Reconstruction of Multiple Motions using Generalized Principal Component Analysis (GPCA)

René Vidal Center for Imaging Science Johns Hopkins University

One-body two-views

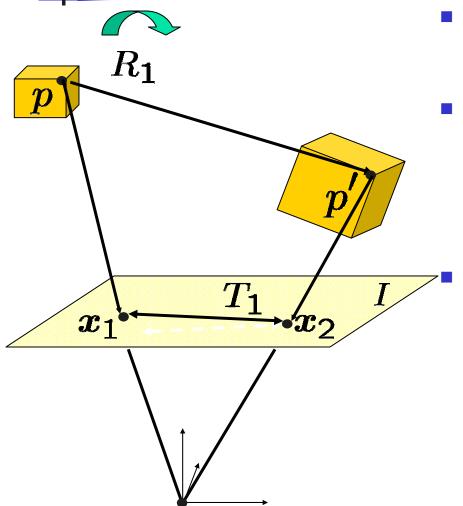


Image point: $\boldsymbol{x} = [x, y, z]^T \in \mathbb{R}^3$

- Camera motion
 - Rotation:
 - Translation:

 $R_1 \in SO(3)$ $\widehat{T_1} \in so(3)$

Epipolar constraint

$$x_2^T \underbrace{\widehat{T}_1 R_1}_{F_1 \in \mathbb{R}^{3 \times 3}} x_1 = 0$$

Multiple-bodies two-views

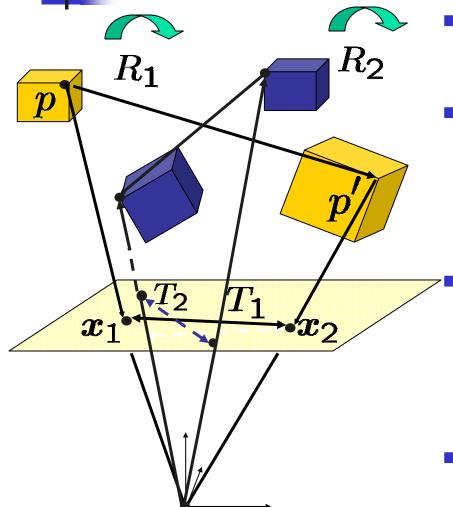


Image point $x = [x, y, z]^T \in \mathbb{R}^3$

- Camera motion
 - Rotation:
 - Translation:

 $R_1 \in SO(3)$ $\widehat{T_1} \in so(3)$

Epipolar constraint

• Multiple motions $\{(R_i, T_i)\}_{i=1}^n \{F_i \doteq \widehat{T}_i R_i\}_{i=1}^n$

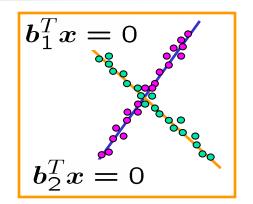
Motivation and problem statement

- A static scene: multiple
 2D motion models
- A dynamic scene: multiple
 3D motion models

- Given an image sequence, determine
 - Number of motion models (affine, Euclidean, etc.)
 - Motion model: affine (2D) or Euclidean (3D)
 - Segmentation: model to which each pixel belongs

Prior work: chicken-and-egg problem

- Probabilistic techniques
 - Generative model
 - data membership + motion model
 - Expectation Maximization

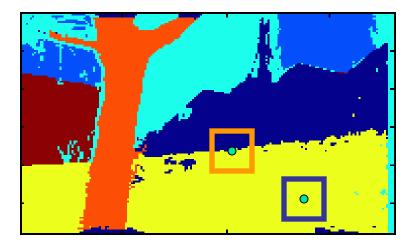


- E-step: Given motion models, segment image data
- M-step: Given data segmentation, estimate motion models
- 2-D Motion Segmentation
 - Layered representation (Jepson-Black'93, Ayer-Sawhney '95, Darrel-Pentland'95, Weiss-Adelson'96, Weiss'97, Torr-Szeliski-Anandan '99)
- 3-D Motion Segmentation
 - EM+Reprojection Error: Feng-Perona'98
 - EM+Model Selection: Torr '98
- How to initialize iterative algorithms?

Prior work on 2-D motion segmentation

Local methods (Wang-Adelson '93)

- Estimate one model per pixel using data in a window
- Cluster models with K-means
- Iterate
- Aperture problem
- Motion across boundaries
- Global methods (Irani-Peleg '92)
 - Dominant motion: fit one motion model to all pixels
 - Look for misaligned pixels & fit a new model to them
 - Iterate



- Normalized cuts (Shi-Malik '98)
 - Similarity matrix based on motion profile
 - Segment pixels using eigenvector

Prior work on 3-D motion segmentation

Factorization techniques, multiple views

- Orthographic/discrete: Costeira-Kanade '98, Gear '98, Kanatani'01,'02,'03, Zelnik-Manor-Irani'03, Vidal-Hartley'04
- Perspective/continuous: Vidal-Soatto-Sastry '02
- Omnidirectional/continuous: Shakernia-Vidal-Sastry '03
- Special cases:
 - Points in a line (orth-discrete): Han and Kanade '00
 - Points in a line (persp.-continuous): Levin-Shashua '01
 - Points in a conic (perspective): Avidan-Shashua '01
 - Points in moving in planes: Sturm '02

2-body case: Wolf-Shashua '01

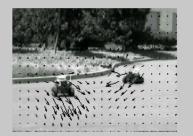
Our approach to motion segmentation

- Solve the initialization problem algebraically
 - Number of motions = degree of a polynomial
 - Motion parameters = factors of a polynomial
- Estimation of multiple motion models equivalent to estimation of one multibody motion model
 - Eliminate feature clustering
 - Find equation that does not depend on data clustering
 - Estimate multibody motion model to all image data
 - Fit a complex polynomial to data
 - Segment multibody motion model
 - Compute derivatives of the polynomial
- Applies to most motion models in vision
 - 2-D: translational, similarity and affine
 - 3-D: translational, fundamental matrix, homography, trifocal tensors, multiple affine cameras

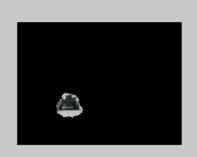
Segmentation of 2-D translational motions

Scene having multiple optical flows $\{u_i \in \mathbb{P}^2\}_{i=1}^n$ Brightness constancy constraint (BCC) gives

$$\boldsymbol{y}^T \boldsymbol{u} = I_x \boldsymbol{u} + I_y \boldsymbol{v} + I_t = \boldsymbol{0}$$



Optical flow



Group 1



Group 3

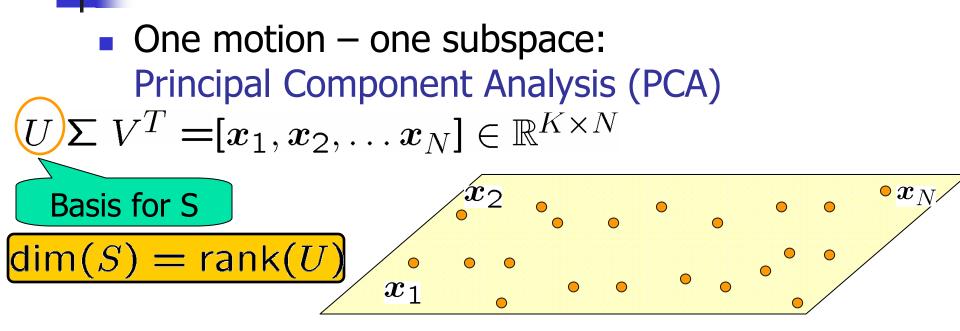
Multiple BCCs

 $\boldsymbol{u}_1^T \boldsymbol{y} = 0$ $\boldsymbol{u}_2^T \boldsymbol{y} = 0$

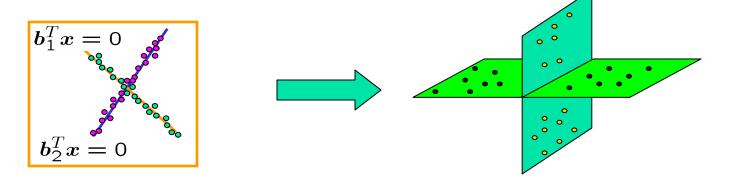
 Multibody brightness constancy constraint

 $p_2(\boldsymbol{y}) = (\boldsymbol{u}_1^T \boldsymbol{y})(\boldsymbol{u}_2^T \boldsymbol{y}) = 0$

How to segment motions in general?

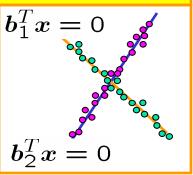


Multiple motions – multiple subspaces
 Generalized Principal Component Analysis (PCA)



Generalized Principal Component Analysis

- Given points on multiple subspaces, identify
 - The number of subspaces and their dimension
 - A basis for each subspace
 - The segmentation of the data points
- "Chicken-and-egg" problem
 - Given segmentation, estimate subspaces
 - Given subspaces, segment the data
- Prior work
 - Geometric approaches: 2 planes in R³ (Shizawa-Maze '91)
 - Factorization approaches: (Boult-Brown `91, Costeira-Kanade `98, Kanatani `01) cluster the data+ apply standard PCA to each cluster
 - Iterative algorithms: e.g. K-plane clustering (Bradley'00)
 - Probabilistic approaches (Tipping-Bishop '99): learn the parameters of a mixture model using e.g. EM
- Initialization?



Motivating example: algebraic clustering in 1D

$$x = b_1 \text{ or } x = b_2 \cdots x = b_n$$

$$p_n(x) = (x - b_1) \cdots (x - b_n) = 0$$

$$p_n(x) = x^n + c_1 x^{n-1} + \cdots + c_n = 0$$

$$p_n(x) = \begin{bmatrix} x^n & \cdots & x & 1 \end{bmatrix} c = 0$$

$$P_n(x) = \begin{bmatrix} x_1^n & \cdots & x_1 & 1 \\ x_2^n & \cdots & x_2 & 1 \\ \vdots & \vdots & \vdots \\ x_N^n & \cdots & x_N & 1 \end{bmatrix} c = 0$$

$$P_n(x) = \begin{bmatrix} x_1^n & \cdots & x_1 & 1 \\ x_2^n & \cdots & x_2 & 1 \\ \vdots & \vdots & \vdots \\ x_N^n & \cdots & x_N & 1 \end{bmatrix} c = 0$$

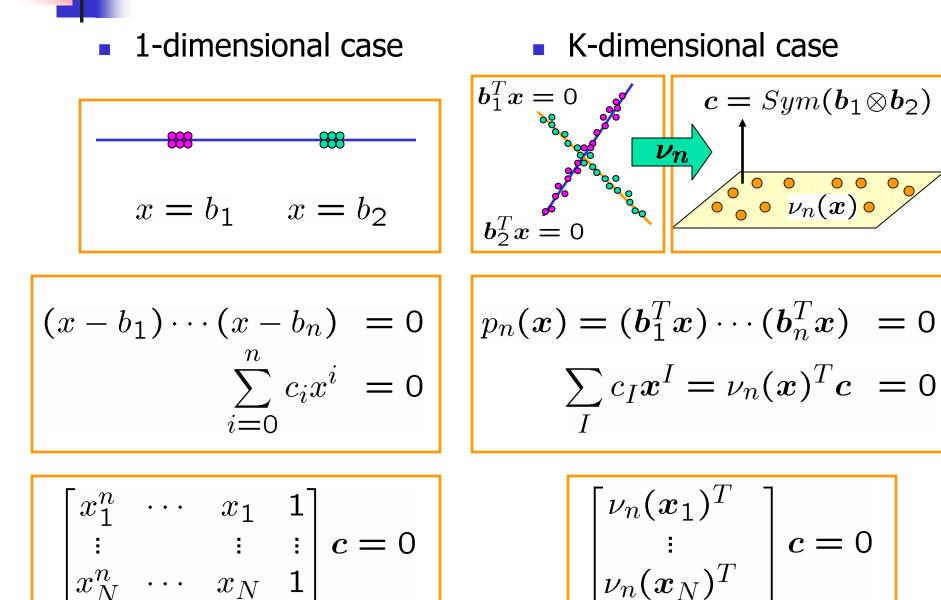
How to compute n, c, b's?

Number of clusters

 $n \doteq \min\{i : rank(P_i) = i\}$

- Cluster centers
 Roots of p_n(x)
 - Solution is unique if $N_{points} \geq n_{groups}$
- Solution is closed form if $n_{groups} \leq 4$

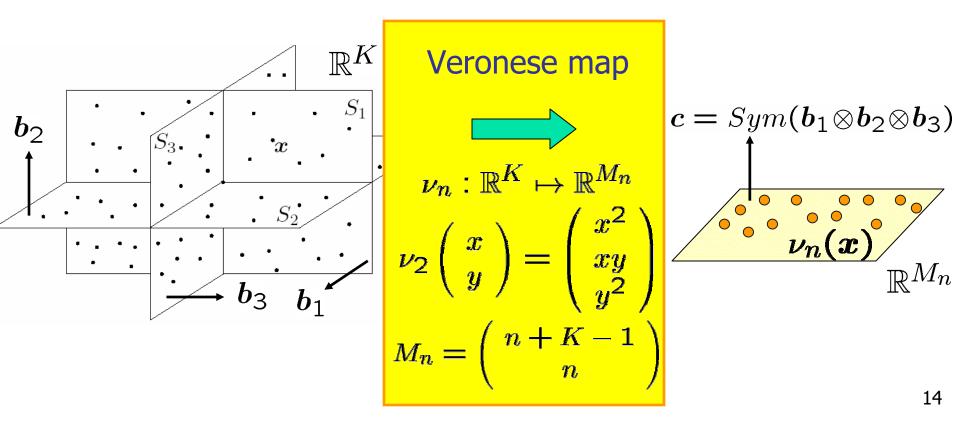
GPCA: n hyperplanes = 1 polynomial of deg n



13

GPCA: the case of hyperplanes

- Identify $n \ (K-1)$ -dimensional subspaces of \mathbb{R}^K
 - *K*: dimension of ambient space (known)
 - n: number of subspaces (unknown)
 - $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_n$: normal to each subspace (unknown)



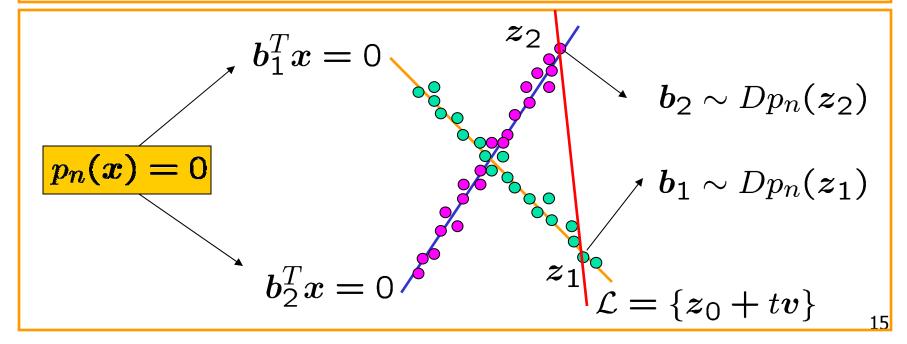
Solution to motion segmentation by GPCA

Theorem: Hyperplane clustering using GPCAEstimate multibody motion model: fit polynomial

$$p_n(\boldsymbol{x}) = (\boldsymbol{b}_1^T \boldsymbol{x}) \cdots (\boldsymbol{b}_n^T \boldsymbol{x}) = 0$$

Estimate motion models: differentiate the polynomial

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$



2-D motion segmentation results

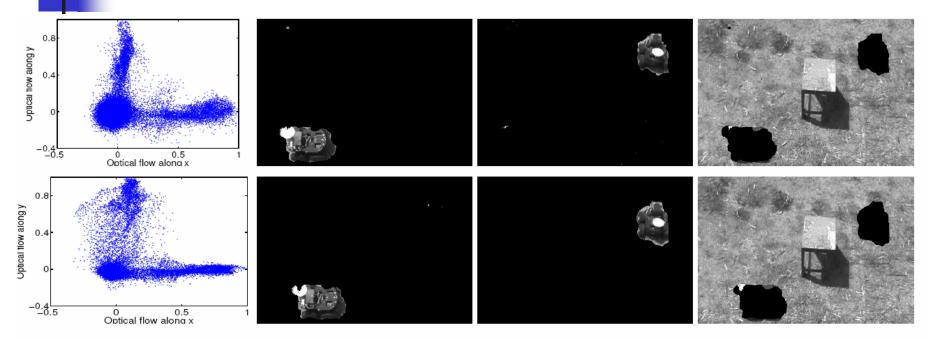


Fig. 1. Segmenting the optical flow of the two-robot sequence by clustering lines in \mathbb{C}^2 .

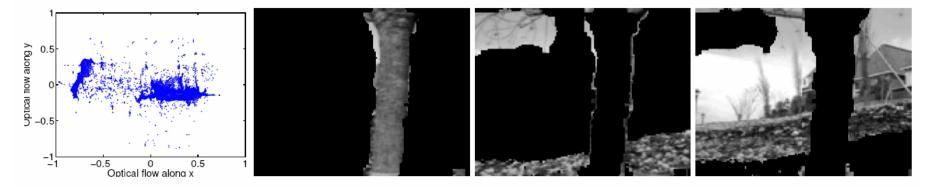
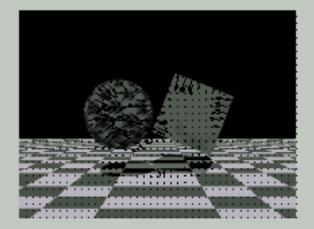
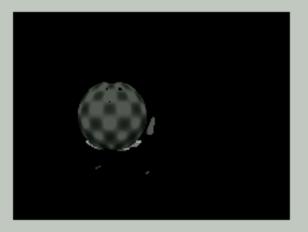


Fig. 2. Segmenting the optical flow of the flower-garden sequence by clustering lines in \mathbb{C}^2 .

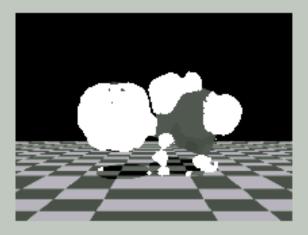


Optical flow

Group 1



Group 2



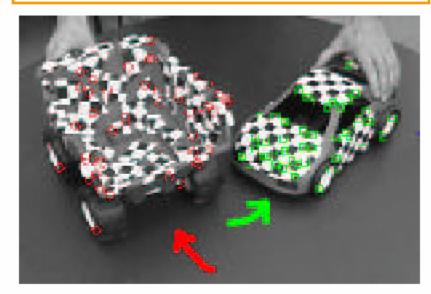
Group 3

Segmentation of 3-D translational motions

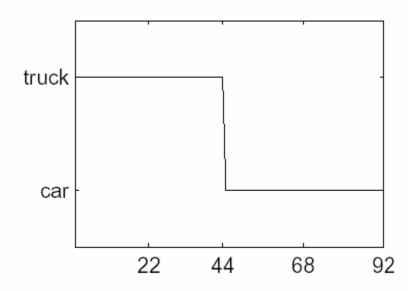
Multiple objects translating in 3D {e_i ∈ ℝ³}ⁿ_{i=1}
 Epipolar constraint gives GPCA problem with K=3

$$e_1^T(x_1 imes x_2)=0$$

Multibody epipolar const. $p_n(y) = (e_1^T y) \cdots (e_n^T y)$



(a) First frame



(b) Feature segmentation

Segmentation of 3-D translational motions

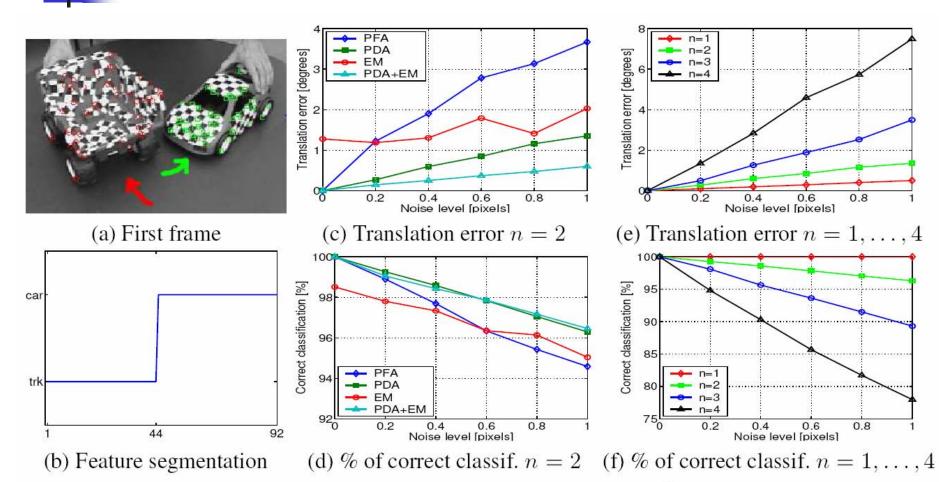
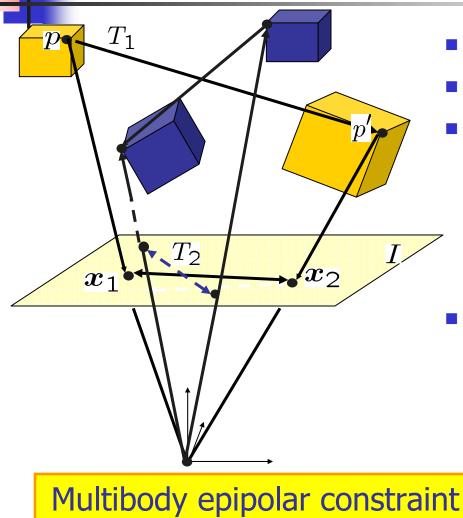


Fig. 3. Segmenting 3-D translational motions by clustering planes in \mathbb{R}^3 . Left: segmenting a real sequence with 2 moving objects. Center: comparing our algorithm with PFA and EM as a function of noise in the image features. Right: performance of PFA as a function of the number of motions.

Segmentation of rigid motions: 2 views



- Rotation: $R_1 \in SO(3)$
- Translation: $\widehat{T_1} \in so(3)$
- Epipolar constraint

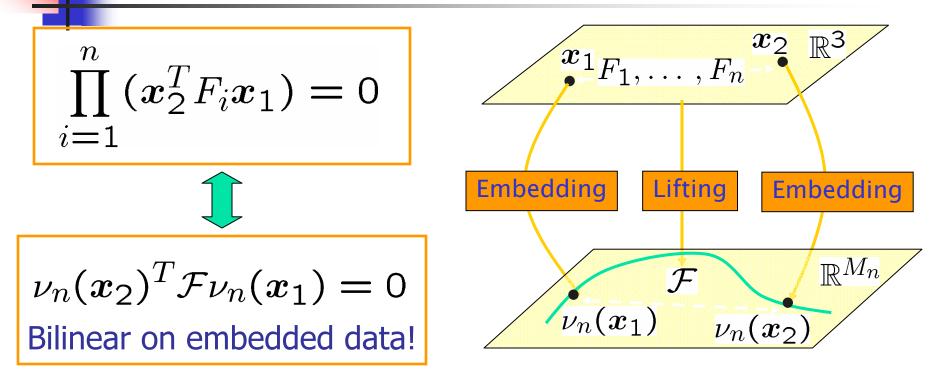
$$\boldsymbol{x}_{2}^{T} \underbrace{\widehat{T}_{1}R_{1}}_{F_{1} \in \mathbb{R}^{3 \times 3}} \boldsymbol{x}_{1} = \boldsymbol{0}$$

• Multiple motions $\{(R_i, T_i)\}_{i=1}^n \{F_i \doteq \widehat{T}_i R_i\}_{i=1}^n$

$$\prod_{i=1}^{n} (\boldsymbol{x}_{2}^{T} F_{i} \boldsymbol{x}_{1}) = 0$$

- Satisfied by ALL points regardless of segmentation
- Segmentation is algebraically eliminated!!!

The multibody fundamental matrix



- Veronese map (polynomial embedding) $\nu_n : [x, y, z]^T \mapsto [x^n, x^{n-1}y, x^{n-1}z, \dots, z^n]^T \in \mathbb{R}^{M_n} \quad (\mathbb{R}^{\frac{(n+1)(n+2)}{2}})$
- Multibody fundamental matrix $\mathcal{F} \doteq \sum_{\sigma \in \mathfrak{S}_n} F_{\sigma(1)} \otimes \cdots \otimes F_{\sigma(n)}$ $\mathcal{F} \in \mathbb{R}^{M_n \times M_n} : \quad 3 \times 3 \quad 6 \times 6 \quad 10 \times 10 \quad \cdots$

Estimation of multibody fundamental matrix

1-body motion	n-body motion
$x_2^T \underbrace{F}_{3 \times 3} x_1 = 0$	$ \nu_n(\boldsymbol{x}_2)^T \underbrace{\mathcal{F}}_{M_n \times M_n} \nu_n(\boldsymbol{x}_1) = 0 $
$\underbrace{A_1\left(\{\boldsymbol{x}_1^j, \boldsymbol{x}_2^j)\}_{j=1}^N\right)}_{\in \mathbb{R}^{N \times 9}} \boldsymbol{f} = \boldsymbol{0}$	$\underbrace{A_n\left(u_n(oldsymbol{x_1}), u_n(oldsymbol{x_2}) ight)}_{A_n\in\mathbb{R}^{N imes M_n^2}}oldsymbol{f}=0$
$rank(A_1) = 8$	$rank(A_n) = M_n^2 - 1$

Estimation of the number of motions

• Theorem: Given $N \ge M_n^2 - 1$ image points corresponding to n motions, if at least 8 points correspond to each object, then

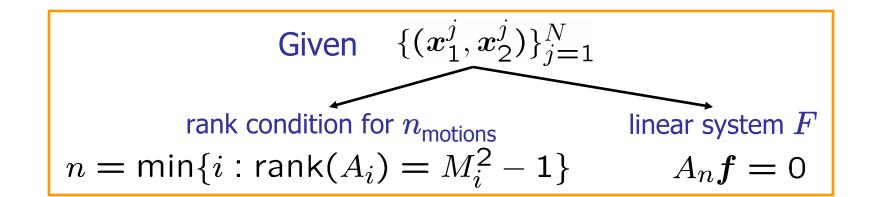
$$\operatorname{rank}(A_i) \begin{cases} > M_i^2 - 1, & \text{if } i < n, \\ = M_i^2 - 1, & \text{if } i = n, \\ < M_i^2 - 1, & \text{if } i > n. \end{cases}$$

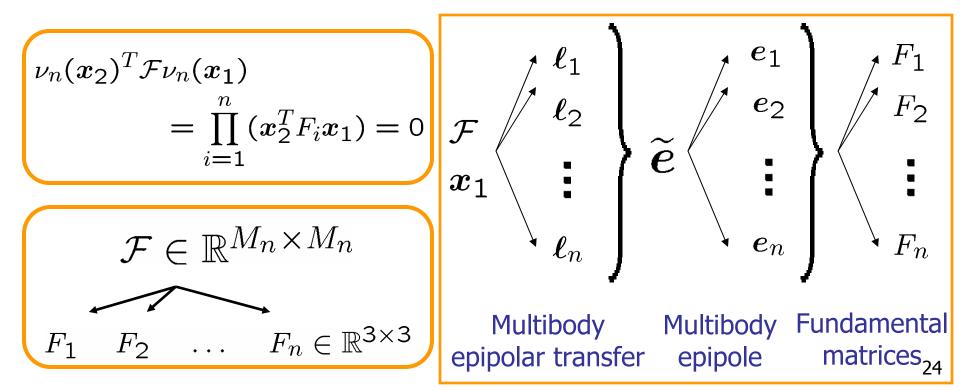
 $n = \min\{i : \operatorname{rank}(A_i) = M_i^2 - 1\}$

Minimum number of points

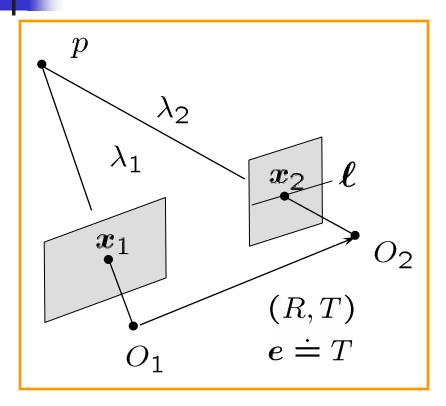
n	1	2	3	4
N	8	35	99	225

Segmentation of fundamental matrices





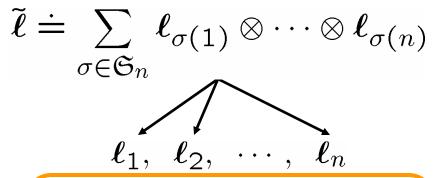
Multibody epipolar transfer



$$oldsymbol{\ell}_i \doteq F_i oldsymbol{x}_1 \in \mathbb{R}^3$$

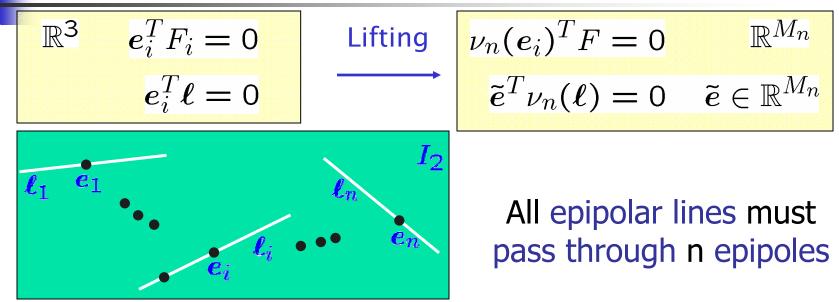
Lifting $oldsymbol{ ilde{\ell}} \doteq \mathcal{F}
u_n(oldsymbol{x}_1) \in \mathbb{R}^{M_n}$

Multibody epipolar line



Epipolar lines are the derivatives of the multibody epipolar constraint at an image pair Polynomial differentiation $\boldsymbol{\ell} = \frac{\partial \left(\nu_n (\boldsymbol{x}_2)^T \mathcal{F} \nu_n (\boldsymbol{x}_1) \right)}{\partial \boldsymbol{x}_2}$

Multibody epipole



$$p_n(\ell) \doteq (e_1^T \ell) (e_2^T \ell) \cdots (e_n^T \ell) = \tilde{e}^T \nu_n(\ell) = 0$$

The multibody epipole solution of linear system

$$B_n \tilde{e} \doteq \begin{bmatrix} \nu_n (\ell^1)^T \\ \nu_n (\ell^2)^T \\ \vdots \\ \nu_n (\ell^m)^T \end{bmatrix} \tilde{e} = 0$$

• Epipoles are derivatives of $p_n(\ell)$ at epipolar lines

$$egin{aligned} egin{aligned} egi$$

Individual fundamental matrices

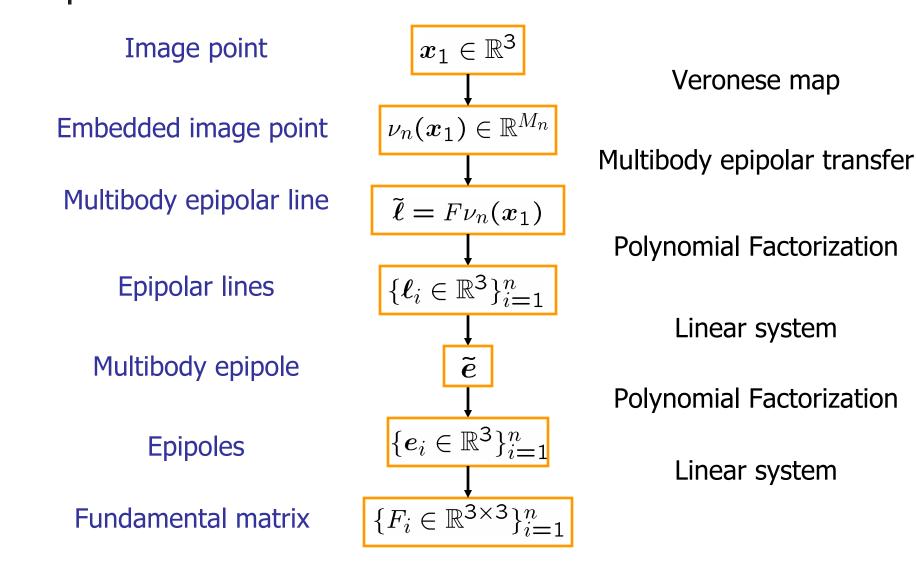
$$\mathcal{F} \in \mathbb{R}^{M_n \times M_n}$$

$$\mathcal{F}_1 \quad \mathcal{F}_2 \quad \dots \quad \mathcal{F}_n \in \mathbb{R}^{3 \times 3}$$

 Fundamental matrices from second-order derivatives of multibody epipolar constraint at the epipoles

$$F_i = rac{\partial \left(
u_n(x_2)^T \mathcal{F}
u_n(x_1)
ight)}{\partial x_1 x_2} igg| egin{array}{c} x_1 = e_i' \ x_2 = e_i'' \ x_2 = e_i'' \end{array}$$

The multibody 8-point algorithm

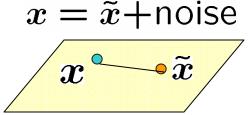


Remarks about the algorithm

- Algebraically equivalent to polynomial factorization
- Requires solving for roots of polynomial of degree **n** in one variable
- There is a closed form solution if n<5</p>
- The algorithm is probably polynomial time
- It requires O(n⁴) image points
- It neglects internal structure of the multibody fundamental matrix

Optimal 3D motion segmentation

- Zero-mean Gaussian noise
- Constrained optimization problem on $Sym(SE(3) \otimes \cdots \otimes SE(3))$ $\min \sum_{j=1}^{N} \|\tilde{x}_{1}^{j} - x_{1}^{j}\|^{2} + \|\tilde{x}_{2}^{j} - x_{2}^{j}\|^{2}$ s.t. $(\tilde{x}_{2}^{jT}F_{1}\tilde{x}_{1}^{j}) \cdots (\tilde{x}_{2}^{jT}F_{n}\tilde{x}_{1}^{j}) = 0$



- Optimal function for 1 motion $(x_2^T F_i x_1)^2$ $\mathcal{J}(F_i) = \frac{(x_2^T F_i x_1)^2}{\|\widehat{e_3}F_i x_1\|^2 + \|\widehat{e_3}F_i^T x_2\|^2}$
- Optimal function for n motions

 $\mathcal{J}(F_1,\ldots,F_n) = \frac{(\nu_n(\boldsymbol{x}_2)^T \mathcal{F} \nu_n(\boldsymbol{x}_1))^2}{\|\widehat{e_3} \mathcal{F} D \nu_n(\boldsymbol{x}_1)\|^2 + \|\widehat{e_3} \mathcal{F}^T D \nu_n(\boldsymbol{x}_2)\|^2}$

Solved using Riemanian Gradient Descent

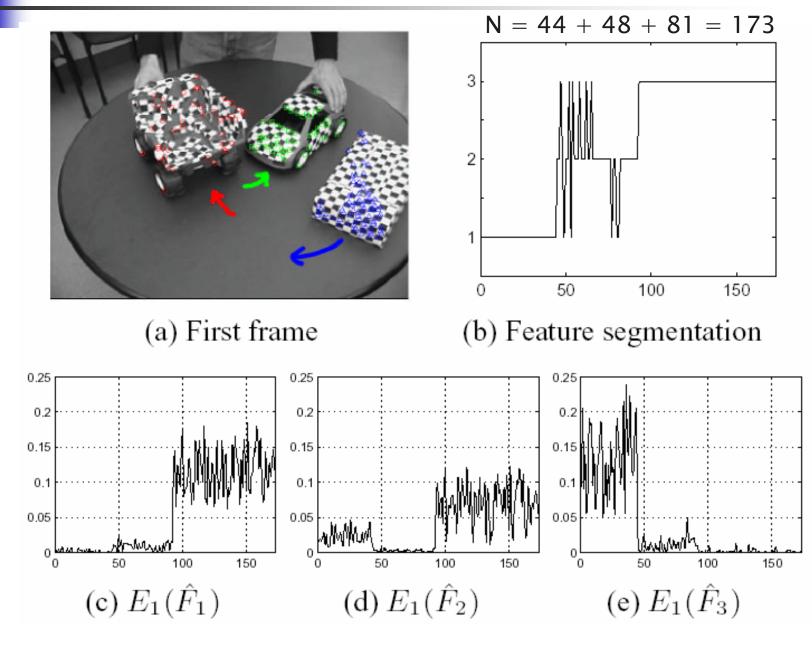
Comparison of 1 body and n bodies

Comparison of	2 views of 1 body	2 views of n bodies	
An image pair	$oldsymbol{x}_1,oldsymbol{x}_2\in\mathbb{R}^3$	$ u_n(oldsymbol{x}_1), u_n(oldsymbol{x}_2)\in\mathbb{R}^{M_n}$	
Epipolar constraint	$\boldsymbol{x}_2^T F \boldsymbol{x}_1 = \boldsymbol{0}$	$ u_n(\boldsymbol{x}_2)^T F u_n(\boldsymbol{x}_1) = 0$	
Fundamental matrix	$F \in \mathbb{R}^{3 \times 3}$	$F \in \mathbb{R}^{M_n imes M_n}$	
Linear estimation from N image pairs	$egin{bmatrix} [m{x}_2^1 \otimes m{x}_1^1]^T \ [m{x}_2^2 \otimes m{x}_1^2]^T \ dots \ [m{x}_2^N \otimes m{x}_1^N]^T \end{bmatrix} egin{array}{c} m{f} = 0 \ dots \ [m{x}_2^N \otimes m{x}_1^N]^T \end{bmatrix}$	$egin{bmatrix} [u_n(oldsymbol{x}_2^1)\otimes u_n(oldsymbol{x}_1^1)]^T\ [u_n(oldsymbol{x}_2^2)\otimes u_n(oldsymbol{x}_1^2)]^T\ dots\ [u_n(oldsymbol{x}_2^N)\otimes u_n(oldsymbol{x}_1^N)]^T \end{bmatrix} oldsymbol{f}=0$	
Epipole	$e^T F = 0$	$ u_n(e)^T F = 0 $	
Epipolar lines	$\boldsymbol{\ell} = F \boldsymbol{x}_1 \in \mathbb{R}^3$	$ ilde{oldsymbol{\ell}} = F u_n(oldsymbol{x}_1) \in \mathbb{R}^{M_n}$	
Epipolar line & point	$x_2^T \ell = 0$	$ u_n(\boldsymbol{x}_2)^T \tilde{\boldsymbol{\ell}} = 0$	
Epipolar line & epipole	$e^T \ell = 0$	$ ilde{m{e}}^T u_n(m{\ell}) = 0$	

$$\mathcal{J}(F_i) = \frac{(x_2^T F_i x_1)^2}{\|\widehat{e_3} F_i x_1\|^2 + \|\widehat{e_3} F_i^T x_2\|^2}$$

$$\mathcal{J}(F_1,\ldots,F_n) = \frac{(\nu_n(\boldsymbol{x}_2)^T \mathcal{F} \nu_n(\boldsymbol{x}_1))^2}{\|\widehat{e}_3 \mathcal{F} D \nu_n(\boldsymbol{x}_1)\|^2 + \|\widehat{e}_3 \mathcal{F}^T D \nu_n(\boldsymbol{x}_2)\|^2}$$

3D motion segmentation results



32

Other cases: linearly moving objects

$$egin{aligned} &x_2^T \widehat{e} x_1 = e^T(\widehat{x_2} x_1) = 0 \ &\ell = \widehat{x_2} x_1, \quad e^T \ell = 0 \end{aligned}$$

Minimum number of points

- Multibody epipole
- Recovery of epipoles
- Fundamental matrices
- Feature segmentation

$$\tilde{e}^T
u_n(\ell) = 0$$

 $\tilde{e} \mapsto \{e_i\}_{i=1}^n$
 $F_i = \widehat{e_i}$
 $x_2^T \widehat{e_i} x_1 = 0$

Other cases: affine flows

- In linear motions, geometric constraints are linear $\boldsymbol{b}_1^T \boldsymbol{x} = 0 \lor \cdots \lor \boldsymbol{b}_n^T \boldsymbol{x} = 0 \Leftrightarrow (\boldsymbol{b}_1^T \boldsymbol{x}) \cdots (\boldsymbol{b}_n^T \boldsymbol{x}) = 0$
- Two-view motion constraints could be bilinear!!!

Affine motion segmentation:
constant brightness constraint3D motion segmentation:
epipolar constraint
$$\begin{bmatrix} I_x & I_y & I_t \end{bmatrix} A \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$
 $\begin{bmatrix} x_2 & y_2 & 1 \end{bmatrix} F \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = 0$ $\boldsymbol{y}^T \quad A \ \boldsymbol{x} = 0$ $\boldsymbol{x}_2^T \quad F \ \boldsymbol{x}_1 = 0$ $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$ $F = \underbrace{\widehat{T} \quad R}_{so(3) \times SO(3) \subset \mathbb{R}^{3 \times 3}}_{so(3) \times SO(3) \subset \mathbb{R}^{3 \times 3}}$

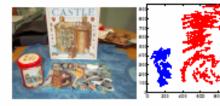
Multiple affine views with missing data

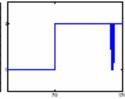
- Affine camera model $~~x_{fp}=\mathtt{A}_{f}X_{p}$
- Motion of 1 rigid-body lives in a subspace of dimension 4

$$\begin{array}{rcl} \mathbb{W} &=& \mathbb{MS}^{+} \\ \begin{bmatrix} \boldsymbol{x}_{11} \cdots \boldsymbol{x}_{1P} \\ \vdots & \vdots \\ \boldsymbol{x}_{F1} \cdots \boldsymbol{x}_{FP} \end{bmatrix}_{2F \times P} & \begin{bmatrix} \mathbb{A}_{1} \\ \vdots \\ \mathbb{A}_{F} \end{bmatrix}_{2F \times 4} \\ \begin{bmatrix} \boldsymbol{X}_{1} \cdots \boldsymbol{X}_{P} \end{bmatrix}_{4 \times P} \end{array}$$

- Motion segmentation is equivalent to clustering subspaces of dimension 2,3,4 in R^{2F}
 - Project to 5-D subspace: Power Factorization
 - Estimate multiple subspaces in R^5: GPCA

Mutiframe results





Misclassification error for different sequences.

Sequence	Points	Frames	Motions	Error
Boat	686	11	2	2.19%
Shirt-Book	170	3	2	1.18%
Wilshire	200	3	2	5.50%
Tea-Tins	84	3	2	1.19%
NEC	82	8	2	0.00%
3-Cars	173	15	3	4.62%
Puma	64	16	2	0.00%
Castle	56	11	2	0.00%

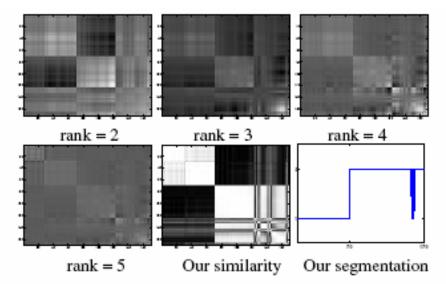
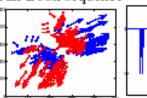
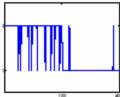


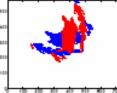
Figure 2: Similarity/Interaction matrices from the Costeira and Kanade algorithm for different rank approximations and from our algorithm for the Can-Book sequence.

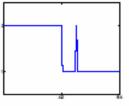
Can-Book sequence



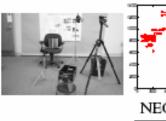


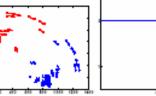
Wilshire sequence





Tea-Tins sequence





NEC sequence

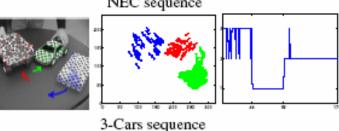


Figure 1: Motion segmentation results. Left: first frame of each sequence. Center: displacement of the correspondences between two views. Right: clustering of the correspondences given by our algorithm.

Conclusions

There is an analytic solution to 3-D motion segmentation based on

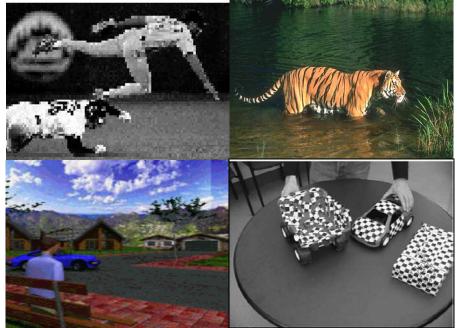
- Fit a polynomial to all the image data
- Differentiate polynomial to obtain motion parameters
- Applies to most motion models in computer vision

Table 1. 2-D and 3-D motion models considered in this paper.

Motion models	Model equations	Model parameters	Equivalent to clustering
2-D translational	$x_2 = x_1 + T_i$		Hyperplanes in \mathbb{C}^2
2-D similarity	$x_2 = \lambda_i R_i x_1 + T_i$	$\{(R_i, T_i) \in SE(2), \lambda_i \in \mathbb{R}^+\}_{i=1}^n$	Hyperplanes in \mathbb{C}^3
2-D affine	$egin{array}{c} oldsymbol{x}_2 = A_i egin{bmatrix} oldsymbol{x}_1 \ 1 \end{bmatrix}$	$\{A_i \in \mathbb{R}^{2 \times 3}\}_{i=1}^n$	Hyperplanes in \mathbb{C}^4
3-D translational	$0 = \boldsymbol{x}_2^T [T_i]_{\times} \boldsymbol{x}_1$		Hyperplanes in \mathbb{R}^3
3-D rigid-body	$0 = \boldsymbol{x}_2^T F_i \boldsymbol{x}_1$		Bilinear forms in $\mathbb{R}^{3 \times 3}$
3-D homography	$oldsymbol{x}_2 \sim H_i oldsymbol{x}_1$	$\{H_i \in \mathbb{R}^{3 \times 3}\}_{i=1}^n$	Bilinear forms in $\mathbb{C}^{2\times 3}$

Some possible applications of GPCA

- Geometry
 - Vanishing points
- Segmentation
 - Intensity
 - Texture
 - 2D Motion
 - 3D Motion
- Recognition
 - Faces (Eigenfaces)
 - Man Woman
 - Human activities
 - Running, walking
- Image and video compression



References

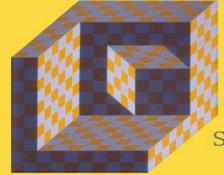
- R. Vidal, Y. Ma, S. Soatto and S. Sastry. *Two-view multibody structure from motion*, International Journal of Computer Vision, 2004
- R. Vidal and Y. Ma. A unified algebraic approach to 2-D and 3-D motion segmentation, European Conf. on Computer Vision 2004
- R. Vidal and R. Hartley. *Motion segmentation using Power Factorization and GPCA*, IEEE Conference on Computer Vision and Pattern Recognition 2004
- R. Vidal and S. Sastry. *Optimal segmentation of dynamic scenes* from two perspective views, International Conference on Computer Vision and Pattern Recognition, 2003
- R. Vidal and S. Sastry. Segmentation of dynamic scenes from image intensities, IEEE Workshop on Vision and Motion Computing, 2002.

INTERDISCIPLINARY APPLIED MATHEMATICS

IMAGING, VISION, AND GRAPHICS

An Invitation to 3-D Vision

From Images to Geometric Models



Yi Ma Stefano Soatto Jana Kosecka Shankar S. Sastry

