Vision-based Landing of an Unmanned Air Vehicle

O. Shakernia, R. Vidal, S. Sastry Department of EECS, UC Berkeley

Applications of Vision-based Control

Global Hawk

UCAV X-45

Fire Scout

Goal: Autonomous landing on a ship deck

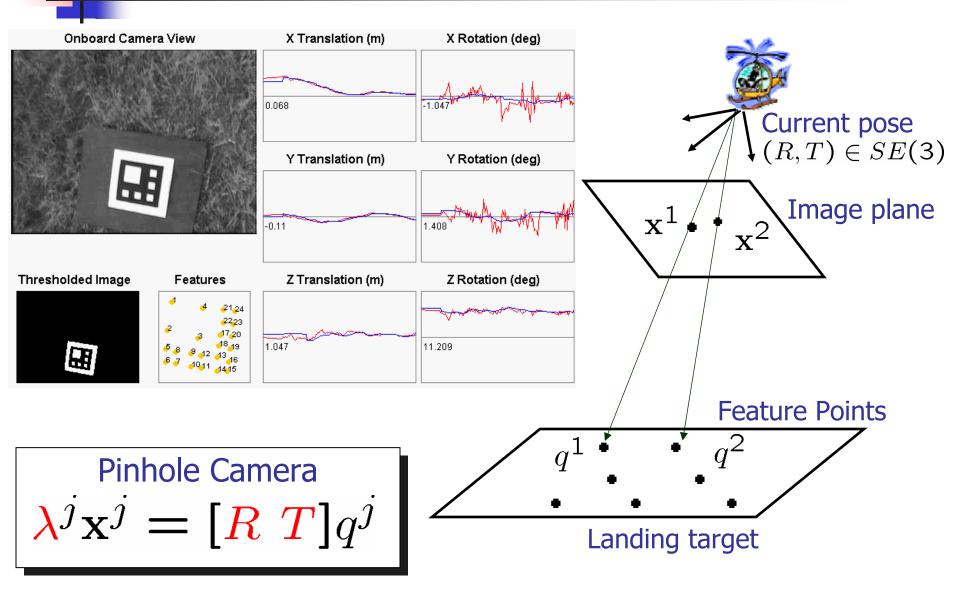
Challenges

- Hostile environments
 - Ground effect
 - Pitching deck
 - High winds, etc

Why vision?

- Passive sensor
- Observes relative motion

Simulation: Vision in the loop



Vision-Based Landing of a UAV

- Motion estimation algorithms
 - Linear, nonlinear, multiple-view
 - Error: 5cm translation, 4° rotation
- Real-time vision system
 - Customized software
 - Off-the-shelf hardware
- Vision in Control Loop
- Landing on stationary deck
- Tracking of pitching deck

Vision-based Motion Estimation

Pose Estimation: Linear Optimization

- Pinhole Camera:
- Epipolar Constraint:
- Planar constraint:

 $0 = \widehat{\mathbf{x}_i} \begin{bmatrix} r_1 & r_2 & T \end{bmatrix} \begin{bmatrix} q_{i1} \\ q_{i2} \\ 1 \end{bmatrix}$

$$\lambda_{i} \mathbf{x}_{i} = \begin{bmatrix} R & T \end{bmatrix} q_{i}$$

$$0 = \widehat{\mathbf{x}_{i}} \begin{bmatrix} R & T \end{bmatrix} q_{i}$$

$$0 = e_{3}^{T} q_{i} \quad \forall i$$

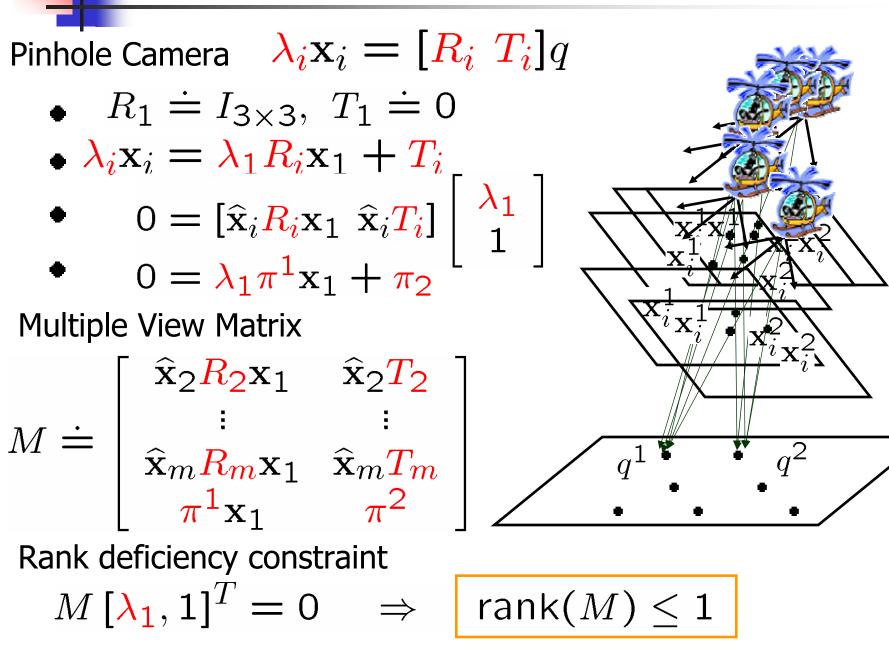
$$\Rightarrow \quad G \begin{bmatrix} \mathbf{r}_{1} \\ \mathbf{r}_{2} \\ T \end{bmatrix} = 0$$

- More than 4 feature points $\Rightarrow \operatorname{rank}(G) = 8$ • Solve linearly for $[r_1^T \ r_2^T \ T^T]^T \in \mathbb{R}^9$
- Project $[r_1 \ r_2 \ 0] \in \mathbb{R}^{3 \times 3}$ onto SO(3)to recover R

Objective: minimize error

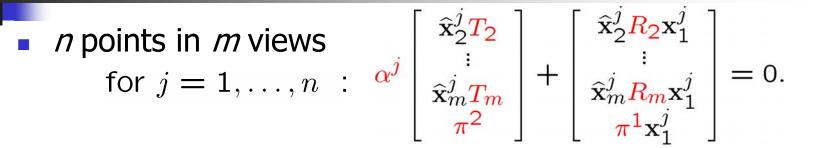
$$G_i = \widehat{\mathbf{x}_i} [\mathbf{R} \ \mathbf{T}] q_i$$
$$G = [G_1^T \ \dots \ G_n^T]^T$$

Parameterize rotation by Euler angles


$$R = R_{\mathbf{z}}(\boldsymbol{\psi}) R_{\mathbf{y}}(\boldsymbol{\theta}) R_{\mathbf{x}}(\boldsymbol{\phi})$$
$$\beta = [\boldsymbol{\psi} \ \boldsymbol{\theta} \ \boldsymbol{\phi} \ T_{x} \ T_{y} \ T_{z}]^{T} \in \mathbb{R}^{6}$$

Minimize by Newton-Raphson iteration

$$\beta_{n+1} = \beta_n - k_n (D_\beta G|_{\beta_n})^{\dagger} G(q, \mathbf{x}, \beta_n)$$


Initialize with linear algorithm ICRA 2004

Multiple-View Motion Estimation

g

Multiple-View Motion Estimation

• Equivalent to finding $\pi \in \mathbb{R}^4$, $\vec{R_i} \in \mathbb{R}^9$ and $\vec{T_i} \in \mathbb{R}^3$, s.t.

$$\begin{bmatrix} \mathbf{x}_{1}^{1T} & \boldsymbol{\alpha}^{1} \\ \vdots & \vdots \\ \mathbf{x}_{1}^{nT} & \boldsymbol{\alpha}^{n} \end{bmatrix} \boldsymbol{\pi}^{T} = 0, \qquad \begin{bmatrix} \boldsymbol{\alpha}^{1} \hat{\mathbf{x}}_{i}^{1} & \hat{\mathbf{x}}_{i}^{1} * \mathbf{x}_{1}^{1T} \\ \vdots & \vdots \\ \boldsymbol{\alpha}^{n} \hat{\mathbf{x}}_{i}^{n} & \hat{\mathbf{x}}_{i}^{n} * \mathbf{x}_{1}^{nT} \end{bmatrix} \begin{bmatrix} \vec{T}_{i} \\ \vec{R}_{i} \end{bmatrix} = 0$$

• Initialize R_2, T_2, π with two-view linear solution

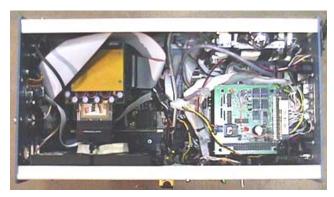
• Least squared solution:
$$\alpha^{j} = -\frac{(\widehat{\mathbf{x}}_{2}^{j}T_{2})^{T}\widehat{\mathbf{x}}_{2}^{j}R_{2}\mathbf{x}_{1}^{j} + \pi^{2}\pi^{1}\mathbf{x}_{1}^{j}}{||\widehat{\mathbf{x}}_{2}^{j}T_{2}||^{2} + (\pi^{2})^{2}}$$

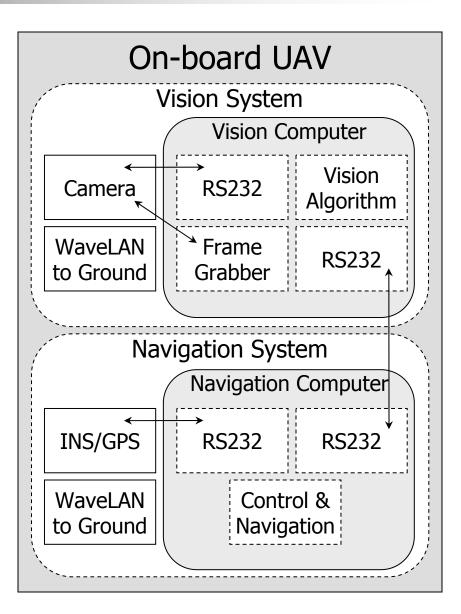
- Use α^{j} to linearly solve for $\pi, \vec{R}_{i}, \vec{T}_{i}$
- Iterate until α^{j} converge

Real-time Vision System

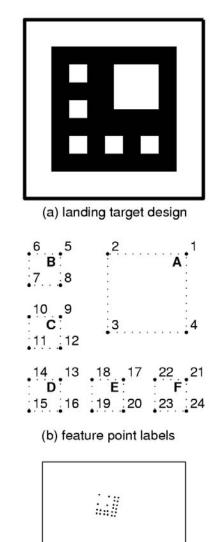
- Ampro embedded Little Board PC
 - Pentium 233MHz running LINUX
 - 440 MB flashdisk HD robust to vibration
 - Runs motion estimation algorithm
 - Controls Pan/Tilt/Zoom camera
- Motion estimation algorithms
 - Written and optimized in C++ using LAPACK
 - Estimate relative position and orientation at 30 Hz

Pan/Tilt Camera

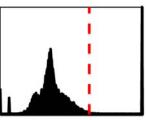

Onboard Computer


UAV ICRA 2004

Hardware Configuration



Feature Extraction


- Acquire Image
- Threshold Histogram
- Segmentation
- Target Detection
- Corner Detection
- Correspondence

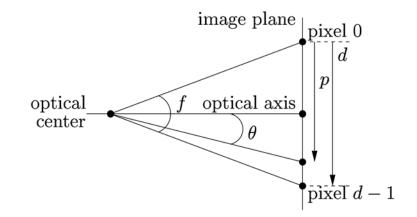
(c) detected corners


(d) camera view

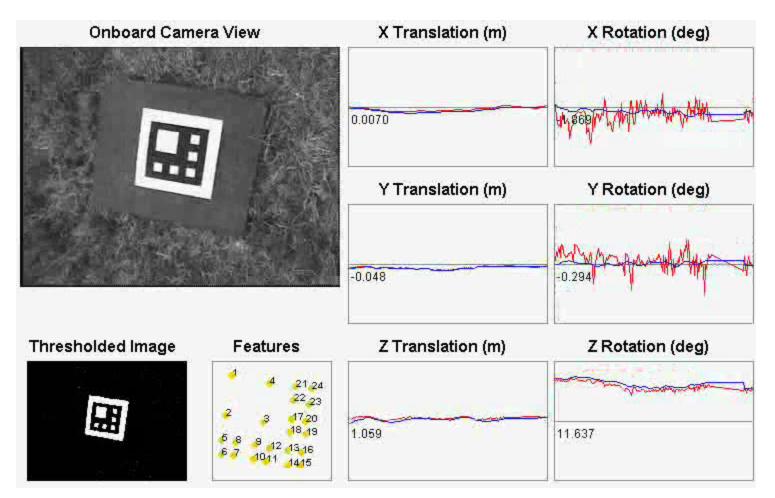
(e) histogram

(f) thresholded image

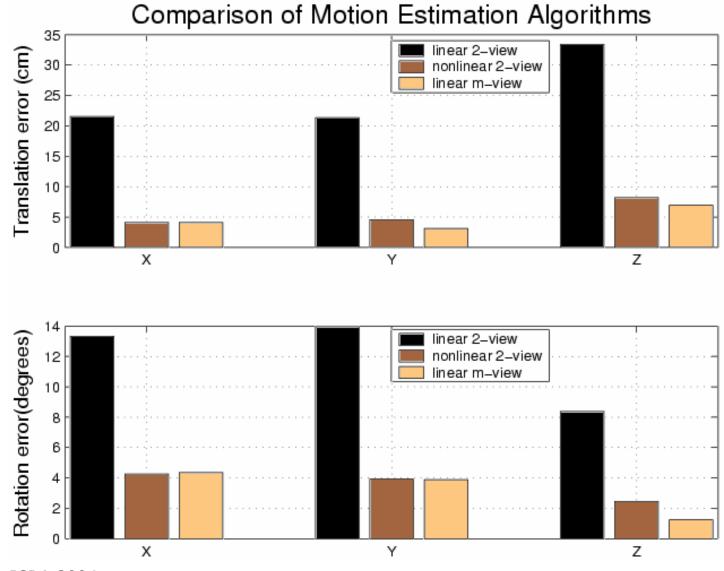
(g) foreground regions


ICRA 2004

Camera Control


Pan/Tilt to keep features in image center

- Prevent features from leaving field of view
- Increased Field of View
- Increased range of motion of UAV



Comparing Vision with INS/GPS

Motion Estimation in Real Flight Tests

ICRA 2004

Landing on Stationary Target

Tracking Pitching Target

Vision-Based Landing of a UAV

Omid Shakernia Dept of EECS, UC Berkeley http://robotics.eecs.berkeley.edu/~omids

Conclusions

Contributions

- Vision-based motion estimation (5cm accuracy)
- Real-time vision system in control loop
- Demonstrated proof of concept prototype: first vision-based UAV landing
- Extensions
 - Dynamic vision: Filtering motion estimates
 - Symmetry-based motion estimation
 - Fixed-wing UAVs: Vision-based landing on runways
 - Modeling and prediction of ship deck motion
 - Landing gear that grabs ship deck
 - Unstructured environments: Recognizing good landing spots (grassy field, roof top etc)