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i One-body two-views

e = Image point: © = [z,y,2]" € R’
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= Camera motion
= Rotation:
= Translation:

R1 € SO(3)
Ti € so(3)

= Epipolar constraint
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i Multiple-bodies two-views

RS & = Image point = = [z,y,2]! € R3

- Camera_ motion R, € SO(3)
= Rotation: T\ >
" = Translation: 1 € s0(3)

= Epipolar constraint

T 7 _
T THR+1 a1 =0
2 1 7‘1,7‘ 1
Fy ER3x3

= Multiple motions
{(R;, T3} {Fs = TiRi}j—



i Motivation and problem statement

= A static scene: multiple = A dynamic scene: multiple
2D motion models 3D motion models

= Given an image sequence, determine
= Number of motion models (affine, Euclidean, etc.)
= Motion model: affine (2D) or Euclidean (3D)

= Segmentation: model to which each pixel belongs .



i Prior work: chicken-and-egg problem

blx =0

= Probabilistic techniques o8

= Generative model
= data membership + motion model

. _ . 1.,
= Expectation Maximization P
= E-step: Given motion models, segment image data
= M-step: Given data segmentation, estimate motion models

= 2-D Motion Segmentation

0 Layered representation (Jepson-Black’93, Ayer-Sawhney 95, Darrel-
Pentland’95, Weiss-Adelson’96, Weiss'97, Torr-Szeliski-Anandan '99)

= 3-D Motion Segmentation
= EM+Reprojection Error: reng-perona'9s
= EM+Model Selection: Torr 98

= How to initialize iterative algorithms?

o
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i Prior work on 2-D motion segmentation

= Local methods (Wang-Adelson 93)
= Estimate one model per pixel

using data in a window

= Cluster models with K-means

= [terate
= Aperture problem
= Motion across boundaries

= Global methods (rrani-releg'92) = Normalized cuts

= Dominant motion: fit one
motion model to all pixels

= Look for misaligned pixels
& fit a new model to them

= Iterate

(Shi-Malik 98)
= Similarity matrix based
on motion profile

= Segment pixels using
eigenvector



i Prior work on 3-D motion segmentation

= Factorization techniques, multiple views

0 Orthog 'a phic/ discrete: costeira-Kanade '98, Gear ‘98,
Kanatani’01,’02,’03, Zelnik-Manor-Irani’03, Vidal-Hartley'04

M Perspective/ continuoOUS: Vidal-Soatto-Sastry ‘02
= Omnidirectional/continuous: shakernia-Vidal-Sastry ‘03

= Special cases:
= Points in a line (orth-discrete): Han and kanade 00
= Points in a line (persp.-continuous): Levin-Shashua 01
= Points in a conic (perspective): Avidan-Shashua ‘01
= Points in moving in planes: sturm ‘02

= 2-body case: Wolf-Shashua '01



Our approach to motion segmentation

= Solve the initialization problem algebraically
= Number of motions = degree of a polynomial
= Motion parameters = factors of a polynomial

= Estimation of multiple motion models equivalent to
estimation of one multibody motion model
»« Eliminate feature clustering
= Find equation that does not depend on data clustering

= Estimate multibody motion model to all image data
= Fit a complex polynomial to data

= Segment multibody motion model
= Compute derivatives of the polynomial

= Applies to most motion models in vision

= 2-D: translational, similarity and affine

= 3-D: translational, fundamental matrix, homography, trifocal
tensors, multiple affine cameras



i Segmentation of 2-D translational motions

= Scene having multiple = Brightness constancy
optical flows constraint (BCC) gives

: 2\n
{u; e P}y yT’u, = Lyu+Iyv+I; =0

= Multiple BCCs

u{y =0 og

o
o

= Multibody brightness
constancy constraint
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i How to segment motions in general?

= One motion — one subspace:
Principal Component Analysis (PCA)

@Z VI =[xy, x0,... xy] € REXN

-

dim(S) = rank(U) s o o ,° e

= Multiple motions — multiple subspaces
Generalized Principal Component Analysis (PCA)

K =

ng:o
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Generalized Principal Component Analysis

= Given points on multiple subspaces, identify
= The number of subspaces and their dimension
= A basis for each subspace
= The segmentation of the data points

= "Chicken-and-egg” problem b
= Given segmentation, estimate subspaces
= Given subspaces, segment the data

= Prior work blx =
= Geometric approaches: 2 planes in R3 (Shizawa-Maze '91)
= Factorization approaches: (Boult-Brown ‘91, Costeira-Kanade ‘98,
Kanatani ‘01) cluster the data+ apply standard PCA to each cluster
« Iterative algorithms: e.g. K-plane clustering (Bradley’00)
= Probabilistic approaches (Tipping-Bishop '99): learn the parameters
of @ mixture model using e.g. EM

= [nitialization?
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i Motivating example: algebraic clustering in 1D

How to compute n, ¢, b’s?

&8 &8

&

Number of cluster
x:blorx:bQ‘”ZU:bn u ber of clusters

n = min{i : rank(P;) = i}

pn(@) = (2—b1) (2 —bn) = O

pn(z) =2 +c1z2" 1+ ep=0

s Cluster centers

Roots of pnp(x)

po(z) = [z - =z 1e=0
= Solution is unique if
. ]
e 1 _
gfrlz il 1 Npomts > Ngroups
P,c = :2 :2 |e=0
T = Solution is closed
- Sy form if

PpeRNx(ntl Ngroups < 4 .



i GPCA: n hyperplanes = 1 polynomial of deg n

= 1-dimensional case = K-dimensional case




i GPCA: the case of hyperplanes

= Identify » (K — 1)-dimensional subspaces of RE
=« K: dimension of ambient space (known)
= 1. humber of subspaces (unknown)

lbl,.

Sz. ° ‘T

L] ./

Un

i

P

|

.., by, » normal to each subspace (unknown)

RE|  Veronese map
.5

c = Sym(b1 ®boR®b3)

>

: RE s RMn I
5 . ooooo o,
g5 L AP (@)
a:)_ vn()
Y 2 [RH¥n
Y
n+ K-—-1
mn
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i Solution to motion segmentation by GPCA

Theorem: Hyperplane clustering using GPCA
= Estimate multibody motion model: fit polynomial

pn(x) = (biz) - (blz) =0

= Estimate motion models: differentiate the polynomial

B zZ; = zo t+ ;v

b{a::O

bo ~ Dpn(z2)

b1 ~ Dpn(z1)
3 /

D

L= {zo+tv}

pn(xz) =0
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Uptical flow along y
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Fig. 1. Segmenting the optical flow of the two-robot sequence by clustering lines in C=.
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Fig. 2. Segmenting the optical flow of the flower-garden sequence by clustering lines in C~.
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Cpptical flow

Group 2

Group 1
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i Segmentation of 3-D translational motions

= Multiple objects translating in 3D {e; € R3}"_,
= Epipolar constraint gives GPCA problem with K=3

(a) First frame

e

3
|
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truck

cary

22 44 68 92

(b) Feature segmentation



Segmentation of 3-D translational motions
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(b) Feature segmentation (d) % of correct classif. n = 2 (f) % of correct classif. n = 1

Fig. 3. Segmenting 3-D translational motions by clustering planes in R?. Left: segmenting a real
sequence with 2 moving objects. Center: comparing our algorithm with PFA and EM as a function
of noise in the image features. Right: performance of PFA as a function of the number of motions.
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Segmentation of rigid motions: 2 views

= Rotation: R; € SO(3)
= Translation: 71 € s0(3)
= Epipolar constraint
T M —
xs THR1 a1 =0
> d1ivy @1

= Multiple motions
{(R;, T;) Yy {F; = iR}

m
[ (23 Fx1) =0
Multibody epipolar constraint =1

= Satisfied by ALL points regardless of segmentation
= Segmentation is algebraically eliminated!!!

20



i The multibody fundamental matrix

o R3
T {l}l °
1 Y
[[ (x5 Fix1) =0 Kiikin
1=1
ﬁ Embedding Lifting Embedding
flﬂ — :7:' IR&]bf}z
Bilinear on embedded data! n(®1)  un(@)
= Veronese map (polynomial embedding)
(n+1)(n+2)
vnlx,y, Z]T|—> (2", :Izn_ly, :z:n_lz, o ,z”]TE RMn (R 2 )

= Multibody fundamental matrix = = Y F

7/\1
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i Estimation of multibody fundamental matrix

1-body motion n-body motion
T __
2 \F/an =0 Vn(mQ)T \j;—_, vp(e1) =0
3x3 M, X M,
N B
- ({wjl’mé)}j=1lf =0 Ap (vn(x1),vn(x2)) f =0
ERNX9 AnER‘Jr\TXM%

rank(A;) =8 rank(A,) = M2 — 1
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i Estimation of the number of motions

s Theorem: Given N > M2 —1 image points
corresponding to 7@ motions, if at least 8 points
correspond to each object, then

(> MZ?2 -1, ifi<n,

rank(A;){ = M? -1, ifi=n,
< M?Z2—1, ifi>n.

\

- — _ _ ) ~

— —_— am o~ 2 1 ° L N Y 4 A A Y —_— A 1 7 -1 1
r —— 11111012 ") r Arnwwi 8 -y _—— fV/I 7 B I
T = 1 v L] 1 U4 TN\ L &7 J = = 4LVL _ -l [
[ § S\ v/ A >

=

N
w
N

Minimum number of points Nlg |35/ 99225




i Segmentation of fundamental matrices

Given {(33]17 wé)}ﬁv:]_

/\.

rank condition for 7 4tions linear system F’
n = min{i: rank(4;) = M? — 1} Anf =0
A A
n(@2)T Fum () f °1 1
n E 82 F
= [[@lFrey=0F / 2 | _ °
1 =1 - } e u }
1
F € RMn X Mn ln ) €n ) I
/\;
' i F I
FoF, F. e R3%3 Multibody Multibody Fundamenta

epipolar transfer epipole matrices,,,



i Multibody epipolar transfer

p t;, = F,xq1 € R
Ao Lifting
A 2 i i
' l ? = Fup(xy) € RMn
02 Multibody epipolar line
(R.,T) ? = Z Ea(l) @...@fa(n)
El? £27 T En

Polynomial differentiation
Q(ym \TT-'UM ('r-: \\

Epipolar lines are the derivatives of
the multibody epipolar constraint at
an image pair

€Tro
\™ L

¢

QJ N
r\>

’7'
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* Multibody epipole

R3 elF,=0 Lifting | vp(e;)TF =0 RMn
ele =0 | &Tun() =0 &cRMn

All epipolar lines must
pass through n epipoles

pn(€) = (e1€)(e58) - (en ) =& wn(€) =0

= The multibody epipole = Epipoles are derivatives
solution of linear system of prn(£) at epipolar lines
_ AT | e; =
Bnpé = vn( e =0 ’ of
; \ =L,
_Vn(fm)T_ 26




i Individual fundamental matrices

/\;
Fi, F» ... F,eR3%3

= Fundamental matrices from second-order derivatives of
multibody epipolar constraint at the epipoles

F,é _ a(l/n(a?Q)Tan(wl))

821312132 L1 — €




The multibody 8-point algorithm

Image point xr, € R3
1 Veronese map

Embedded image point vn(x1) € RMn
| Multibody epipolar transfer

Multibody epipolar line ? = Fun(xq)

| Polynomial Factorization
Epipolar lines {£; e R3}_,
| Linear system
Multibody epipole e
| Polynomial Factorization
Epipoles {e; € R3} 4 _
1 Linear system

Fundamental matrix {F; e R3X3)1_
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Remarks about the algorithm

Algebraically equivalent to polynomial factorization

Requires solving for roots of polynomial of degree n in one variable
There is a closed form solution if n<5

The algorithm is probably polynomial time

It requires O(n4) image points

It neglects internal structure of the multibody fundamental matrix

29



i Optimal 3D motion segmentation

xr = r+noise

s Zero-mean Gaussian noise

= Constrained optimization problem
on Sym(SE3)® - ---®Q SE(3))
N

_ . o . 5
min ) [|&] — zq[|° + |&5 — 23|
j=1
i e
s.t. (&) F1&])--- (&5 Fh@y) =0

xr—eXx

= Optimal function for 1 motion (37 F2,)2

J(F;) = — —
| | " |lesFiza 2 + ||l F aa|2
= Optimal function for n motions

(vn(x2)! Frn(z1))?

J(F1,...,Fp) =

|e3F Dvn(z1)]12 + ||e3F ! Dvn(22)||2
= Solved using Riemanian Gradient Descent
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Comparison of 1 body and n bodies

Comparison of 2 views of 1 body 2 views of n bodies
An image pair xi1,xo € R3 vn(x1), vn(2) € RM:
Epipolar constraint xlFx1 =0 vn(x2)' Fr,(x1) =0
Fundamental matrix F € R3%3 F € RM»xM,

[37% ® w%]T [Vﬂ-(x%) & Vn(x%)]T

2 21T 2 2\1T

Linear estimation from [ @ml] f=o| |n(=2) & (@D | = g
N image pairs - :

[35“32\[ ® in]T [Vn(fcg) ® VT:-(IB{V)]T
Epipole e’ F=0 vn(e)'F =
Epipolar lines ¢ = Fzx, € R3 ¢ = Fu,(x1) € RM:
Epipolar line & point xll =0 vn(22)Tl =0
Epipolar line & epipole elt =0 elv,(8) =0

(xd Fix1)?

J(F;) =

|lesFiz1 |2 + ||lesF} 2|2

(vn(m2)! Frn(e1))?
|e3F Dun(z1) |2 + le3FL Dun(z2) ||2
31
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3D motion segmentation results

(a) First frame
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(b) Feature segmentation
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Other cases: linearly moving objects

THer] = el (1) =0

L=axox1, elt=0

Minimum number
of points

Multibody epipole elv, () =0
Recovery of epipoles e {ej ),
Fundamental matrices
Feature segmentation

r5e;x) =0
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Other cases: affine flows

= In linear motions, geometric constraints are linear
b{wZO\/'o'\/bgaZ‘ZO@(b{w)"'(bgaz) =0
= [wo-view motion constraints could be bilinear!!!

Affine motion segmentation: 3D motion segmentation:
constant brightness constraint epipolar constraint
= "
[I@“ Ly It]Ay =0 [932 Y2 1]F y1| =0
1 1

F1 . ~
i A I p—

-

~
1,
-

-

s pi
i b an )
e L | & e —

()
C

1
4

<

a1l @12 G13 r—

T B
aél 082 a’i:” < s0(3)x SO (3)CR3%3
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i Multiple affine views with missing data

= Affine camera model X, = Apr

= Motion of 1 rigid-body lives in a subspace of

dimension 4
W = MS'
ri11---T1p Aq
— [ X---Xp LLXP
|LF1* " TFP | opw p Ap_ 2F % 4

= Motion segmentation is equivalent to clustering
subspaces of dimension 2,3,4 in R {2F}
= Project to 5-D subspace: Power Factorization
» Estimate multiple subspaces in R*5: GPCA
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i Mutiframe results

Misclassification error for different sequences.

| Sequence | Points | Frames | Motions | Error
Boat 686 11 2 2.19%
Shirt-Book 170 3 2 1.18%
Wilshire 200 3 2 5.50%
Tea-Tins 84 3 2 1.19%
NEC 82 8 2 0.00%
3-Cars 173 15 3 4.62%
Puma 64 16 2 0.00%
Castle 56 11 2 0.00%

rank =5

Figure 2: Similanty/Interaction matrices from the Costeira
and Kanade algorithm for different rank approximations

Or similarity

Or segmentation

and from our algorithm for the Can-Book sequence.

i

Can-Book sequence

=

ea-Tins sequence

= .

i"i

NEC sequence

@‘%ﬁ

. —
" =+ o mE = [E

3-Cars sequence

Figure 1: Motion segmentation results. Left: first frame
of each sequence. Center: displacement of the correspon-
dences between two views. Right: clustering of the corre-
spondences given by our algorithm.



i Conclusions

= There is an analytic solution to 3-D motion
segmentation based on

« Fit a polynomial to all the image data
» Differentiate polynomial to obtain motion parameters

= Applies to most motion models in computer vision

Table 1. 2-D and 3-D motion models considered in this paper.

Motion models

Model equations

Model parameters

Equivalent to clustering

2-D translational
2-D similarity

2-D affine

To =x1 + 1}
ro = )\@'R'wq —+ T

xro = A; Fiﬂ

{T; e R},

((R;, T;)€SE(2), € RTI™

{Ai e RZ<3)1,

Hyperplanes in C-

. [Hyperplanes in C*

Hyperplanes in C*

3-D translational || 0 = a:% T;|x @1 (T, € R*}_ Hyperplanes in R*
3-D rigid-body 0= x3 Fiz {F; € R%*? :rank(F ) = 2}, |Bilinear forms in R***
3-D homography|| @2 ~ Hix: {H; e R®*?}- Bilinear forms in C***
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Some possible applications of GPCA

am |

Geometry R
= Vanishing points

Segmentation
= Intensity

= lexture

= 2D Motion

= 3D Motion

Recognition
= Faces (Eigenfaces)
= Man - Woman

= Human activities
= Running, walking

Image and video
compression
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