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i Overview

- Calibration with a rig

- Uncalibrated epipolar geometry
- Ambiguities in image formation
- Stratified reconstruction

- Autocalibration with partial scene knowledge
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Uncalibrated Camera
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i Uncalibrated Camera

X =[X,Y,Zz,W]T e R*, (W =1)

Calibrated camera
. Image plane coordinates X = [x, ¥, 1]T

. Camera extrinsic parameters ¢ = (R, T") y}[;{
C
. Perspective projection Ax = [R,T]X /
0 [f?
. (vaz;)\‘\‘»()
Uncalibrated camera l 1%

. Pixel coordinates X' = KX

x' e
. Projection matrix A\x’ = NX = [KR, KT]X // /
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Taxonomy on Uncalibrated Reconstruction

Mx'= [KR, KT]X

. K is known, back to calibrated case x = K 1x’
- K is unknown

« Calibration with complete scene knowledge (a rig) -
estimate K

= Uncalibrated reconstruction despite the lack of knowledge
of K
= Autocalibration (recover K from uncalibrated images)

- Use partial knowledge
« Parallel lines, vanishing points, planar motion, constant
Intrinsic

- Ambiguities, stratification (multiple views)
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Calibration with a Rig

Use the fact that both 3-D and 2-D coordinates of feature
points on a pre-fabricated object (e.g., a cube) are known.
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Calibration with a Rig

- Given 3-D coordinates on known object X

. _ | xe
M = [KR,KT]X mmp \x' =NX x’ 77; yi
A yz — | T2 Zi
- Eliminate unknown scales i | wd | 1
2(7iX) = #iX, -
yz(WgX) = W%X

. Recover projection matrix N = [KR,KT]| = [R/,T’]
M8 = [r11, 721, 31, T12, 122, T32, T13, T23, T33, 14, T24, T34]©

min [|[MN%||2 subject to |N%||2=1

- Factor the KR into R € SO(3) and K using QR decomposition
. Solve for translation 7'= K~ 171"
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i Uncalibrated Camera vs. Distorted Space

Inner product in Euclidean space: compute
distances and angles
(u,v) = ulw
Calibration K transforming spatial coordinates

$:R3 5 R3; XX =KX
Transformation induced a new inner product
(71 (u), ¢ (v)) = ! KT K=o = ul'Sv

- S (the metric of the space) andK are equivalent

(p~H(u), o7 (v)) = w' K~T K~ 1o
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Calibrated vs. Uncalibrated Space

Figure 6.1. Effect of the matrix /K as amap A : v — u = Kwv, where points on the sphere

o]

PR . . . 3 : ‘i . wn .
2 = 1 is mapped to points on an ellipsoid |u||g = 1 (a “unit sphere” under the metric
S). Principal axes of the ellipsoid are exactly the eigenvalues of S,
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i Calibrated vs. Uncalibrated Space

.-—"/f—._'_._‘_‘_‘-_-hh\‘-\h.

Distances and angles are modified by S
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i Motion in the Distorted Space

X(t) = R(t)X(t0) + T'(¢) KX(t) = KR(t)X(to) + KT'(¢)

Calibrated space Uncalibrated space

X(t) = R()X(to) + T(t) X'(t) = KRt)K 1X'(to) + KT(t)

- Uncalibrated coordinates are related by

—1 /
G,:{g,:[KR(I)( 7; ]|T'ER3,R€SO(3)}

- Conjugate of the Euclidean group
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i Uncalibrated Camera or Distorted Space

Uncalibrated camera with a calibration matrix K
viewing points in Euclidean space and moving with
(R,T) is equivalent to a calibrated camera viewing
points in distorted space governed by S and moving
with a motion conjugate to (R,T)
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i Uncalibrated Epipolar Geometry

AoKxo = KRA\x1 + KT Aoxb = KRK-1\x)| + 1"
/XR

(R,T)

T

- Epipolar constraint x> K ITRK 1x'y =0
Y

- Fundamental matrix F = K I1TTRK™1

. Equivalent forms of F =K TTRK 1 =T'KRK™1
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Properties of the Fundamental Matrix

x'LFx/{ =0

- Epipolar lines 11,12

- Epipoles €1, €2

correspondences

l1 ~ F1x) Hx! = l> ~ Fx]
Fep =0 e, =0 egF:
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Properties of the Fundamental Matrix

A nonzero matrix F € R3%3 is a fundamental matrix if F has
a singular value decomposition (SVD) F = UV {with

2 = diag{Ul,O'Q,O}
for some 01,00 € Ry .

There is little structure in the matrix F' except that

det(F') =0
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What Does F Tell Us?

F' can be inferred from point matches (eight-point
algorithm)

Cannot extract motion, structure and calibration from one
fundamental matrix (two views)

F allows reconstruction up to a projective transformation
(as we will see soon)

F' encodes all the geometric information among two views
when no additional information is available
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Decomposing the Fundamental Matrix

F=K TTRK1=T'"KRK™1

- Decomposition of the fundamental matrix into a skew
symmetric matrix and a nonsingular matrix

F—=N=[R.T] = F=TR.
- Decomposition of F'is not unique
X’Qf’(T’vT + KRK UD)x, =0 T'=KT

- Unknown parameters - ambiguity
U — [’U]_,’UQ, v3]T S §R37 Vg € s

- Corresponding projection matrix

N=[KRK 14 Tl vsT"]

ICRA 2004, New Orleans



i Ambiguities in Image Formation

ngj fxy Ox
O fsy oy
0 0 1

Potential ambiguities A\x" = KMpgX K =

A = MNX = KMogX = KRy RoMoH " Hygyy "X

"

—~

N X

Ambiguity it/ (can be recovered uniquely - QR)
Ax' = KMggX = KR 'Ro[R, T1X = KMpgX
Structure of the motion parameters

9X = ggytguX

Just an arbitrary choice of reference coordinate frame

|
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Ambiguities in Image Formation

Structure of motion parameters
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Ambiqguities in Image Formation

Structure of the projection matrix N = [KR, KT
M =NX = (NH HY(HX) =0X
For any invertible 4 x 4 matribH

In the uncalibrated case we cannot distinguish between [

camera imacXig word frof1 camera  imaging distoXad
world

H

In general, is of *~ follmpi-g £mres
g , a0 ]

H ! =
UT V4

In order to preserve thtd choice of the first reference frame we

can restrict some DOF of
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Structure of the Projective Ambiguity

- For i-th frame

Nix'i = KiMggieXe = (KiMogie H™ 1) (HXe) = N Xp
. 15t frame as reference A\1x'1 = K1MgXe

KiNoH 'HX, = N1,X,

- Choose the projective reference frame

. K1 o
My, = [I3x3,0] then ambiguityis F~1 =| "1,
(¥ Vg
.+ H~1 can be further decomposed as
—1 1
Xq
Xe
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Geometric Stratification (cont)

Camera projection 3-D structure
_ o o R T,
Euclid. |IT1e = [K,0], IT2e = [KR, KT| | Xe = geX = 0 X
. R - K 0
Affine [Ilo, = [KRK *, KT’ X,=H,X. = 5 X,
Project. |I1o, = [KRK ' + KTv" ,vsKT]| X, = H, X, = f o {f | Xa
—1 '?_-’__l ?'-l
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Projective Reconstruction

From points, extracll , from which extractll ancX,,
I_Ilp = [1, O], |_|2p = [B, b]
Canonical decomposition

F — MNy,=1[, 0], Ny = [(THTF, T']

Projection matrices

[l 2po

[Ia O] Xp:
[(THTF, T X,.

/

Theorem 7.6 (Projective reconstruction). Let F' (111,112} and (11, 1l2) possible pairs of pro-
jection matrices that yield the same Fundamental matriz F'. Then there exists a nonsingular trans-

formation matriz H, such that Ils = s H -1 or equivalently Ts = 1o H,.
J I = & P 1 Y & - I
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Projective Reconstruction

- Given projection matrices recover projective structure

- This is a linear problem and can be solve using least-
squares techniques.

- Given 2 images and no prior information, the scene can be
recovered up a 4-parameter family of solutions. This is the
best one can do without knowing calibration!
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Affine Upgrade

Upgrade projective structure to an affine structure

—1 . L
Hy = = vl vy Xo = H, Xy

"l

Exploit partial scene knowledge
= Vanishing points, no skew, known principal point
Special motions

=« Pure rotation, pure translation, planar motion,
rectilinear motion S
ﬁ—f—ﬁ/

Constant camera parameters (multi-view) ;
/ ] II //u'll
J-__,-"Jlr/ al //, |
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* Affine Upgrade Using Vanishing Points

I O

Hl=| - ] maps points on the plane

P vt g

[v,v4]'Xp =0

to points X, = H, 'X; with affine coordinates

Xa = [X,Y, 2(0]7

ICRA 2004, New Orleans



* Vanishing Point Estimation from Parallelism
X3

[v,v4]TX}, =0,i=1,2,3
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i Euclidean Upgrade

- Exploit special motions (e.g. pure rotation)

Re= KRK~1 = R,(KK!)R!I = (KK").

- If Euclidean is the goal, perform Euclidean
reconstruction directly (no stratification)

- Direct autocalibration (Kruppa’s equations)

- Multiple-view case (absolute quadric)
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i Direct Autocalibration Methods
The fundamental matrix
F=K TTRK-1=T'"KRK™!
satisfies the Kruppa’s equations
~ ~T
FKKTF!I =T'KKTT!
If the fundamental matrix is known up to scale
~ —~T
FKKTF!I = X2T'KKTT!
Under special motions, Kruppa’s equations become linear.

Solution to Kruppa’s equations is sensitive to noises.
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Direct Stratification from Multiple Views

From the recovered projective projection matrix
Mip = NieH 1 =[B;,b], B; € R3%3,b; € R3

we obtain the absolute quadric contraints
(B; — b KK (B; — bl )l = A\KK'

Partial knowledge in K (e.g. zero skew, square pixel) renders
the above constraints linear and easier to solve.

The projection matrices can be recovered from the multiple-view
rank method to be introduced later.
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Direct Methods - Summary

Kruppa’s equations

Modulus constraint

Absolute quadric constraint

Known F F T, = ILH !
Unknowns St=KKT v = [vy, va, L-‘;;:T S~ 1and v
# of equations 2 | 5
Orders 2" order A" order 37 order
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Summary of (Auto)calibration Methods

Euclidean Affine Projective
: R T K O . I 0
Transformation | ge = 0 1 H, = 0 1 Hp = —va04 1 v4 1
Projection = [KR, KT] o =MNH ! Ny ="N.H,"
3-step upgrade Xe ¢+ Xg Xa +— Xp Xp  {x7,%5}

Info. needed

Calibration K Plane at infinity

T - t.T Fundamental matrix F
Moo = [v7,v4]

Lyapunov eqn. Vanishing points

Methods Pure rotation Pure translation Canonical decomposition
Kruppa's egn. | Modulus constraint

2-step upgrade Xe + Xp Xp  {x}m,

Info. needed Calibration K and 7l = [v!, v4] Multiple-view matrix*

Methods Absolute quadric constraint Rank conditions*

1-step upgrade {x; ), « {x}",

Info. needed Calibration K

Methods

Orthogonality & parallelism, symmetry or calibration rig
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