Reconstruction of Multiple Motions using Generalized Principal Component Analysis (GPCA)

René Vidal

Center for Imaging Science
Johns Hopkins University

One-body two-views

Multiple-bodies two-views

Motivation and problem statement

- A static scene: multiple 2D motion models

- A dynamic scene: multiple 3D motion models

- Given an image sequence, determine
- Number of motion models (affine, Euclidean, etc.)
- Motion model: affine (2D) or Euclidean (3D)
- Segmentation: model to which each pixel belongs

Prior work: chicken-and-egg problem

- Probabilistic techniques
- Generative model
- data membership + motion model
- Expectation Maximization

- E-step: Given motion models, segment image data
- M-step: Given data segmentation, estimate motion models
- 2-D Motion Segmentation
- Layered representation (Jepson-Black'93, Ayer-Sawhney '95, DarrelPentland'95, Weiss-Adelson'96, Weiss'97, Torr-Szeliski-Anandan '99)
- 3-D Motion Segmentation
- EM+Reprojection Error: Feng-Perona'98
- EM+Model Selection: Torr '98
- How to initialize iterative algorithms?

Prior work on 2-D motion segmentation

- Local methods (Wang-Adelson '93)
- Estimate one model per pixel using data in a window
- Cluster models with K-means
- Iterate
- Aperture problem
- Motion across boundaries
- Global methods (Irani-Peleg '92)
- Dominant motion: fit one motion model to all pixels
- Look for misaligned pixels \& fit a new model to them
- Iterate

Prior work on 3-D motion segmentation

- Factorization techniques, multiple views
- Orthographic/discrete: Costeira-Kanade '98, Gear '98, Kanatani'01,'02,'03, Zelnik-Manor-Irani'03, Vidal-Hartley'04
- Perspective/continuous: Vidal-Soatto-Sastry '02
- Omnidirectional/continuous: Shakernia-Vidal-Sastry ${ }^{\circ} 03$
- Special cases:
- Points in a line (orth-discrete): Han and Kanade '00
- Points in a line (persp.-continuous): Levin-Shashua '01
- Points in a conic (perspective): Avidan-Shashua ${ }^{\prime} 01$
- Points in moving in planes: Sturm '02
- 2-body case: Wolf-Shashua `01

Our approach to motion segmentation

- Solve the initialization problem algebraically
- Number of motions = degree of a polynomial
- Motion parameters = factors of a polynomial
- Estimation of multiple motion models equivalent to estimation of one multibody motion model
- Eliminate feature clustering
- Find equation that does not depend on data clustering
- Estimate multibody motion model to all image data
- Fit a complex polynomial to data
- Segment multibody motion model
- Compute derivatives of the polynomial
- Applies to most motion models in vision
- 2-D: translational, similarity and affine
- 3-D: translational, fundamental matrix, homography, trifocal tensors, multiple affine cameras

Segmentation of 2-D translational motions

- Scene having multiple optical flows
$\left\{\boldsymbol{u}_{i} \in \mathbb{P}^{2}\right\}_{i=1}^{n}$
- Brightness constancy constraint (BCC) gives

$$
\boldsymbol{y}^{T} \boldsymbol{u}=I_{x} u+I_{y} v+I_{t}=0
$$

Optical flow

Group 2

Group 1

Group 3

- Multiple BCCs
- Multibody brightness constancy constraint

$$
p_{2}(\boldsymbol{y})=\left(\boldsymbol{u}_{1}^{T} \boldsymbol{y}\right)\left(\boldsymbol{u}_{2}^{T} \boldsymbol{y}\right)=0
$$

How to segment motions in general?

- One motion - one subspace: Principal Component Analysis (PCA)

- Multiple motions - multiple subspaces Generalized Principal Component Analysis (PCA)

Generalized Principal Component Analysis

- Given points on multiple subspaces, identify
- The number of subspaces and their dimension
- A basis for each subspace
- The segmentation of the data points
- "Chicken-and-egg" problem
- Given segmentation, estimate subspaces
- Given subspaces, segment the data
- Prior work

- Geometric approaches: 2 planes in R^{3} (Shizawa-Maze '91)
- Factorization approaches: (Boult-Brown '91, Costeira-Kanade '98, Kanatani '01) cluster the data+ apply standard PCA to each cluster
- Iterative algorithms: e.g. K-plane clustering (Bradley'00)
- Probabilistic approaches (Tipping-Bishop `99): learn the parameters of a mixture model using e.g. EM
- Initialization?

Motivating example: algebraic clustering in 1D

How to compute n, c, b's?

- Number of clusters

$$
n \doteq \min \left\{i: \operatorname{rank}\left(P_{i}\right)=i\right\}
$$

- Cluster centers Roots of $p_{n}(x)$
- Solution is unique if

$$
N_{\text {points }} \geq n_{\text {groups }}
$$

- Solution is closed form if

$$
n_{\text {groups }} \leq 4
$$

GPCA: n hyperplanes $=1$ polynomial of deg n

- 1-dimensional case

$$
\begin{aligned}
\left(x-b_{1}\right) \cdots\left(x-b_{n}\right) & =0 \\
\sum_{i=0}^{n} c_{i} x^{i} & =0
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
x_{1}^{n} & \cdots & x_{1} & 1 \\
\vdots & & \vdots & \vdots \\
x_{N}^{n} & \cdots & x_{N} & 1
\end{array}\right] \boldsymbol{c}=\mathbf{0}
$$

- K-dimensional case

$$
\begin{array}{r}
p_{n}(\boldsymbol{x})=\left(\boldsymbol{b}_{1}^{T} \boldsymbol{x}\right) \cdots\left(\boldsymbol{b}_{n}^{T} \boldsymbol{x}\right)=0 \\
\sum_{I} c_{I} \boldsymbol{x}^{I}=\nu_{n}(\boldsymbol{x})^{T} \boldsymbol{c}=0
\end{array}
$$

$$
\left[\begin{array}{c}
\nu_{n}\left(\boldsymbol{x}_{1}\right)^{T} \\
\vdots \\
\nu_{n}\left(\boldsymbol{x}_{N}\right)^{T}
\end{array}\right] \boldsymbol{c}=\mathbf{0}
$$

GPCA: the case of hyperplanes

- Identify $n(K-1)$-dimensional subspaces of \mathbb{R}^{K}
- K : dimension of ambient space (known)
- n : number of subspaces (unknown)
- $\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n}$: normal to each subspace (unknown)

Solution to motion segmentation by GPCA

Theorem: Hyperplane clustering using GPCA

- Estimate multibody motion model: fit polynomial

$$
p_{n}(\boldsymbol{x})=\left(\boldsymbol{b}_{1}^{T} \boldsymbol{x}\right) \cdots\left(\boldsymbol{b}_{n}^{T} \boldsymbol{x}\right)=0
$$

- Estimate motion models: differentiate the polynomial

$$
\boldsymbol{b}_{i}=\left.D p_{n}(\boldsymbol{x})\right|_{\boldsymbol{x}=z_{i}} \quad \begin{aligned}
z_{i} & =z_{0}+t_{i} \boldsymbol{v} \\
t_{i} & =\operatorname{Root}\left[p_{n}\left(z_{0}+t \boldsymbol{v}\right)\right]
\end{aligned}
$$

2-D motion segmentation results

Fig. 1. Segmenting the optical flow of the two-robot sequence by clustering lines in \mathbb{C}^{2}.

Fig. 2. Segmenting the optical flow of the flower-garden sequence by clustering lines in \mathbb{C}^{2}.

Optical flow

Group 2

Group 1

Group 3

Segmentation of 3-D translational motions

- Multiple objects translating in 3D $\left\{e_{i} \in \mathbb{R}^{3}\right\}_{i=1}^{n}$
- Epipolar constraint gives GPCA problem with K=3

$$
\begin{aligned}
& e_{1}^{T}\left(x_{1} \times x_{2}\right)=0 \text {. } \\
& e_{2}^{T}\left(x_{1} \times x_{2}\right)=0
\end{aligned}
$$

Multibody epipolar const.

$$
p_{n}(\boldsymbol{y})=\left(e_{1}^{T} \boldsymbol{y}\right) \cdots\left(e_{n}^{T} \boldsymbol{y}\right)
$$

(a) First frame

(b) Feature segmentation

Segmentation of 3-D translational motions

(a) First frame

(b) Feature segmentation

(c) Translation error $n=2$

(d) $\%$ of correct classif. $n=2$

(e) Translation error $n=1, \ldots, 4$

(f) $\%$ of correct classif. $n=1, \ldots, 4$

Fig. 3. Segmenting 3-D translational motions by clustering planes in \mathbb{R}^{3}. Left: segmenting a real sequence with 2 moving objects. Center: comparing our algorithm with PFA and EM as a function of noise in the image features. Right: performance of PFA as a function of the number of motions.

Segmentation of rigid motions: 2 views

Multibody epipolar constraint

- Rotation: $\quad R_{1} \in S O(3)$
- Translation: $\widehat{T_{1}} \in s o(3)$
- Epipolar constraint

$$
\boldsymbol{x}_{2}^{T} \underbrace{\widehat{T}_{1} R_{1}}_{F_{1} \in \mathbb{R}^{3 \times 3}} \boldsymbol{x}_{1}=0
$$

- Multiple motions $\left\{\left(R_{i}, T_{i}\right)\right\}_{i=1}^{n}\left\{F_{i} \doteq \widehat{T}_{i} R_{i}\right\}_{i=1}^{n}$

$$
\prod_{i=1}^{n}\left(\boldsymbol{x}_{2}^{T} F_{i} \boldsymbol{x}_{1}\right)=0
$$

- Satisfied by ALL points regardless of segmentation
- Segmentation is algebraically eliminated!!!

The multibody fundamental matrix

$$
\prod_{i=1}^{n}\left(\boldsymbol{x}_{2}^{T} F_{i} \boldsymbol{x}_{1}\right)=0
$$

I
$\nu_{n}\left(\boldsymbol{x}_{2}\right)^{T} \mathcal{F}_{\nu_{n}}\left(\boldsymbol{x}_{1}\right)=0$ Bilinear on embedded data!

- Veronese map (polynomial embedding)

$$
\nu_{n}:[x, y, z]^{T} \mapsto\left[x^{n}, x^{n-1} y, x^{n-1} z, \ldots, z^{n}\right]^{T} \in \mathbb{R}^{M_{n}}\left(\mathbb{R}^{\frac{(n+1)(n+2)}{2}}\right)
$$

- Multibody fundamental matrix $\mathcal{F} \doteq \sum_{\sigma \in \mathfrak{S}_{n}} F_{\sigma(1)} \otimes \cdots \otimes F_{\sigma(n)}$

$$
\mathcal{F} \in \mathbb{R}^{M_{n} \times M_{n}}: \quad 3 \times 3^{\sigma \in \mathcal{O}_{n}} 6 \times 6 \quad 10 \times 10
$$

Estimation of multibody fundamental matrix

1-body motion

$$
\begin{gathered}
x_{2}^{T} \underbrace{F}_{3 \times 3} x_{1}=0 \\
\underbrace{\left.A_{1}\left(\left\{x_{1}^{j}, x_{2}^{j}\right)\right\}_{j=1}^{N}\right)}_{\in \mathbb{R}^{N \times 9}} \boldsymbol{f}=0
\end{gathered}
$$

$$
\underbrace{A_{n}\left(\nu_{n}\left(\boldsymbol{x}_{1}\right), \nu_{n}\left(\boldsymbol{x}_{2}\right)\right)}_{A_{n} \in \mathbb{R}^{N \times M_{n}^{2}}} f=0
$$

$$
\operatorname{rank}\left(A_{n}\right)=M_{n}^{2}-1
$$

Estimation of the number of motions

- Theorem: Given $N \geq M_{n}^{2}$ - 1 image points corresponding to n motions, if at least 8 points correspond to each object, then

$$
\operatorname{rank}\left(A_{i}\right) \begin{cases}>M_{i}^{2}-1, & \text { if } i<n, \\ =M_{i}^{2}-1, & \text { if } i=n, \\ <M_{i}^{2}-1, & \text { if } i>n\end{cases}
$$

$$
n=\min \left\{i: \operatorname{rank}\left(A_{i}\right)=M_{i}^{2}-1\right\}
$$

Minimum number of points

n	1	2	3	4
N	8	35	99	225

Segmentation of fundamental matrices

Given $\quad\left\{\left(x_{1}^{j}, x_{2}^{j}\right)\right\}_{j=1}^{N}$

$$
\begin{array}{cr}
\text { rank condition for } n_{\text {motions }} & \text { linear system } F \\
n=\min \left\{i: \operatorname{rank}\left(A_{i}\right)=M_{i}^{2}-1\right\} & A_{n} \boldsymbol{f}=0
\end{array}
$$

$$
\nu_{n}\left(\boldsymbol{x}_{2}\right)^{T} \mathcal{F} \nu_{n}\left(\boldsymbol{x}_{1}\right)
$$

$$
=\prod_{i=1}^{n}\left(x_{2}^{T} F_{i} x_{1}\right)=0
$$

$$
\mathcal{F} \in \mathbb{R}^{M_{n} \times M_{n}}
$$

$F_{1} \quad F_{2} \quad \ldots \quad F_{n} \in \mathbb{R}^{3 \times 3}$

Multibody epipolar transfer epipole

Multibody epipolar transfer

Epipolar lines are the derivatives of the multibody epipolar constraint at an image pair

Polynomial differentiation

$$
\boldsymbol{\ell}=\frac{\partial\left(\nu_{n}\left(\boldsymbol{x}_{2}\right)^{T} \mathcal{F}_{\nu_{n}}\left(\boldsymbol{x}_{1}\right)\right)}{\partial \boldsymbol{x}_{2}}
$$

Multibody epipole

\mathbb{R}^{3}
$\boldsymbol{e}_{i}^{T} F_{i}=0$
$\boldsymbol{e}_{i}^{T} \boldsymbol{\ell}=0$
:---:
$\tilde{\boldsymbol{e}}^{T} \nu_{n}(\boldsymbol{\ell})=0$

All epipolar lines must pass through n epipoles

$$
p_{n}(\ell) \doteq\left(e_{1}^{T} \ell\right)\left(e_{2}^{T} \ell\right) \cdots\left(e_{n}^{T} \ell\right)=\tilde{e}^{T} \nu_{n}(\ell)=0
$$

- The multibody epipole solution of linear system

$$
B_{n} \tilde{\boldsymbol{e}}=\left[\begin{array}{c}
\nu_{n}\left(\ell^{1}\right)^{T} \\
\nu_{n}\left(\ell^{2}\right)^{T} \\
\vdots \\
\nu_{n}\left(\ell^{m}\right)^{T}
\end{array}\right] \tilde{\boldsymbol{e}}=0
$$

- Epipoles are derivatives of $p_{n}(\ell)$ at epipolar lines

$$
\boldsymbol{e}_{i}=\left.\frac{\partial\left(p_{n}(\boldsymbol{\ell})\right)}{\partial \boldsymbol{\ell}}\right|_{\boldsymbol{\ell}=\boldsymbol{\ell}_{i}}
$$

Individual fundamental matrices

$$
\overbrace{F_{1} F_{2} \quad \ldots \quad F_{n} \in \mathbb{R}^{3 \times 3}}^{\mathcal{F} \in \mathbb{R}^{M_{n} \times M_{n}}}
$$

- Fundamental matrices from second-order derivatives of multibody epipolar constraint at the epipoles

$$
\left.F_{i}=\frac{\partial\left(\nu_{n}\left(\boldsymbol{x}_{2}\right)^{T} \mathcal{F} \nu_{n}\left(\boldsymbol{x}_{1}\right)\right)}{\partial \boldsymbol{x}_{1} \boldsymbol{x}_{2}} \right\rvert\, \begin{aligned}
& \\
& \boldsymbol{x}_{1}=\boldsymbol{e}_{i}^{\prime} \\
& \boldsymbol{x}_{2}=\boldsymbol{e}_{i}^{\prime \prime}
\end{aligned}
$$

The multibody 8-point algorithm

Remarks about the algorithm

- Algebraically equivalent to polynomial factorization
- Requires solving for roots of polynomial of degree \mathbf{n} in one variable
- There is a closed form solution if $\mathbf{n}<5$
- The algorithm is probably polynomial time
- It requires $\mathbf{O}\left(\mathbf{n}^{4}\right)$ image points
- It neglects internal structure of the multibody fundamental matrix

Optimal 3D motion segmentation

- Zero-mean Gaussian noise
- Constrained optimization problem

$$
x=\widetilde{x}+\text { noise }
$$ on $\operatorname{Sym}(S E(3) \otimes \cdots \otimes S E(3))$

$$
\begin{aligned}
& \min \sum_{j=1}^{N}\left\|\tilde{x}_{1}^{j}-x_{1}^{j}\right\|^{2}+\left\|\tilde{x}_{2}^{j}-x_{2}^{j}\right\|^{2} \\
& \text { s.t. }\left(\tilde{x}_{2}^{j T} F_{1} \widetilde{x}_{1}^{j}\right) \cdots\left(\tilde{x}_{2}^{j T} F_{n} \tilde{x}_{1}^{j}\right)=0
\end{aligned}
$$

- Optimal function for 1 motion $\quad\left(x_{2}^{T} F_{i} x_{1}\right)^{2}$

$$
\mathcal{J}\left(F_{i}\right)=\frac{\left(x_{2} F_{i} x_{1}\right)^{-}}{\left\|\widehat{e_{3}} F_{i} x_{1}\right\|^{2}+\left\|\widehat{e_{3}} F_{i}^{T} x_{2}\right\|^{2}}
$$

- Optimal function for n motions

$$
\mathcal{J}\left(F_{1}, \ldots, F_{n}\right)=\frac{\left(\nu_{n}\left(x_{2}\right)^{T} \mathcal{F} \nu_{n}\left(x_{1}\right)\right)^{2}}{\left\|\widehat{e_{3}} \mathcal{F} D \nu_{n}\left(x_{1}\right)\right\|^{2}+\left\|\widehat{e_{3}} \mathcal{F}^{T} D \nu_{n}\left(x_{2}\right)\right\|^{2}}
$$

- Solved using Riemanian Gradient Descent

Comparison of 1 body and n bodies

Comparison of	2 views of 1 body	2 views of n bodies
An image pair	$\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathbb{R}^{3}$	$\nu_{n}\left(\boldsymbol{x}_{1}\right), \nu_{n}\left(\boldsymbol{x}_{2}\right) \in \mathbb{R}^{M_{n}}$
Epipolar constraint	$\boldsymbol{x}_{2}^{T} F \boldsymbol{x}_{1}=0$	$\nu_{n}\left(\boldsymbol{x}_{2}\right)^{T} F \nu_{n}\left(\boldsymbol{x}_{1}\right)=0$
Fundamental matrix	$F \in \mathbb{R}^{3 \times 3}$	$F \in \mathbb{R}^{M_{n} \times M_{n}}$
	$\left[\begin{array}{c}{\left[\boldsymbol{x}_{2}^{1} \otimes \boldsymbol{x}^{1}\right]^{T}} \\ {\left[\boldsymbol{x}_{2}^{2} \otimes \boldsymbol{x}_{1}^{2}\right]^{T}} \\ \vdots \\ \text { Linear estimation from } \\ N \text { image pairs } \\ {\left[\boldsymbol{x}_{2}^{N} \otimes \boldsymbol{x}_{1}^{N}\right]^{T}}\end{array}\right]$	$\boldsymbol{f}=0$
Epipole	$\boldsymbol{e}^{T} F=0$	$\left[\begin{array}{c}{\left[\nu_{n}\left(\boldsymbol{x}_{2}^{1}\right) \otimes \nu_{n}\left(\boldsymbol{x}_{1}^{1}\right)\right]^{T}} \\ {\left[\nu_{n}\left(\boldsymbol{x}_{2}^{2}\right) \otimes \nu_{n}\left(\boldsymbol{x}_{1}^{2}\right)\right]^{T}} \\ \vdots \\ {\left[\nu_{n}\left(\boldsymbol{x}_{2}^{N}\right) \otimes \nu_{n}\left(\boldsymbol{x}_{1}^{N}\right)\right]^{T}}\end{array}\right]$
Epipolar lines	$\nu_{n}(\boldsymbol{e})^{T} F=0$	
Epipolar line \& point	$\boldsymbol{x}_{2}^{T} \ell=0$	$\tilde{\ell}=0$
Epipolar line \& epipole	$\boldsymbol{e}^{T} \ell=0$	$\nu_{n}\left(\boldsymbol{R}_{n}\left(\boldsymbol{x}_{1}\right) \in \mathbb{R}^{M_{n}}\right.$

$$
\mathcal{J}\left(F_{i}\right)=\frac{\left(x_{2}^{T} F_{i} x_{1}\right)^{2}}{\left\|\widehat{e_{3}} F_{i} x_{1}\right\|^{2}+\left\|\widehat{e_{3}} F_{i}^{T} x_{2}\right\|^{2}}
$$

$$
\mathcal{J}\left(F_{1}, \ldots, F_{n}\right)=\frac{\left(\nu_{n}\left(\boldsymbol{x}_{2}\right)^{T} \mathcal{F}_{n}\left(\boldsymbol{x}_{1}\right)\right)^{2}}{\left\|\widehat{e_{3}} \mathcal{F} D \nu_{n}\left(\boldsymbol{x}_{1}\right)\right\|^{2}+\left\|\widehat{e_{3}} \mathcal{F}^{T} D \nu_{n}\left(\boldsymbol{x}_{2}\right)\right\|^{2}}
$$

3D motion segmentation results

(a) First frame

(b) Feature segmentation

(c) $E_{1}\left(\hat{F}_{1}\right)$

(d) $E_{1}\left(\hat{F}_{2}\right)$

(e) $E_{1}\left(\hat{F}_{3}\right)$

Other cases: linearly moving objects

- Multibody epipole

$$
\begin{aligned}
& \tilde{\boldsymbol{e}}^{T} \nu_{n}(\boldsymbol{\ell})=0 \\
& \tilde{\boldsymbol{e}} \mapsto\left\{\boldsymbol{e}_{i}\right\}_{i=1}^{n}
\end{aligned}
$$

- Recovery of epipoles
- Fundamental matrices
- Feature segmentation

$$
\begin{gathered}
\boldsymbol{x}_{2}^{T} \hat{\boldsymbol{e}} \boldsymbol{x}_{1}=\boldsymbol{e}^{T}\left(\widehat{\boldsymbol{x}_{2}} \boldsymbol{x}_{1}\right)=0 \\
\boldsymbol{\ell}=\widehat{\boldsymbol{x}_{2}} \boldsymbol{x}_{1}, \quad \boldsymbol{e}^{T} \boldsymbol{\ell}=0
\end{gathered}
$$

Minimum number of points

n	1	2	3	4
N	8	35	99	225

$$
F_{i}=\widehat{e_{i}}
$$

$$
\boldsymbol{x}_{2}^{T}{\widehat{e_{i}}}^{x_{1}}=0
$$

n	1	2	5	10
N	2	5	20	65

Other cases: affine flows

- In linear motions, geometric constraints are linear

$$
\boldsymbol{b}_{1}^{T} \boldsymbol{x}=0 \vee \cdots \vee \boldsymbol{b}_{n}^{T} \boldsymbol{x}=0 \Leftrightarrow\left(\boldsymbol{b}_{1}^{T} \boldsymbol{x}\right) \cdots\left(\boldsymbol{b}_{n}^{T} \boldsymbol{x}\right)=0
$$

- Two-view motion constraints could be bilinear!!!

Affine motion segmentation:

 constant brightness constraint$$
\left[\begin{array}{lll}
I_{x} & I_{y} & I_{t}
\end{array}\right] A\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=0
$$

$$
\boldsymbol{y}^{T} \quad A \boldsymbol{x}=0
$$

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right] \in \mathbb{R}^{3 \times 3}
$$

3D motion segmentation: epipolar constraint

$$
\begin{aligned}
{\left[\begin{array}{lll}
x_{2} & y_{2} & 1
\end{array}\right] F\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] } & =0 \\
\boldsymbol{x}_{2}^{T} \quad \boldsymbol{F} \boldsymbol{x}_{1} & =0
\end{aligned}
$$

$$
F=\underbrace{\hat{T} \quad R}_{s o(3) \times S O(3) \subset \mathbb{R}^{3 \times 3}}
$$

Multiple affine views with missing data

- Affine camera model $\quad \boldsymbol{x}_{f p}=\mathrm{A}_{f} \boldsymbol{X}_{p}$
- Motion of 1 rigid-body lives in a subspace of dimension 4

$$
\mathrm{W}=\mathrm{MS}^{\top}
$$

$$
\left[\begin{array}{ccc}
\boldsymbol{x}_{11} \cdots & \boldsymbol{x}_{1 P} \\
\vdots & \vdots \\
\boldsymbol{x}_{F 1} \cdots & \boldsymbol{x}_{F P}
\end{array}\right]_{2 F \times P}=\left[\begin{array}{c}
\mathrm{A}_{1} \\
\vdots \\
\mathrm{~A}_{F}
\end{array}\right]_{2 F \times 4}\left[\boldsymbol{X}_{1} \cdots \boldsymbol{X}_{P}\right]_{4 \times P}
$$

- Motion segmentation is equivalent to clustering subspaces of dimension 2,3,4 in $\mathrm{R}^{\wedge}\{2 \mathrm{~F}\}$
- Project to 5-D subspace: Power Factorization
- Estimate multiple subspaces in $\mathrm{R} \wedge 5$: GPCA

Mutiframe results

Misclassification error for different sequences.

Sequence	Points	Frames	Motions	Error
Boat	686	11	2	2.19%
Shirt-Book	170	3	2	1.18%
Wilshire	200	3	2	5.50%
Tea-Tins	84	3	2	1.19%
NEC	82	8	2	0.00%
3-Cars	173	15	3	4.62%
Puma	64	16	2	0.00%
Castle	56	11	2	0.00%

rank $=2$

rank $=5$

rank $=3$

Our similarity Our segmentation
rank $=4$

Figure 2: Similarity/Interaction matrices from the Costeira and Kanade algorithm for different rank approximations and from our algorithm for the Can-Book sequence.

Figure 1: Motion segmentation results. Left: first frame of each sequence. Center: displacement of the correspondences between two views. Right: clustering of the correspondences given by our algorithm.

Conclusions

- There is an analytic solution to 3-D motion segmentation based on
- Fit a polynomial to all the image data
- Differentiate polynomial to obtain motion parameters
- Applies to most motion models in computer vision

Table 1. 2-D and 3-D motion models considered in this paper.

Motion models	Model equations	Model parameters	Equivalent to clustering
2-D translational	$\boldsymbol{x}_{2}=\boldsymbol{x}_{1}+T_{i}$	$\left\{T_{i} \in \mathbb{R}^{2}\right\}_{i=1}^{n}$	Hyperplanes in \mathbb{C}^{2}
2-D similarity	$\boldsymbol{x}_{2}=\lambda_{i} R_{i} \boldsymbol{x}_{1}+T_{i}$	$\left\{\left(R_{i}, T_{i}\right) \in S E(2), \lambda_{i} \in \mathbb{R}^{+}\right\}_{i=1}^{n}$	Hyperplanes in \mathbb{C}^{3}
2-D affine	$\boldsymbol{x}_{2}=A_{i}\left[\begin{array}{c}\boldsymbol{x}_{1} \\ 1\end{array}\right]$	$\left\{A_{i} \in \mathbb{R}^{2 \times 3}\right\}_{i=1}^{n}$	Hyperplanes in \mathbb{C}^{4}
3-D translational	$0=\boldsymbol{x}_{2}^{T}\left[T_{i}\right]_{\times} \boldsymbol{x}_{1}$	$\left\{T_{i} \in \mathbb{R}^{3}\right\}_{i=1}^{n}$	Hyperplanes in \mathbb{R}^{3}
3-D rigid-body	$0=\boldsymbol{x}_{2}^{T} F_{i} \boldsymbol{x}_{1}$	$\left\{F_{i} \in \mathbb{R}^{3 \times 3}: \operatorname{rank}\left(F_{i}\right)=2\right\}_{i=1}^{n}$	Bilinear forms in $\mathbb{R}^{3 \times 3}$
3-D homography	$\boldsymbol{x}_{2} \sim H_{i} \boldsymbol{x}_{1}$	$\left\{H_{i} \in \mathbb{R}^{3 \times 3}\right\}_{i=1}^{n}$	Bilinear forms in $\mathbb{C}^{2 \times 3}$

Some possible applications of GPCA

- Geometry
- Vanishing points
- Segmentation
- Intensity
- Texture
- 2D Motion
- 3D Motion
- Recognition
- Faces (Eigenfaces)
- Man - Woman
- Human activities
- Running, walking
- Image and video compression

References

- R. Vidal, Y. Ma, S. Soatto and S. Sastry. Two-view multibody structure from motion, International Journal of Computer Vision, 2004
- R. Vidal and Y. Ma. A unified algebraic approach to 2-D and 3-D motion segmentation, European Conf. on Computer Vision 2004
- R. Vidal and R. Hartley.

Motion segmentation using Power Factorization and GPCA, IEEE Conference on Computer Vision and Pattern Recognition 2004

- R. Vidal and S. Sastry. Optimal segmentation of dynamic scenes from two perspective views, International Conference on Computer Vision and Pattern Recognition, 2003
- R. Vidal and S. Sastry. Segmentation of dynamic scenes from image intensities, IEEE Workshop on Vision and Motion Computing, 2002.

PRIMARY REFERENCE

INTERDISCIPLINARY APPLIED MATHEMATICS

```
IMAGING, VISION, AND GRAPHICS
```


An Invitation to 3-D Vision

From Images to Geometric Models

