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One-body two-views
Image point:

Camera motion
Rotation:
Translation:

Epipolar constraint
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Multiple-bodies two-views
Image point

Camera motion
Rotation:
Translation:

Epipolar constraint

Multiple motions
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Motivation and problem statement

A static scene: multiple 
2D motion models

A dynamic scene: multiple 
3D motion models

Given an image sequence, determine
Number of motion models (affine, Euclidean, etc.)
Motion model: affine (2D) or Euclidean (3D)
Segmentation: model to which each pixel belongs
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Prior work: chicken-and-egg problem

Probabilistic techniques
Generative model 

data membership + motion model

Expectation Maximization
E-step: Given motion models, segment image data
M-step: Given data segmentation, estimate motion models

2-D Motion Segmentation
Layered representation (Jepson-Black’93, Ayer-Sawhney ’95, Darrel-
Pentland’95, Weiss-Adelson’96, Weiss’97, Torr-Szeliski-Anandan ’99)

3-D Motion Segmentation
EM+Reprojection Error: Feng-Perona’98

EM+Model Selection: Torr ’98

How to initialize iterative algorithms?
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Prior work on 2-D motion segmentation

Local methods (Wang-Adelson ’93)

Estimate one model per pixel 
using data in a window
Cluster models with K-means
Iterate
Aperture problem
Motion across boundaries

Global methods (Irani-Peleg ‘92)

Dominant motion: fit one
motion model to all pixels
Look for misaligned pixels
& fit a new model to them
Iterate

Normalized cuts      
(Shi-Malik ‘98)

Similarity matrix based 
on motion profile
Segment pixels using 
eigenvector
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Prior work on 3-D motion segmentation

Factorization techniques, multiple views
Orthographic/discrete: Costeira-Kanade ’98, Gear ’98, 
Kanatani’01,’02,’03, Zelnik-Manor-Irani’03, Vidal-Hartley’04

Perspective/continuous: Vidal-Soatto-Sastry ’02

Omnidirectional/continuous: Shakernia-Vidal-Sastry ’03

Special cases:
Points in a line (orth-discrete): Han and Kanade ’00

Points in a line (persp.-continuous): Levin-Shashua ’01

Points in a conic (perspective): Avidan-Shashua ’01

Points in moving in planes: Sturm ’02

2-body case: Wolf-Shashua ‘01
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Our approach to motion segmentation

Solve the initialization problem algebraically
Number of motions = degree of a polynomial
Motion parameters = factors of a polynomial

Estimation of multiple motion models equivalent to 
estimation of one multibody motion model

Eliminate feature clustering
Find equation that does not depend on data clustering

Estimate multibody motion model to all image data
Fit a complex polynomial to data

Segment multibody motion model
Compute derivatives of the polynomial

Applies to most motion models in vision
2-D: translational, similarity and affine
3-D: translational, fundamental matrix, homography, trifocal 
tensors, multiple affine cameras
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Segmentation of 2-D translational motions

Scene having multiple 
optical flows

Brightness constancy 
constraint (BCC) gives

Multiple BCCs

Multibody brightness 
constancy constraint
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How to segment motions in general?

One motion – one subspace: 
Principal Component Analysis (PCA)

Multiple motions – multiple subspaces 
Generalized Principal Component Analysis (PCA)

Basis for S
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Generalized Principal Component Analysis

Given points on multiple subspaces, identify
The number of subspaces and their dimension
A basis for each subspace
The segmentation of the data points

“Chicken-and-egg” problem
Given segmentation, estimate subspaces
Given subspaces, segment the data

Prior work
Geometric approaches: 2 planes in R3 (Shizawa-Maze ’91)

Factorization approaches: (Boult-Brown ‘91, Costeira-Kanade ‘98, 
Kanatani ‘01) cluster the data+ apply standard PCA to each cluster

Iterative algorithms: e.g. K-plane clustering (Bradley’00)

Probabilistic approaches (Tipping-Bishop ‘99): learn the parameters 
of a mixture model using e.g. EM

Initialization?
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Motivating example: algebraic clustering in 1D

Number of clusters

Cluster centers

Solution is unique if

Solution is closed 
form if

How to compute n, c, b’s?
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GPCA: n hyperplanes = 1 polynomial of deg n

1-dimensional case K-dimensional case
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GPCA: the case of hyperplanes

Identify -dimensional subspaces of 
: dimension of ambient space (known)
: number of subspaces (unknown)

: normal to each subspace (unknown)

Veronese map
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Solution to motion segmentation by GPCA

Theorem: Hyperplane clustering using GPCA
Estimate multibody motion model: fit polynomial

Estimate motion models: differentiate the polynomial
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2-D motion segmentation results
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Experimental Results
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Segmentation of 3-D translational motions

Multiple objects translating in 3D
Epipolar constraint gives GPCA problem with K=3

Multibody epipolar const.
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Segmentation of 3-D translational motions
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Segmentation of rigid motions: 2 views
Rotation:
Translation:
Epipolar constraint

Multiple motions

Multibody epipolar constraint

Satisfied by ALL points regardless of segmentation
Segmentation is algebraically eliminated!!!
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The multibody fundamental matrix

Lifting EmbeddingEmbedding

Bilinear on embedded data!

Veronese map (polynomial embedding)

Multibody fundamental matrix
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Estimation of multibody fundamental matrix

1-body motion n-body motion
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Estimation of the number of motions

Theorem: Given image points 
corresponding to      motions, if at least 8 points 
correspond to each object, then

1 2 43

8 35 99 225Minimum number of points
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Segmentation of fundamental matrices

Given

rank condition for nmotions linear system F

Multibody
epipolar transfer

Multibody
epipole

Fundamental 
matrices
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Multibody epipolar transfer

Multibody epipolar line

Lifting

Polynomial differentiationEpipolar lines are the derivatives of 
the multibody epipolar constraint at 
an image pair
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Multibody epipole

The multibody epipole
solution of linear system

Epipoles are derivatives
of          at epipolar lines

Lifting

All epipolar lines must 
pass through n epipoles
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Individual fundamental matrices

Fundamental matrices from second-order derivatives of 
multibody epipolar constraint at the epipoles
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The multibody 8-point algorithm

Image point

Multibody epipolar line
Multibody epipolar transfer

Polynomial Factorization

Linear system

Polynomial Factorization

Epipolar lines

Multibody epipole

Epipoles

Embedded image point

Veronese map

Fundamental matrix

Linear system
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Remarks about the algorithm

Algebraically equivalent to polynomial factorization
Requires solving for roots of polynomial of degree n in one variable
There is a closed form solution if n<5
The algorithm is probably polynomial time
It requires O(n4) image points
It neglects internal structure of the multibody fundamental matrix
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Optimal 3D motion segmentation

Zero-mean Gaussian noise
Constrained optimization problem
on 

Optimal function for 1 motion

Optimal function for n motions

Solved using Riemanian Gradient Descent
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Comparison of 1 body and n bodies



32

3D motion segmentation results
N = 44 + 48 + 81 = 173
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Other cases: linearly moving objects

Multibody epipole
Recovery of epipoles
Fundamental matrices
Feature segmentation 1 2 105

2 5 20 65

1 2 43

8 35 99 225

Minimum number 
of points
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Other cases: affine flows

Affine motion segmentation:
constant brightness constraint

3D motion segmentation:
epipolar constraint

In linear motions, geometric constraints are linear

Two-view motion constraints could be bilinear!!!
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Multiple affine views with missing data

Affine camera model

Motion of 1 rigid-body lives in a subspace of 
dimension 4

Motion segmentation is equivalent to clustering 
subspaces of dimension 2,3,4 in R^{2F}

Project to 5-D subspace: Power Factorization
Estimate multiple subspaces in R^5: GPCA
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Mutiframe results
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Conclusions

There is an analytic solution to 3-D motion 
segmentation based on 

Fit a polynomial to all the image data
Differentiate polynomial to obtain motion parameters

Applies to most motion models in computer vision
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Some possible applications of GPCA

Geometry
Vanishing points

Segmentation
Intensity
Texture 
2D Motion
3D Motion

Recognition
Faces (Eigenfaces)

Man - Woman

Human activities
Running, walking

Image and video 
compression
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