0; // WAY too close to my enemies
 public double getHappiness() { return friendsClose + enemiesCloser; }

 public double force = 0.0;
 public double getForce() { return force; }

 public void step(SimState state)
 {
 friendsClose = enemiesCloser = force = 0.0;
 Students students = (Students) state;

Step 9: Inspect the Agents

• Now we collect the statistics when gathering the force vectors in step:

Student.java

 if (buddiness >= 0) // the further I am from him the more I want to go to him
 {
 forceVector.setTo((him.x - me.x) * buddiness, (him.y - me.y) * buddiness);
 if (forceVector.length() > MAX_FORCE) // I'm far enough away
 forceVector.setLength(MAX_FORCE);
 friendsClose += forceVector.length();
 }
 else // the nearer I am to him the more I want to get away from him, up to a limit
 {
 forceVector.setTo((him.x - me.x) * buddiness, (him.y - me.y) * buddiness);
 if (forceVector.length() > MAX_FORCE) // I'm far enough away
 forceVector.setLength(0.0);
 else if (forceVector.length() > 0)
 forceVector.setLength(MAX_FORCE - forceVector.length()); // invert the distance
 enemiesCloser += forceVector.length();
 }
 sumForces.addIn(forceVector);
 force += forceVector.length();
 }

Step 9: Inspect the Agents

• Let’s have the agents change color when they’re not so happy. To do this
we’ll make a custom Portrayal for them. We start with some imports in
StudentsWithUI.java:

• Now we’ll replace the OvalPortrayal2D with an anonymous subclass to
change its paint color based on the underlying object’s happiness:

StudentsWithUI.java

import sim.portrayal.*;
import java.awt.*;

 yardPortrayal.setPortrayalForAll(new OvalPortrayal2D()
 {
 public void draw(Object object, Graphics2D graphics, DrawInfo2D info)
 {
 Student student = (Student)object;
 int happinessShade = (int) (student.getHappiness() * 255 / 10.0);
 if (happinessShade > 255) happinessShade = 255;
 paint = new Color(happinessShade, 0, 255 - happinessShade);
 super.draw(object, graphics, info);
 }
 });

Step 9: Inspect the Agents

• What this means.

• OvalPortrayal2D, like all Portrayals, has a draw method which takes the
object to draw (in this case, a Student), the Graphics2D object to draw it
with, and a DrawInfo2D object which provides the (x,y) location, scale, and
clipping rectangle (so we don’t bother drawing if we’re out of the clip)

• OvalPortrayal2D draws by setting the Graphics2D paint to its paint instance
and then drawing a filled circle. We can change the color dynamically by
changing the paint before drawing. We set it to our shade of happiness.

 yardPortrayal.setPortrayalForAll(new OvalPortrayal2D()
 {
 public void draw(Object object, Graphics2D graphics, DrawInfo2D info)
 {
 Student student = (Student)object;
 int happinessShade = (int) (student.getHappiness() * 255 / 10.0);
 if (happinessShade > 255) happinessShade = 255;
 paint = new Color(happinessShade, 0, 255 - happinessShade);
 super.draw(object, graphics, info);
 }
 });

Output

• Run again, and press Play.

• Now the student are red when
unhappy, blue when happy.

• Double-click on a student, and you
can select it from the Inspectors list,
and see its happiness and force.

Step 10: Inspect the Model

• Let’s finish up by providing a model inspector and some charts and graphs.
We begin by declaring that the global model object to be inspected is the
Students instance. In StudentsWithUI.java add the following method:

• Ordinarily a model inspector is for knobs we tweak to manipulate model
parameters. For that a non-volatile (non-constantly-updating) inspector is
best. But in this example we’ll be adding some properties which are
constantly updated as the model progresses. So we need to make the
inspector volatile. To do that we just override the getInspector method:

StudentsWithUI.java

public Object getSimulationInspectedObject() { return state; }

 public Inspector getInspector()
 {
 Inspector i = super.getInspector();
 i.setVolatile(true);
 return i;
 }

Step 10: Inspect the Model

• Next we need to add some inspectable properties in the Students.java file:

Students.java

 public int getNumStudents() { return numStudents; }
 public void setNumStudents(int val) { if (val > 0) numStudents = val; }

 public double getForceToSchoolMultiplier() { return forceToSchoolMultiplier; }
 public void setForceToSchoolMultiplier(double val)
 {
 if (forceToSchoolMultiplier >= 0.0) forceToSchoolMultiplier = val;
 }

 public double getRandomMultiplier() { return randomMultiplier; }
 public void setRandomMultiplier(double val)
 {
 if (randomMultiplier >= 0.0) randomMultiplier = val;
 }
 public Object domRandomMultiplier() { return new sim.util.Interval(0.0, 100.0); }

Step 10: Inspect the Model

• What this means.

• These are all read/write properties (they have both getFoo and setFoo), and
MASON automatically recognizes them and displays them as editable.

• The domFoo pattern (here domRandomMultiplier) is special to MASON: it
allows us to specify the domain of a read/write property. Here we’re stating
that the property must be between 0.0 and 100.0. MASON responds by
displaying not just an ordinary text field, but one with a slider.

• Fun fact: if you have an integer property, you can return a slider interval if you
like; or instead return a domain that’s an array of Strings, which MASON will
convert to a pop-up menu list. The integer chosen is the index in the array!

 public double getRandomMultiplier() { return randomMultiplier; }
 public void setRandomMultiplier(double val)
 {
 if (randomMultiplier >= 0.0) randomMultiplier = val;
 }
 public Object domRandomMultiplier() { return new sim.util.Interval(0.0, 100.0); }

Step 10: Inspect the Model

• Let’s add a read-only property that returns the average force over all
students:

Students.java

 public double getAverageForce()
 {
 Bag students = buddies.getAllNodes();
 double force = 0.0;

 for(int i = 0; i < students.numObjs; i++)
 {
 force += ((Student)(students.objs[i])).getForce();
 }
 if (students.numObjs > 1) force /= students.numObjs;
 return force;
 }

Step 10: Inspect the Model

• Last, let’s add an unusual property which returns an array of all the
happinesses of all the students. We can use this to create a histogram.

Students.java

 public double[] getHappinessDistribution()
 {
 Bag students = buddies.getAllNodes();
 double[] distro = new double[students.numObjs];

 for(int i = 0; i < students.numObjs; i++)
 distro[i] = ((Student)(students.objs[i])).getHappiness();
 return distro;
 }

Output

• A new tab (“Model”) has appeared in
the Console. Click on it to see the
various parameters included.

• Try changing the number of students
and pressing Play.

• Try changing the RandomMultiplier
during play.

• The magnifying glasses offer
additional options. Try charting the
average force, or making a histogram
of the happiness distribution.

• Note that charts/histograms must be
set up after you the simulation has begun play. You can do this by pressing
pause, then setting them up, then unpausing. The charts and histograms
presently only reflect the current simulation: after stopping, they’re invalid.

WCSS 2008 MASON Tutorial

Sean Luke
George Mason University

http://cs.gmu.edu/~eclab/projects/mason/

MASON is a joint production of
	 the GMU Department of Computer Science and
	 the GMU Center for Social Complexity

