Image Primitives and Correspondence

Jana Kosecka George Mason University

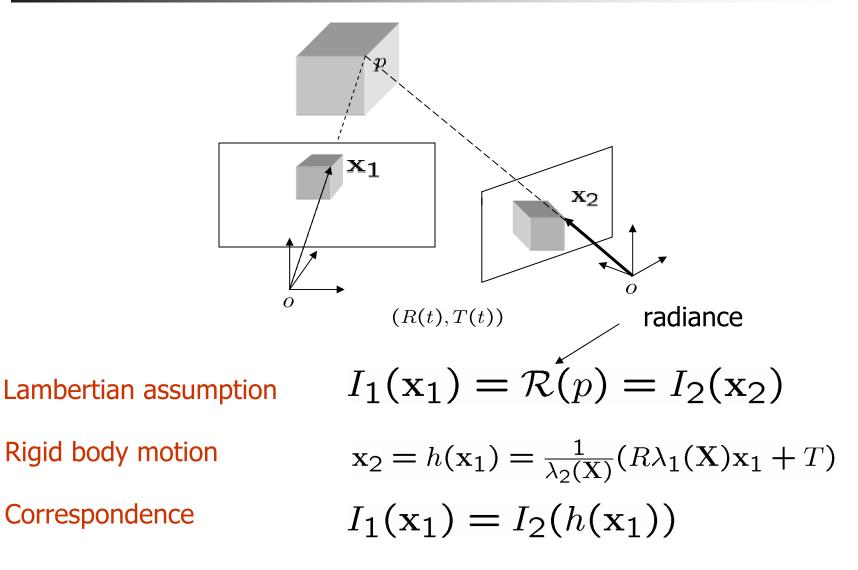
Image Primitives and Correspondence

Given an image point in left image, what is the (corresponding) point in the right image, which is the projection of the same 3-D point

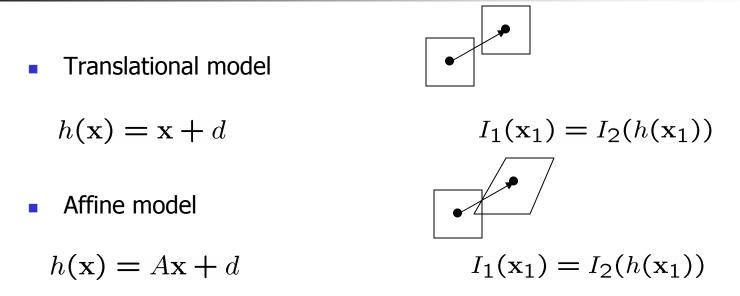
Image Primitives and Correspondence

Difficulties – ambiguities, large changes of appearance, due to change Of viewpoint, non-uniquess

Matching - Correspondence



Local Deformation Models



 Transformation of the intensity values taking into account occlusions and noise

$$I_1(\mathbf{x}_1) = f_o(\mathbf{X}, g)I_2(h(\mathbf{x}_1) + n(h(\mathbf{x}_1)))$$

Feature Tracking and Optical Flow

• Translational model

$$I_1(\mathbf{x}_1) = I_2(\mathbf{x}_1 + \Delta \mathbf{x})$$

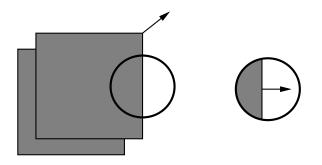
• Small baseline

$$I(\mathbf{x}(t), t) = I(\mathbf{x}(t) + \mathbf{u}dt, t + dt)$$

• RHS approximation by the first two terms of Taylor series

$$\nabla I(\mathbf{x}(t), t)^T \mathbf{u} + I_t(\mathbf{x}(t), t) = 0$$

• Brightness constancy constraint



• Normal flow

$$\mathbf{u}_n \doteq \frac{\nabla I^T \mathbf{u}}{\|\nabla I\|} \cdot \frac{\nabla I}{\|\nabla I\|} = -\frac{I_t}{\|\nabla I\|} \cdot \frac{\nabla I}{\|\nabla I\|}$$

Given brightness constancy constraint at single point – all we can recover is normal flow

Optical Flow

• Integrate around over image patch

$$E_b(\mathbf{u}) = \sum_{W(x,y)} [\nabla I^T(x,y,t) \mathbf{u}(x,y) + I_t(x,y,t)]^2$$

• Solve

$$\nabla E_{b}(\mathbf{u}) = 2 \sum_{W(x,y)} \nabla I(\nabla I^{T}\mathbf{u} + I_{t})$$

$$= 2 \sum_{W(x,y)} \left(\begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix} \mathbf{u} + \begin{bmatrix} I_{x}I_{t} \\ I_{y}I_{t} \end{bmatrix} \right)$$

$$\left[\sum_{\Sigma} I_{x}I_{y} & \Sigma I_{y}^{2} \\ \Sigma I_{x}I_{y} & \Sigma I_{y}^{2} \end{bmatrix} \mathbf{u} + \begin{bmatrix} \sum_{T} I_{x}I_{t} \\ \Sigma I_{y}I_{t} \end{bmatrix} = 0$$

$$G\mathbf{u} + \mathbf{b} = \mathbf{0}$$

Optical Flow, Feature Tracking

$$\mathbf{u} = -G^{-1}\mathbf{b}$$

$$G = \left[\begin{array}{cc} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{array} \right]$$

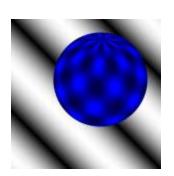
Conceptually:

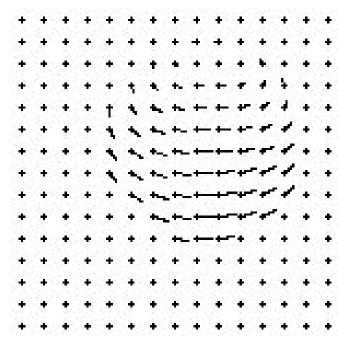
rank(G) = 0 blank wall problem
rank(G) = 1 aperture problem
rank(G) = 2 enough texture - good feature candidates

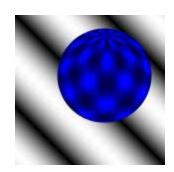
In reality: choice of threshold is involved

Optical Flow

• Previous method - assumption locally constant flow



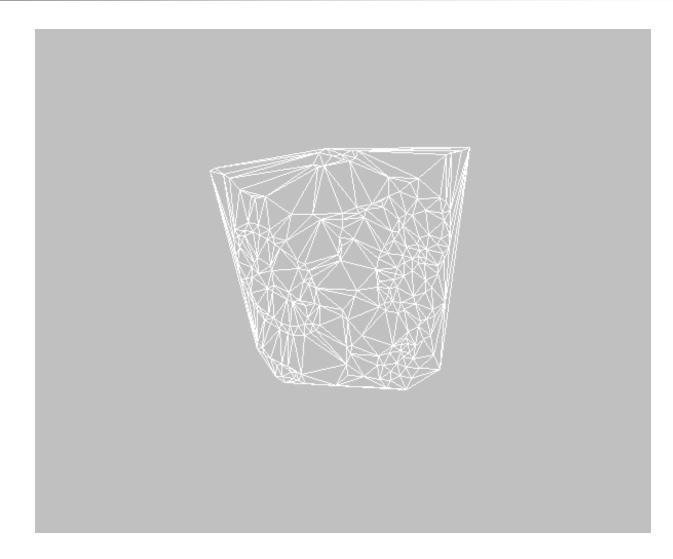




- Alternative regularization techniques (locally smooth flow fields, integration along contours)
- Qualitative properties of the motion fields

Feature Tracking

3D Reconstruction - Preview



$$G = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$$

- Compute eigenvalues of G
- If smalest eigenvalue σ of G is bigger than τ mark pixel as candidate feature point

• Alternatively feature quality function (Harris Corner Detector)

$$C(G) = \det(G) + k \cdot \operatorname{trace}^2(G)$$

Harris Corner Detector - Example

Wide baseline matching

Point features detected by Harris Corner detector

Region based Similarity Metric

• Sum of squared differences

$$SSD(h) = \sum_{\tilde{\mathbf{x}} \in W(\mathbf{x})} \|I_1(\tilde{\mathbf{x}}) - I_2(h(\tilde{\mathbf{x}}))\|^2$$

• Normalize cross-correlation

$$NCC(h) = \frac{\sum_{W(\mathbf{x})} (I_1(\tilde{\mathbf{x}}) - \overline{I}_1) (I_2(h(\tilde{\mathbf{x}})) - \overline{I}_2))}{\sqrt{\sum_{W(\mathbf{x})} (I_1(\tilde{\mathbf{x}}) - \overline{I}_1)^2 \sum_{W(\mathbf{x})} (I_2(h(\tilde{\mathbf{x}})) - \overline{I}_2)^2)}}$$

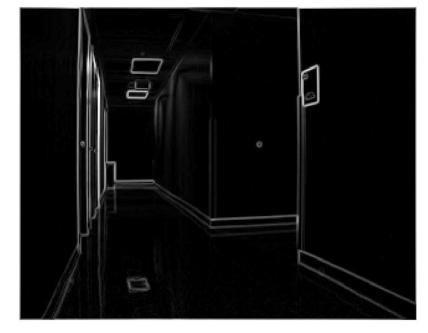
• Sum of absolute differences

$$SAD(h) = \sum_{\tilde{\mathbf{x}} \in W(\mathbf{x})} |I_1(\tilde{\mathbf{x}}) - I_2(h(\tilde{\mathbf{x}}))|$$

NCC score for two widely separated views

NCC score

Edge Detection



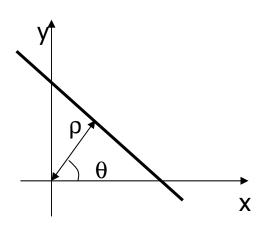
original image

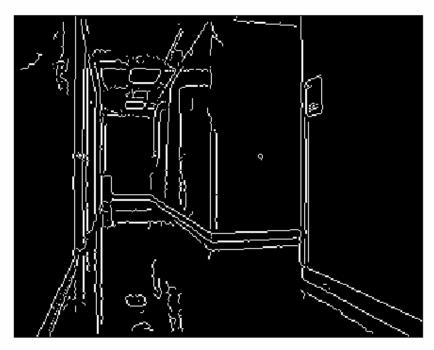
gradient magnitude

Canny edge detector

- Compute image derivatives
- if gradient magnitude > τ and the value is a local maximum along gradient direction pixel is an edge candidate

Line fitting





Non-max suppressed gradient magnitude

- Edge detection, non-maximum suppression

 (traditionally Hough Transform issues of resolution, threshold selection and search for peaks in Hough space)
- Connected components on edge pixels with similar orientation
 - group pixels with common orientation

Line Fitting

$$A = \left[\begin{array}{ccc} \sum x_i^2 & \sum x_i y_i \\ \sum x_i y_i & \sum y_i^2 \end{array} \right]$$

second moment matrix associated with each connected component v_1 - eigenvector of A

- $v_1 = [\cos(\theta), \sin(\theta)]^T$
- $\theta = \arctan(v_1(2)/v_1(1))$
- $\rho = \bar{x}\sin(\theta) \bar{y}\cos(\theta)$
- Line fitting lines determined from eigenvalues and eigenvectors of A
- Candidate line segments associated line quality

ICRA 2004