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Abstract

The aim of this paper is to explore a linear geometric algorithm for recovering the three
dimensional motion of a moving camera from image velocities. Generic similarities and di�er-
ences between the discrete approach and the di�erential approach are clearly revealed through a
parallel development of an analogous motion estimation theory previously explored in [24, 26].
We present a precise characterization of the space of di�erential essential matrices, which gives
rise to a novel eigenvalue-decomposition-based 3D velocity estimation algorithm from the optical
ow measurements. This algorithm gives a unique solution to the motion estimation problem
and serves as a di�erential counterpart of the well-known SVD-based 3D displacement estima-
tion algorithm for the discrete case. Since the proposed algorithm only involves linear algebra
techniques, it may be used to provide a fast initial guess for more sophisticated nonlinear al-
gorithms [13]. Extensive simulation results are presented for evaluating the performance of our
algorithm in terms of bias and sensitivity of the estimates with respect to di�erent noise levels
in image velocity measurements.

Keywords: di�erential epipolar constraint, di�erential essential matrix, optical ow, motion esti-
mation.

1 Introduction

The problem of estimating structure and motion from image sequences has been studied extensively
by the computer vision community in the past decade. The various approaches di�er in the kinds
of assumptions they make about the projection model, the model of the environment, or the type
of algorithms they use for estimating the motion and/or structure. Most techniques try to decouple
the two problems by estimating the motion �rst, followed by the structure estimation. Thus the
two are usually viewed as separate problems. In spite of the fact that the robustness of existing
algorithms has been studied quite extensively, it has been suggested that the fact that the structure
and motion estimation are decoupled typically hinders their performance [15]. Some algorithms
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address the problem of motion and structure (shape) recovery simultaneously either in batch [21]
or recursive fashion [15].

Approaches to motion estimation alone, can be partitioned into the discrete and di�erential
methods depending on whether they use as input a set of point correspondences or image velocities.
Among the e�orts to solve the motion estimation problem, one of the more appealing approaches is
the essential matrix approach, proposed by Longuet-Higgins, Huang and Faugeras et al in 1980's [9].
It shows that the relative 3D displacement of a camera can be recovered from an intrinsic geometric
constraint between two images of the same scene, the so-called Longuet-Higgins constraint (also
called the epipolar or essential constraint). Estimating 3D motion can therefore be decoupled from
estimation of the structure of the 3D scene. This endows the resulting motion estimation algorithms
with some advantageous features: they do not need to assume any a priori knowledge about
the scene; and are computationally simpler (compared to most non-intrinsic motion estimation
algorithms), using mostly linear algebra techniques. Tsai and Huang [23] proved that, given an
essential matrix associated with the Longuet-Higgins constraint, there are only two possible 3D
displacements. The study of the essential matrix then led to a three-step SVD-based algorithm for
recovering the 3D displacement from noisy image correspondences, proposed in 1986 by Toscani
and Faugeras [22] and later summarized in Maybank [14].

However, the essential matrix approach based on the epipolar constraint recovers only discrete
3D displacement. The velocity information can only be obtained approximately from the logarithm
map (the inverse of the exponential map), as Soatto et al did in [18]. In principle, displacement
estimation algorithms obtained by using epipolar constraint work well when the displacement (es-
pecially the translation, i.e., the so called base-line) between the two images is relatively large.
However, in real-time applications, even if the velocity of the moving camera is not small, the rela-
tive displacement between two consecutive images might become small owing to a high frame rate.
In turn, the algorithms become singular due to the small translation and the estimation results
become less reliable. Further, in applications such as robotic control, an on-board camera, as a
feedback sensor, is required not only to provide relative orientation of the robot but also its relative
speed (for control purposes).

A di�erential (or continuous) version of the 3D motion estimation problem is to recover the 3D
velocity of the camera from optical ow. This problem has also been explored by many researchers:
an algorithm was proposed in 1984 by Zhuang et al [26] with a simpli�ed version given in 1986 [27];
and a �rst order algorithm was given by Waxman et al [25] in 1987. Most algorithms start from
the basic bilinear constraint relating optical ow to the linear and angular velocities and solve for
rotation and translation separately using either numerical optimization techniques (Bruss and Horn
[2]) or linear subspace methods (Heeger and Jepson [4, 6]). Kanatani [7] proposed a linear algorithm
reformulating Zhuang's approach in terms of essential parameters and twisted ow. However, in
these algorithms, the similarities between the discrete case and the di�erential case are not fully
revealed and exploited.

In this paper, we develop, in parallel to the discrete essential matrix approach, a di�erential
essential matrix approach for recovering 3D velocity from optical ow. Based on the di�erential
version of the epipolar constraint, so called di�erential essential matrices are de�ned. We then
give a complete characterization of the space of these matrices and prove that there exists exactly
one 3D velocity corresponding to a given di�erential essential matrix. As a di�erential counter-
part of the three-step SVD-based 3D displacement estimation algorithm, a four-step eigenvector-
decomposition-based 3D velocity estimation algorithm is proposed.
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One must note that, in this paper, only linear algorithms are studied and compared. It is well-
known that linear algorithms are not optimal and give severely biased estimates when the noise level
is high. In order to obtain optimal and unbiased estimates, nonlinear search schemes have to be
used to solve for maximum likelihood estimates. In the sequel of this paper [13], we have proposed
an intrinsic geometric optimization algorithm based on Riemannian optimization techniques on
manifolds. However, since nonlinear algorithms are only locally convergent, the linear algorithms
studied in this paper can be used to initialize the search process of nonlinear algorithms. Further
more, due to their geometric simplicity, clearly understanding the linear algorithms certainly helps
in developing and understanding more sophisticated motion estimation schemes. For example, it
can be shown that under the same conditions that the linear algorithms have a unique solution the
nonlinear algorithms have quadratic rate of convergence [13].

One of the big advantages of the di�erential approach is easy to exploit the nonholonomic
constraints of a mobile base where the camera is mounted. In this paper, we show by example
that nonholonomic constraints may reduce the number of dimensions of the motion estimation
problem, hence reduce the number of minimum image measurements needed for a unique solution.
The proposed motion estimation algorithm can thus be dramatically simpli�ed. The di�erential
approach developed in this paper can also be generalized to the case of an uncalibrated camera
[24, 1]. Finally, in section 3, simulation results are presented evaluating the performance of our
algorithm in terms of bias and sensitivity of the estimates with respect to the noise in optical ow
measurements.

2 Di�erential Essential Matrix Approach

We �rst introduce some notation which will be frequently used in this paper. Given a vector
p = (p1; p2; p3)

T 2 R3, we de�ne p̂ 2 so(3) (the space of skew symmetric matrices in R3�3) by:

p̂ =

0@ 0 �p3 p2
p3 0 �p1
�p2 p1 0

1A : (1)

It then follows from the de�nition of cross-product of vectors that, for any two vectors p; q 2 R3:
p� q = p̂q.

Camera motion is modeled as rigid body motion in R3. The displacement of the camera belongs
to the special Euclidean group SE(3):

SE(3) = f(p; R) : p 2 R3; R 2 SO(3)g (2)

where SO(3) 2 R3�3 is the space of rotation matrices (orthogonal matrices with determinant +1).
An element g = (p; R) in this group is used to represent the 3D translation and orientation (the
displacement) of a coordinate frame Fc attached to the camera relative to an inertial frame which is
chosen here as the initial position of the camera frame Fo (see Figure 1). By an abuse of notation,
the element g = (p; R) serves as both a speci�cation of the con�guration of the camera and as a
transformation taking the coordinates of a point from Fc to Fo. More precisely, let qo; qc 2 R3

be the coordinates of a point q relative to frames Fo and Fc, respectively. Then the coordinate
transformation between qo and qc is given by:

qo = Rqc + p: (3)
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Figure 1: Coordinate frames for specifying rigid body motion of a camera.

Assume that the camera frame is chosen such that the optical center of the camera, denoted
by o, is the same as the origin of the frame. Then the image of a point q in the scene is the point
where the ray < o; q > intersects the imaging surface. A sphere or a plane is usually used to model
the imaging surface. The model of image formation is then referred as spherical projection and
perspective projection, respectively.

In this paper, we use bold letters to denote quantities associated with the image. The image
of a point q 2 R3 in the scene is then denoted by q 2 R3. For the spherical projection, we simply
choose the imaging surface to be the unit sphere: S2 =

�
q 2 R3 j kqk = 1

	
where the norm k � k

always means 2-norm unless otherwise stated. Then the spherical projection is de�ned by the map
�s from R

3 to S2:

�s : R
3! S2; q 7! q =

q

kqk
:

For the perspective projection, we choose the imaging surface to be the plane of unit distance away
from the optical center. The perspective projection onto this plane is then de�ned by the map �p
from R3 to the projective plane RP2:

�p : R
3! RP

2; q = (q1; q2; q3)
T 7! q =

�
q1
q3
;
q2
q3
; 1

�T
:

The essential approach taken in this paper only exploits the intrinsic geometric relations which are
preserved by both projection models. Thus, theorems and algorithms to be developed are always
true for both cases, unless otherwise stated. By an abuse of notation, we will simply denote both
�s and �p by the same letter �. The image of the point q taken by the camera is then q = �(q).

2.1 Review of the Discrete Essential Matrix Approach

Before developing the analysis of the di�erential epipolar constraint which is the main focus of this
paper, we �rst provide a brief review of the epipolar geometry in the discrete case, also known as
the essential matrix approach, originally developed by Huang et al [5]. Let the 3D displacement of
the frame Fc relative to the frame Fo be given by the rigid body motion g = (p; R) 2 SE(3), and
let qo;qc be the images of the same point q taken by the camera at frames Fo and Fc, respectively,
then it is well-known that the two image points qo;qc satisfy the so called epipolar constraint:

qTc R
T p̂qo = 0: (4)
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In this equation we see that the matrix E = RT p̂ with RT 2 SO(3) and p̂ 2 so(3) contains the
unknown motion parameters. A matrix of this form is called an essential matrix; and the set of all
essential matrices is called the essential space, denoted by E :

E �
�
RS

��R 2 SO(3); S 2 so(3)
	
� R3�3: (5)

Huang and Faugeras [5] established that a non-zero matrix E is an essential matrix if and only
if the singular value decomposition (SVD) of E: E = U�V T satis�es:

� = diagf�; �; 0g (6)

for some � 2 R+. In order to answer the question: given an essential matrix E 2 E , how many
pairs (p; R) exist such that RT p̂ = E, we �rst give the following lemma from linear algebra:

Lemma 1 Given any non-zero skew symmetric matrix S 2 so(3), if, for a rotation matrix R 2
SO(3), RS is also a skew symmetric matrix, then R = I or ep̂� where p̂ is the unit skew symmetric
matrix associated with S. Further, ep̂�S = �S.

Proof: Without loss of generality, we assume S is a unit skew symmetric matrix, i.e., there
exists a vector p 2 R3 of unit length such that p̂ = S. Since RS is also a skew symmetric matrix,
(RS)T = �RS. This equation gives:

Rp̂R = p̂: (7)

Since R is a rotation matrix, there exists ! 2 R3; k!k = 1 and � 2 R such that R = e!̂�. Then, (7)
is rewritten as: e!̂�p̂e!̂� = p̂. Applying this equation to !, we get: e!̂� p̂e!̂�! = p̂!. Since e!̂�! = !,
we obtain: e!̂�p̂! = p̂!. Since ! is the only eigenvector associated to the eigenvalue 1 of the matrix
e!̂� and p̂! is orthogonal to !, p̂! has to be zero. Thus, ! is equal to p or �p. R then has the form
ep̂�, which commutes with p̂. Thus from (7), we get:

e2p̂� p̂ = p̂: (8)

According to Rodrigues' formula [16], we have:

e2p̂� = I + p̂ sin(2�) + p̂2(1� cos(2�)) (9)

(8) yields:

p̂2 sin(2�) + p̂3(1� cos(2�)) = 0: (10)

Since p̂2 and p̂3 are linearly independent (Lemma 2.3 in [16]), we have sin(2�) = 1� cos(2�) = 0.
That is, � is equal to 2k� or 2k� + �, k 2 Z. Therefore, R is equal to I or ep̂�. It is direct from
the geometric meaning of ep̂�p̂ that ep̂�p̂ = �p̂, thus ep̂�S = �S.

Following this lemma, suppose (p1; R1) 2 SE(3) and (p2; R2) 2 SE(3) are both solutions for
the equation RT p̂ = E. Then we have RT

1 p̂1 = RT
2 p̂2. It yields R2R

T
1 p̂1 = p̂2. Since p̂1; p̂2 are

skew symmetric matrices and R2R
T
1 is a rotation matrix, we then have either (p2; R2) = (p1; R1) or

(p2; R2) = (�p1; e
p̂1�R1). Therefore, given an essential matrix E there are exactly two pairs (p; R)
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such that RT p̂ = E. Further, if E has the SVD: E = U�V T with U; V 2 SO(3),1 the following
formulae give the two solutions:�

(RT
1 ; p̂1) = (URT

Z(+
�
2 )V

T ; V RZ(+
�
2 )�V

T );
(RT

2 ; p̂2) = (URT
Z(�

�
2 )V

T ; V RZ(�
�
2 )�V

T )
(11)

where RZ(�) is de�ned to be the rotation matrix around the Z-axis by an angle �, i.e., RZ(�) = eê3�

with e3 = (0; 0; 1)T 2 R3.

Since from the epipolar constraint (4) one can only recover the essential matrix up to an arbitrary
scale (in particular, both E and �E satisfy the same equation), so in general four solutions (p; R)
will be obtained from image correspondences. Usually, the positive depth constraint can be imposed
to discard three of the ambiguous solutions. We here omit these well known details and simply
summarize the discrete essential matrix approach for motion estimation as the following algorithm
(which is essentially the same as that given in Maybank [14]) and we repeat it here for comparison
with the algorithm that we will develop for the di�erential case:

Three-Step SVD-Based 3D Displacement Estimation Algorithm:

1. Estimate the essential matrix:

For a given set of image correspondences: (qio;q
i
c); i = 1; : : : ; m (m � 8), �nd the matrix E

which minimizes the error function:

V (E) =
mX
i=1

(qi
T

c R
T p̂qio)

2 (12)

subject to the condition kEk = 1;

2. Singular value decomposition:

Recover matrix E from e and �nd the singular value decomposition of the matrix E:

E = Udiagf�1; �2; �3gV
T (13)

where �1 � �2 � �3;

3. Recover displacement from the essential matrix:

De�ne the diagonal matrix � to be:

� = diagf1; 1; 0g: (14)

Then the 3D displacement (p; R) is given by:

RT = URT
Z(�

�

2
)V T ; p̂ = V RZ(�

�

2
)�V T : (15)

The epipolar geometric relationship between projections of the points and their displacements
transfers to the di�erential case. So, intuitively speaking, the di�erential case is an in�nitesimal
version of the discrete case. However, the di�erential case is by no means simply a \�rst order
approximation" of the discrete case. When di�erentiation takes place, while structure of the geom-
etry of the discrete case is inherited by the di�erential case, some degeneracies may occur. Such
degeneracies will become clear when we study the di�erential version of the epipolar constraint.

1An essential matrix always has a SVD such that U;V 2 SO(3).
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It is also known that it is exactly due to these degeneracies that camera calibration cannot be
fully recovered from di�erential epipolar constraint as opposed to the discrete case [12]. Generally
speaking, the similarity between these two cases is that methods and geometric intuition used in
the discrete case can be extended to the di�erential case, even though geometric characterization
of the objects is di�erent. One of the main goals of this paper is to clarify the geometric similarity
and di�erence between the discrete and di�erential cases. Although the theory will be developed
in a calibrated camera framework, the clear geometric nature of this approach has helped us to un-
derstand the uncalibrated situation as well { especially the relation between the Kruppa's equation
and its di�erential version [12].

2.2 Di�erential Epipolar Constraint

We now develop a di�erential essential matrix approach for estimating 3D velocity from optical
ow in a parallel way to the discrete essential matrix approach for estimating 3D displacement
from image correspondences.

The starting point of this approach is a di�erential version of the epipolar constraint and
associated concept of di�erential essential matrix. This constraint is bilinear in nature and has been
used extensively in the motion estimation from optical ow measurements [24, 4]. Here we give a
characterization of such matrices and show that there exists exactly one 3D velocity corresponding
to a non-zero di�erential essential matrix; as a di�erential version of the three-step SVD-based
3D displacement estimation algorithm, we propose a four-step eigenvector-decomposition-based 3D
velocity estimation algorithm; �nally, we discuss the reasons why the zero-translation case makes all
essential constraint based motion estimation algorithms fail and suggest possible ways to overcome
this di�culty.

Assume that camera motion is described by a smooth curve g(t) = (p(t); R(t)) 2 SE(3).
According to (3), for a point q attached to the inertial frame Fo, its coordinates in the inertial
frame and the moving camera frame satisfy:

qo = R(t)qc(t) + p(t): (16)

Di�erentiating this equation yields:

_qc = �RT _Rqc �RT _p: (17)

Since �RT _R 2 so(3) and �RT _p 2 R3 (see Murray et al [16]), we may de�ne ! = (!1; !2; !3)T 2
R
3 and v = (v1; v2; v3)

T 2 R3 to be:

!̂ = �RT _R; v = �RT _p: (18)

The interpretation of these velocities is: �! is the angular velocity of the camera frame Fc relative
to the inertial frame Fi and �v is the velocity of the origin of the camera frame Fc relative to the
inertial frame Fi. Using the new notation, we get:

_qc = !̂qc + v: (19)

From now on, for convenience we will drop the subscript c from qc. The notation q then serves
both as a point �xed in the frame and its coordinates in the current camera frame Fc. The image
of the point q taken by the camera is given by the spherical projection: q = �(q). Denote the
velocity of the image point q, the so called optical ow, by u, i.e., u = _q 2 R3.
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Theorem 1 (Di�erential epipolar constraint)

Consider a camera moving with linear velocity v and angular velocity ! with respect to the inertial
frame. Then the optical ow u at an image point q satis�es:

uT v̂q+ qT !̂v̂q � 0 (20)

or in an equivalent form:

(uT ;qT)

�
v̂

s

�
q = 0 (21)

where s is a symmetric matrix de�ned to be s = 1
2(!̂v̂ + v̂!̂) 2 R3�3.

Proof: From the de�nition of the maps �, there exists a real scalar function �(t) (kq(t)k or q3(t),
depending on the type of projection) such that q = �q: Take the inner product of the vectors in
(19) with (v � q):

_qT (v � q) = (!̂q + v)T (v � q) = qT !̂T v̂q: (22)

Since _q = _�q+ � _q and qT (v � q) = 0, from (22) we then have:

� _qT v̂q� �qT !̂T v̂q = 0: (23)

When � 6= 0, we obtain a di�erential version of the epipolar constraint:

uT v̂q+ qT !̂v̂q � 0 (24)

Due to the following fact 1, for any skew symmetric matrix A 2 R3�3, qTAq = 0. Since 1
2(!̂v̂� v̂!̂)

is a skew symmetric matrix, qT 1
2(!̂v̂ � v̂!̂)q = qTsq � qT !̂v̂q = 0. Thus, qTsq = qT !̂v̂q. We

then have:

uT v̂q+ qTsq � 0: (25)

The proof indicates that there is some redundancy in the expression of the di�erential epipolar
constraint (20). The following fact from linear algebra shows where this redundancy comes from.

Fact 1 Consider matrices M1;M2 2 R
3�3. qTM1q = qTM2q for all q 2 R3 if and only if M1�M2

is a skew symmetric matrix, i.e., M1 �M2 2 so(3).

Let us de�ne an equivalence relation on the space R3�3, the space of 3 � 3 matrices over R: for
x; y 2 R3�3, x � y if and only if x� y 2 so(3). Denote by [x] = fy 2 R3�3 j y � xg the equivalence
class of x, and denote by [X ] the set

S
x2X [x]. The quotient space R3�3= � can be naturally

identi�ed with the space of all 3�3 symmetric matrices. Especially, we have s = 1
2(!̂v̂+ v̂!̂) 2 [!̂v̂],

which is the reason why we choose it in the equivalent form (21). Using this notation, Theorem 1
can then be re-expressed in the following way:

Corollary 1 Consider a camera undergoing a smooth rigid body motion with linear velocity v and
angular velocity !. Then the optical ow u of a image point q satis�es:

(uT ;qT)

�
v̂

[!̂v̂]

�
q � 0: (26)
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Because of this redundancy, each equivalence class [!̂v̂] can only be recovered up to its symmetric
component s = 1

2(!̂v̂ + v̂!̂) 2 [!̂v̂]. This redundancy is the exact reason why di�erent forms
of the di�erential epipolar constraint exist in the literature [26, 17, 24, 14, 1], and, accordingly,
various approaches have been proposed to recover ! and v (see [20]). It is also the reason why
the di�erential case cannot be simply viewed as a �rst order approximation of the discrete case {
a �rst order approximation of the essential matrix RT p̂ is !̂v̂, but this is certainly not what one
can directly estimate from the di�erential epipolar constraint. Instead, one has to deal with its
symmetric part s = 1

2(!̂v̂+ v̂!̂). This, in fact, makes the study of the di�erential case harder than
the discrete case (in seek for linear algorithms). Notice that the symmetric matrix s is the same
as the matrix K de�ned in Kanatani [8]. Although the characterization of such matrices has been
studied in [8], our constructive proofs given below will lead to a natural algorithm for recovering
(!; v) from s.

2.3 Characterization of the Di�erential Essential Matrix

We de�ne the space of 6� 3 matrices given by:

E 0 =

(�
v̂

1
2(!̂v̂ + v̂!̂)

� �����!; v 2 R3

)
� R6�3: (27)

to be the di�erential essential space. A matrix in this space is called a di�erential essential matrix.
Note that the di�erential epipolar constraint (21) is homogeneous on the linear velocity v. Thus v
may be recovered only up to a constant scale. Consequently, in motion recovery, we will concern
ourselves with matrices belonging to normalized di�erential essential space:

E 01 =

(�
v̂

1
2(!̂v̂ + v̂!̂)

� �����! 2 R3; v 2 S2

)
� R6�3: (28)

The skew-symmetric part of a di�erential essential matrix simply corresponds to the velocity
v. The characterization of the (normalized) essential matrix only focuses on the characterization
of the symmetric part of the matrix: s = 1

2(!̂v̂+ v̂!̂). We call the space of all the matrices of such
form the special symmetric space:

S =

(
1

2
(!̂v̂ + v̂!̂)

�����! 2 R3; v 2 S2

)
� R3�3: (29)

A matrix in this space is called a special symmetric matrix. The motion estimation problem is now
reduced to the one of recovering the velocity (!; v) with ! 2 R3 and v 2 S2 from a given special
symmetric matrix s.

The characterization of special symmetric matrices depends on a characterization of matrices
in the form: !̂v̂ 2 R3�3, which is given in the following lemma. This lemma will also be used in the
next section for showing the uniqueness of the velocity recovery from special symmetric matrices.
Like the (discrete) essential matrices, matrices with the form !̂v̂ are characterized by their singular
value decomposition (SVD): !̂v̂ = U�V T ; moreover, the orthogonal matrices U and V are related.
De�ne the matrix RY (�) to be the rotation around the Y -axis by an angle � 2 R, i.e., RY (�) = eê2�

with e2 = (0; 1; 0)T 2 R3.
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Lemma 2 A matrix Q 2 R3�3 has the form Q = !̂v̂ with ! 2 R3; v 2 S2 if and only if Q has the
form:

Q = �V RY (�)diagf�; � cos(�); 0gV
T (30)

for some rotation matrix V 2 SO(3). Further, � = k!k and cos(�) = !T v=�.

Proof: We �rst prove the necessity. The proof follows from the geometric meaning of !̂v̂: for
any vector q 2 R3,

!̂v̂q = ! � (v � q): (31)

Let b 2 S2 be the unit vector perpendicular to both ! and v: b = v�!
kv�!k (if v � ! = 0, b is

not uniquely de�ned. In this case, pick any b orthogonal to v and !,then the rest of the proof
still holds). Then ! = � exp(b̂�)v (according this de�nition, � is the angle between ! and v, and
0 � � � �). It is direct to check that if the matrix V is de�ned to be:

V = (eb̂
�

2 v; b; v); (32)

then Q has the given form (30).

We now prove the su�ciency. Given a matrix Q which can be decomposed into the form (30),
de�ne the orthogonal matrix U = �V RY (�) 2 O(3).2 Let the two skew symmetric matrices !̂ and
v̂ given by the formulae:

!̂ = URZ(�
�

2
)��U

T ; v̂ = V RZ(�
�

2
)�1V

T (33)

where �� = diagf�; �; 0g and �1 = diagf1; 1; 0g. Then:

!̂v̂ = URZ(�
�

2
)��U

TVRZ(�
�

2
)�1V

T

= URZ(�
�

2
)��(�R

T
Y (�))RZ(�

�

2
)�1V

T

= Udiagf�; � cos(�); 0gV T

= Q: (34)

Since ! and v have to be, respectively, the left and the right zero eigenvectors of Q, the reconstruc-
tion given in (33) is unique.

The following theorem gives a characterization of the special symmetric matrix.

Theorem 2 (Characterization of the special symmetric matrix)
A matrix s 2 R3�3 is a special symmetric matrix if and only if s can be diagonalized as s = V �V T

with V 2 SO(3) and:

� = diagf�1; �2; �3g (35)

with �1 � 0; �3 � 0 and �2 = �1 + �3.

2O(3) represents the space of all orthogonal matrices (of determinant �1.)
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Proof: We �rst prove the necessity. Suppose s is a special symmetric matrix, there exist
! 2 R3; v 2 S2 such that s = 1

2(!̂v̂+ v̂!̂). Since s is a symmetric matrix, it is diagonalizable, all its
eigenvalues are real and all the eigenvectors are orthogonal to each other. It then su�ces to check
that its eigenvalues satisfy the given conditions.

Let the unit vector b and the rotation matrix V be the same as in the proof of Lemma 2, so are
� and . Then according to the lemma, we have:

!̂v̂ = �V RY (�)diagf�; � cos(�); 0gV
T : (36)

Since (!̂v̂)T = v̂!̂, it yields:

s =
1

2
(!̂v̂ + v̂!̂) =

1

2
V
�
�RY (�)diagf�; � cos(�); 0g � diagf�; � cos(�); 0gRT

Y (�)
�
V T : (37)

De�ne the matrix D(�; �) 2 R3�3 to be:

D(�; �) = �RY (�)diagf�; � cos(�); 0g � diagf�; � cos(�); 0gRT
Y (�)

= �

0@ �2 cos(�) 0 sin(�)
0 �2 cos(�) 0

sin(�) 0 0

1A : (38)

Directly calculating its eigenvalues and eigenvectors, we obtain that:

D(�; �) = RY

�
�

2
�
�

2

�
diag f�(1� cos(�));�2� cos(�); �(�1� cos(�))gRT

Y

�
�

2
�
�

2

�
: (39)

Thus s = 1
2V D(�; �)V T has eigenvalues:�

1

2
�(1� cos(�)); �� cos(�);

1

2
�(�1� cos(�))

�
; (40)

which satisfy the given conditions.

We now prove the su�ciency. Given s = V1diagf�1; �2; �3gV
T
1 with �1 � 0; �3 � 0 and

�2 = �1 + �3 and V T
1 2 SO(3), these three eigenvalues uniquely determine �; � 2 R such that the

�i's have the form given in (40):�
� = �1 � �3; � � 0
� = arccos(��2=�); � 2 [0; �]

De�ne a matrix V 2 SO(3) to be V = V1R
T
Y

�
�
2 �

�
2

�
. Then s = 1

2V D(�; �)V T . According to
Lemma 2, there exist vectors v 2 S2 and ! 2 R3 such that:

!̂v̂ = �V RY (�)diagf�; � cos(�); 0gV
T : (41)

Therefore, 1
2(!̂v̂ + v̂!̂) = 1

2V D(�; �)V T = s.

Figure 2 gives a geometric interpretation of the three eigenvectors of the special symmetric
matrix s for the case when both !; v are of unit length. Theorem 2 was given as an exercise problem
in Kanatani [7] but it has never been really exploited in the literature for designing algorithms.
For that purpose, the constructive proof given above is more important since it gives an explicit
decomposition of the special symmetric matrix s, which will be studied in more detail next.
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u 1

u2

b

ω
v

θ/2 θ/2
θ/2

Figure 2: Vectors u1; u2; b are the three eigenvectors of a special symmetric matrix 1
2(!̂v̂ + v̂!̂).

In particular, b is the normal vector to the plane spanned by ! and v, and u1; u2 are both in this
plane. u1 is the average of ! and v. u2 is orthogonal to both b and u1.

According to the proof of the su�ciency of Theorem 2, if we already know the eigenvector
decomposition of a special symmetric matrix s, we certainly can �nd at least one solution (!; v)
such that s = 1

2(!̂v̂ + v̂!̂). This section discusses the uniqueness of such reconstruction, i.e., how
many solutions exist for s = 1

2(!̂v̂ + v̂!̂).

Theorem 3 (Uniqueness of the velocity recovery from the special symmetric matrix)
There exist exactly four 3D velocities (!; v) with ! 2 R3 and v 2 S2 corresponding to a non-zero
special symmetric matrix s 2 S.

Proof: Suppose (!1; v1) and (!2; v2) are both solutions for s = 1
2(!̂v̂ + v̂!̂). Then we have:

v̂1!̂1 + !̂1v̂1 = v̂2!̂2 + !̂2v̂2: (42)

From Lemma 2, we may write:�
!̂1v̂1 = �V1RY (�1)diagf�1; �1 cos(�1); 0gV

T
1

!̂2v̂2 = �V2RY (�2)diagf�2; �2 cos(�2); 0gV T
2 :

(43)

Let W = V T
1 V2 2 SO(3), then from (42):

D(�1; �1) = WD(�2; �2)W
T : (44)

Since both sides of (44) have the same eigenvalues, according to (39), we have:

�1 = �2; �2 = �1: (45)

We then can denote both �1 and �2 by �. It is direct to check that the only possible rotation matrix
W which satis�es (44) is given by I3�3 or:0@ � cos(�) 0 sin(�)

0 �1 0
sin(�) 0 cos(�)

1A or

0@ cos(�) 0 � sin(�)
0 �1 0

� sin(�) 0 � cos(�)

1A : (46)

From the geometric meaning of V1 and V2, all the cases give either !̂1v̂1 = !̂2v̂2 or !̂1v̂1 = v̂2!̂2.
Thus, according to the proof of Lemma 2, if (!; v) is one solution and !̂v̂ = Udiagf�; � cos(�); 0gV T ,
then all the solutions are given by:�

!̂ = URZ(�
�
2 )��U

T ; v̂ = V RZ(�
�
2 )�1V

T ;
!̂ = VRZ(�

�
2 )��V

T ; v̂ = URZ(�
�
2 )�1U

T (47)
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where �� = diagf�; �; 0g and �1 = diagf1; 1; 0g.

Given a non-zero di�erential essential matrix E 2 E 0, according to (47) its special symmetric
part gives four possible solutions for the 3D velocity (!; v). However, in general only one of them
has the same linear velocity v as the skew symmetric part of E does. We thus have:

Theorem 4 (Uniqueness of the velocity recovery from di�erential essential matrix)

There exists only one 3D velocity (!; v) with ! 2 R3 and v 2 R3 corresponding to a non-zero
di�erential essential matrix E 2 E 0.

In the discrete case, there are two 3D displacements corresponding to an essential matrix. However,
the velocity corresponding to a di�erential essential matrix is unique. This is because, in the
di�erential case, the twisted-pair ambiguity (see Maybank [14]), which is caused by a 180� rotation
of the camera around the translation direction, is avoided.

2.4 Algorithm

Based on the preceding study of the di�erential essential matrix, we propose an new algorithm
which recovers the 3D velocity of the camera from a set of (possibly noisy) optical ows.

Let E =

�
v̂
s

�
2 E 01 with s =

1
2(!̂v̂+v̂!̂) be the essential matrix associated with the di�erential

epipolar constraint (21). Since the submatrix v̂ is skew symmetric and s is symmetric, they have
the following form:

v =

0@ 0 �v3 v2
v3 0 �v1
�v2 v1 0

1A ; s =

0@ s1 s2 s3
s2 s4 s5
s3 s5 s6

1A : (48)

De�ne the (di�erential) essential vector e 2 R9 to be:

e = (v1; v2; v3; s1; s2; s3; s4; s5; s6)
T : (49)

De�ne a vector a 2 R9 associated to optical ow (q;u) with q = (x; y; z)T 2 R3;u = (u1; u2; u3)
T 2

R
3 to be3:

a = (u3y � u2z; u1z � u3x; u2x� u1y; x
2; 2xy; 2xz; y2; 2yz; z2)T : (50)

The di�erential epipolar constraint (21) can be then rewritten as:

aTe = 0: (51)

Given a set of (possibly noisy) optical ow vectors: (qi;ui); i = 1; : : : ; m generated by the same
motion, de�ne a matrix A 2 Rm�9 associated to these measurements to be:

A = (a1; a2; : : : ; am)T (52)

where ai are de�ned for each pair (qi;ui) using (50). In the absence of noise, the essential vector
e has to satisfy:

Ae = 0: (53)

3For perspective projection, z = 1 and u3 = 0 thus the expression for a can be simpli�ed.
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In order for this equation to have a unique solution for e, the rank of the matrix A has to be eight.
Thus, for this algorithm, in general, the optical ow vectors of at least eight points are needed to
recover the 3D velocity, i.e., m � 8, although the minimum number of optical ows needed is 5
(see Maybank [14]). When the measurements are noisy, there might be no solution of e for Ae = 0.
As in the discrete case [14], we choose the solution which minimizes the error function kAek2.

Since the di�erential essential vector e is recovered from noisy measurements, the symmetric
part s of E directly recovered from e is not necessarily a special symmetric matrix. Thus one can
not directly use the previously derived results for special symmetric matrices to recover the 3D
velocity. In the algorithms proposed in Zhuang [26, 27], such s, with the linear velocity v obtained
from the skew-symmetric part, is directly used to calculate the angular velocity !. This is an over-
determined problem since three variables are to be determined from six independent equations; on
the other hand, erroneous v introduces further error in the estimation of the angular velocity !.

We thus propose a di�erent approach: �rst extract the special symmetric component from the
symmetric matrix s directly estimated from the di�erential epipolar constraint; then recover the
four possible solutions for the 3D velocity using the results obtained in Theorem 3; �nally choose
the one which has the closest linear velocity to the one given by the skew-symmetric part of E. In
order to extract the special symmetric component out of a symmetric matrix, we need a projection
from the space of all symmetric matrices to the special symmetric space S, i.e., a di�erential version
of the projection of a matrix to the essential manifold E given in Maybank [14].

Theorem 5 (Projection to the special symmetric space)
If a symmetric matrix F 2 R3�3 is diagonalized as F = V diagf�1; �2; �3gV

T with V 2 SO(3),
�1 � 0; �3 � 0 and �1 � �2 � �3, then the special symmetric matrix E 2 S which minimizes the
error kE � Fk2f is given by E = V diagf�1; �2; �2gV

T with:

�1 =
2�1 + �2 � �3

3
; �2 =

�1 + 2�2 + �3
3

; �3 =
2�3 + �2 � �1

3
: (54)

Proof: De�ne S� to be the subspace of S whose elements have the same eigenvalues: � =
diagf�1; �2; �3g. Thus every matrix E 2 S� has the form E = V1�V

T
1 for some V1 2 SO(3). To

simplify the notation, de�ne �� = diagf�1; �2; �3g. We now prove this theorem by two steps.

Step 1: We prove that the special symmetric matrix E 2 S� which minimizes the error kE�Fk2f
is given by E = V �V T . Since E 2 S� has the form E = V1�V T

1 , we get:

kE � Fk2f = kV1�V
T
1 � V ��V

Tk2f

= k�� � V TV1�V
T
1 V k

2
f : (55)

De�ne W = V TV1 2 SO(3) and W has the form:

W =

0@ w1 w2 w3

w4 w5 w6

w7 w8 w9

1A : (56)

Then:

kE � Fk2f = k�� �W�WT k2f

= tr(�2
�)� 2tr(W�WT��) + tr(�2): (57)
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Substituting (56) into the second term, and using the fact that �2 = �1 + �3 and W is a rotation
matrix, we get:

tr(W�WT��) = �1(�1(1� w2
3) + �2(1� w2

6) + �3(1� w2
9))

+ �3(�1(1� w2
1) + �2(1� w2

4) + �3(1� w2
7)): (58)

Minimizing kE � Fk2f is equivalent to maximizing tr(W�WT��). From (58), tr(W�WT��) is

maximized if and only if w3 = w6 = 0, w2
9 = 1, w4 = w7 = 0 and w2

1 = 1. Since W is a rotation
matrix, we also have w2 = w8 = 0 and w2

5 = 1. All possible W give a unique matrix in S� which
minimizes kE � Fk2f : E = V �V T .

Step 2: From step one, we only need to minimize the error function over the matrices which
have the form V�V T 2 S. The optimization problem is then converted to one of minimizing the
error function:

kE � Fk2f = (�1 � �1)
2 + (�2 � �2)

2 + (�3 � �3)
2 (59)

subject to the constraint:

�2 = �1 + �3: (60)

The formula (54) for �1; �2; �3 are directly obtained from solving this minimization problem.

Remark 1 For symmetric matrices which do not satisfy conditions �1 � 0 or �3 � 0, one may
simply choose �01 = max(�1; 0) or �03 = min(�3; 0).

We then have an eigenvalue-decomposition based algorithm for estimating 3D velocity from
optical ow.

Four-Step 3D Velocity Estimation Algorithm:

1. Estimate essential vector:

For a given set of optical ows: (qi;ui); i = 1; : : : ; m, �nd the vector e which minimizes the
error function:

V (e) = kAek2 (61)

subject to the condition kek = 1;

2. Recover the special symmetric matrix:

Recover the vector v0 2 S2 from the �rst three entries of e and the symmetric matrix s 2 R3�3

from the remaining six entries.4 Find the eigenvalue decomposition of the symmetric matrix
s:

s = V1diagf�1; �2; �3gV
T
1 (62)

with �1 � �2 � �3. Project the symmetric matrix s onto the special symmetric space S. We
then have the new s = V1diagf�1; �2; �3gV

T
1 with:

�1 =
2�1 + �2 � �3

3
; �2 =

�1 + 2�2 + �3
3

; �3 =
2�3 + �2 � �1

3
; (63)

4In order to guarantee v0 to be of unit length, one needs to \re-normalize" e, i.e., multiply e by a scalar such that
the vector determined by the �rst three entries is of unit length.

15



3. Recover velocity from the special symmetric matrix:

De�ne: �
� = �1 � �3; � � 0;
� = arccos(��2=�); � 2 [0; �]:

(64)

Let V = V1R
T
Y

�
�
2 �

�
2

�
2 SO(3) and U = �V RY (�) 2 O(3). Then the four possible 3D

velocities corresponding to the special symmetric matrix s are given by:�
!̂ = URZ(�

�
2 )��U

T ; v̂ = VRZ(�
�
2 )�1V

T

!̂ = VRZ(�
�
2 )��V

T ; v̂ = URZ(�
�
2 )�1U

T (65)

where �� = diagf�; �; 0g and �1 = diagf1; 1; 0g;

4. Recover velocity from the di�erential essential matrix:
From the four velocities recovered from the special symmetric matrix s in step 3, choose the
pair (!�; v�) which satis�es:

v�Tv0 = max
i

vTi v0: (66)

Then the estimated 3D velocity (!; v) with ! 2 R3 and v 2 S2 is given by:

! = !�; v = v0: (67)

Both v0 and v� are estimates of the linear velocity. However, experimental results show that,
statistically, within the tested noise levels (see next section), v0 yields a better estimate than v� .
Here, thus, we simply choose v0 as the estimate. Nonetheless, one can �nd statistical correlations
between v0 and v� (experimentally or analytically) and obtain better estimates for v, using both v0
and v�. Another potential way to improve this algorithm is to study the systematic bias introduced
by the least square method in step 1. A similar problem has been studied by Kanatani [7] and an
algorithm was proposed to remove such bias from Zhuang's algorithm [26].

Remark 2 Since both E;�E 2 E 01 satisfy the same set of di�erential epipolar constraints, both
(!;�v) are possible solutions for the given set of optical ows. However, as in the discrete case,
one can get rid of the ambiguous solution by adding the \positive depth constraint".

Remark 3 By the way of comparison to Heeger and Jepson's algorithm [4], note that the equation
(53) may be rewritten to highlight the dependence on optical ow as: [A1(u) j A2]e = 0 where
A1(u) 2 R

m�3 is a linear function of the measured optical ow and A2 2 R
m�6 is a function of the

image points alone. Heeger and Jepson compute a left null space to the matrix A2 (C 2 R(m�6)�m)
and solve the equation: CA1(u)v = 0 for v alone. Then they use v to obtain !. Our method
simultaneously estimates v 2 R3; s 2 R6. We make a detailed simulation comparison of these two
algorithms in section 4.

One should note that this linear algorithm is not optimal in the sense that the recovered velocity
does not necessarily minimize the originally picked error function kAe(!; v)k2 on E 01 (see next section
for a more detailed discussion). However, this algorithm only uses linear algebra techniques and is
particularly simpler than a one which tries to optimize on the manifold E 01 [13].
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One potential problem with the (discrete or di�erential) essential approaches is that the motion
estimation schemes are all based on the assumption that the translation is not zero. In this section,
we study what makes the epipolar constraint fail to work in the zero-translation case.

For the discrete case, if two images are obtained from rotation alone i.e., p = 0 and qc = RTqo,
it is straightforward to check that, for all p 2 S2, we have:

qTc R
T p̂qo � 0: (68)

Thus, theoretically, the estimation schemes working on the normalized essential space E1 will fail to
converge (since there are in�nite many pairs of (R; p) satisfying the same set of epipolar constraints).
In the di�erential case, we have a similar situation:

Theorem 6 An optical ow �eld (q;u) is obtained from a pure rotation with the angular velocity
! if and only if for all vectors v 2 S2

(uT ;qT)

�
v̂

[!̂v̂]

�
q = 0: (69)

Proof: u = !̂q since u is obtained from rotation ! , uT (v � q) = �qT !̂(v � q) for all v 2 S2

, (uT ;qT)
�
v̂ [!̂v̂]

�
q = 0.

This theorem implies that the velocity estimation algorithm proposed in the previous section
will have trouble when the linear velocity v is zero, since there are in�nite many pairs of (!; v)
satisfying the same set of di�erential epipolar constraints. However, it is shown by Soatto et al
[18] that, in the dynamical estimation approach, one can actually make use of the noise in the
measurements to obtain correct estimate of the rotational component R regardless of the accuracy
of the estimate for the translation vector p. The same should hold also in the di�erential case.
That is, even in the zero-translation case, the recovery of the angular velocity ! is still possible
using dynamic estimation schemes. Study of such schemes is beyond the scope of this paper and
will be addressed in our future research work.

Example: Kinematic model of an aircraft.

This example shows how to utilize nonholonomic constraints (see Murray, Li and Sastry [16]) to
simplify the proposed linear motion estimation algorithm in the di�erential case. Let g(t) 2 SE(3)
represents the position and orientation of an aircraft relative to the spatial frame, the inputs
!1; !2; !3 2 R stand for the rates of the rotation about the axes of the aircraft and v1 2 R the
velocity of the aircraft. Using the standard homogeneous representation for g (see Murray, Li and
Sastry [16]), the kinematic equations of the aircraft motion are given by:

_g = g

0BB@
0 �!3 !2 v1
!3 0 �!1 0
�!2 !1 0 0
0 0 0 0

1CCA (70)

where !1 stands for pitch rate, !2 for roll rate, !3 for yaw rate and v1 the velocity of the
aircraft. Then the 3D velocity (!; v) in the di�erential epipolar constraint (21) has the form:
! = (!1; !2; !3)

T ; v = (v1; 0; 0)
T . For the algorithm given in section 2.4, this adds extra con-

straints on the symmetric matrix s = 1
2(!̂v̂ + v̂!̂): s1 = s5 = 0 and s4 = s6. Then there are
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only four di�erent essential parameters left to determine and we can re-de�ne the essential param-
eter vector e 2 R4 to be: e = (v1; s2; s3; s4)

T . Then the measurement vector a 2 R4 is to be:
a = (u3y � u2z; 2xy; 2xz; y2+ z2)T . The di�erential epipolar constraint can then be rewritten as:

aTe = 0: (71)

If we de�ne the matrix A from a like in (52), the matrix ATA is a 4� 4 matrix rather than a 9� 9
one. For estimating the velocity (!; v), the dimensions of the problem is then reduced from 9 to
4. In this special case, the minimum number of optical ow measurements needed to guarantee a
unique solution of e is reduced to 3 instead of 8. Further more, the symmetric matrix s recovered
from e is automatically in the special symmetric space S and the remaining steps of the algorithm
given in section 2.4 can be thus dramatically simpli�ed. From this simpli�ed algorithm, the angular
velocity ! = (!1; !2; !3)

T can be fully recovered from the images. The velocity information can be
then used for controlling the aircraft.

3 Experimental Results

We have carried out some initial simulations in order to study the performance of our algorithm.
We chose to evaluate it in terms of bias and sensitivity of the estimates with respect to the noise in
the optical ow measurements. Preliminary simulations were carried out with perfect data which
was corrupted by zero-mean Gaussian noise where the standard deviation was speci�ed in terms
of pixel size and was independent of velocity. The image size was considered to be 512 � 512
pixels. Our algorithm has been implemented in Matlab and the simulations have been performed
using example sets proposed by [20] in their paper on comparison of the egomotion estimation from
optical ow5. The motion estimation was performed by observing the motion of a random cloud
of points placed in front of the camera. Depth range of the points varied from a to b (> a) units
of the focal length f , which was considered to be unity. For example, if the focal length is 8mm
and a = 100 and b = 400, the point depth varies from 0.8 m to 3.2 m in front of the camera. This
setup makes the simulation depend only on the parameter c = (b � a)=a, called depth variation
parameter. The results presented below are for a �xed �eld of view (FOV) of 60 degrees unless
otherwise stated.

3.1 Comparing to Subspace Methods

Each simulation consisted of 500 trials for 50 randomly sampled points in a given depth variation
[a; b] = [100; 400] with a �xed noise level and ratio between the image velocity due to translation and
rotation for the point in the middle of the random cloud. Figures 3 and 4 compare our algorithm
with Heeger and Jepson's linear subspace algorithm [4]. The presented results demonstrate the
performance of the algorithm while rotating around X-axis with rate of 1o per frame and translating
along Y-axis with translation to rotation ratio of 1 and 5 respectively (for the point at the center
of the random cloud). The �rst stage of our analysis was performed using benchmarks proposed
by [20]. The bias is expressed as an angle between the average estimate out of all trials (for a given
setting of parameters) and the true direction of translation and/or rotation. The sensitivity was
computed as a standard deviation of the distribution of angles between each estimated vector and

5We would like to thank the authors in [20] for making the code for simulations of various algorithms and evaluation
of their results available on the web.
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the average vector in case of translation and as a standard deviation of angular di�erences in case
of rotation.
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Figure 3: Bias for each noise level was esti-
mated by running 500 trials and computing
the average translation and rotation. The ra-
tio between the magnitude of linear and an-
gular velocities is 1.
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Figure 4: Bias for each noise level was esti-
mated by running 500 trials and computing
the average translation and rotation. The ra-
tio between the magnitude of linear and an-
gular velocities is 5.

We further evaluated the algorithm by varying the direction of translation and rotation. At the
noise level of 0.9 pixel and translation/rotation ratio 1, for di�erent combination of translation and
rotation axis, the bias of these two algorithm are shown in Figure 5. From the simulation results,
we observe that:

1. In terms of translational bias and sensitivity, the subspace method [4] and our algorithm have
exactly the same performance at all noise levels.

2. The choice of the rotation axis does not inuence the translation estimates at all for both
algorithms. It does not generally inuence the rotation estimates for the subspace method
either but indeed inuences our algorithm. This is because the decomposition of the special
symmetric matrix s = 1

2(!̂v̂ + v̂!̂) is numerically less accurate when ! and v coincide with
each other.

3. Both algorithms give much better estimates when translation along Z-axis is present. This is
consistent to the sensitivity analysis done in Daniilidis [3]. In the case of translation in X-Y
plane, our algorithm gives better rotation estimates than the subspace method [4], especially
when the noise levels are high.

This is due to the fact that in our algorithm the rotation is estimated simultaneously with the
translation, so that its bias is only due to the bias of the initially estimated di�erential essential
matrix obtained by linear least squares techniques. This is in contrast to the rotation estimate used
by the subspace method [4] which uses another least-squares estimation by substituting an already
biased translational estimate to compute the rotation. Increasing the ratio between the magnitude
of translational and rotational velocities, the performance of both algorithms improves, especially
the translation estimates.
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Figure 5: Bias dependency on combination of translation and rotation axises. For example, \X-
Y" means the translation direction is in X-axis and rotation axis is the Y-axis. Bias for each
combination of axises was estimated by running 500 trials at the noise level 0.9 pixel. The ratio
between the magnitude of linear and angular velocities is 1.

3.2 Bias Analysis: Relation with Nonlinear Algorithms

A disadvantage of any linear algorithm is that it tries to directly minimize the epipolar constraint,
i.e., the objective function:

V (!; v) =
NX
i=1

(uiT v̂qi + qiT !̂v̂qi)2: (72)

But this is not the likelihood function of ! and v for commonly used noise models of the optical ow.
Consequently, estimates given by linear algorithms are usually not close to maximum a posterior
(MAP) or minimum mean square estimates (MMSE). In general, this is the source of bias for linear
algorithms. In case of perspective projection, a commonly used noise model is:

~ui = ui + ni (73)

where ~ui's are corrupted optical ows and ni's are independent Gaussian noises with identical
covariance matrix K = diagf�2; �2; 0g. Substitute ~ui into the epipolar constraint and we obtain

~uiT v̂qi + qiT !̂v̂qi = niT v̂qi: (74)

The random variable niT v̂qi is Gaussian with distribution N(0; kbe3v̂qik2) where e3 = (0; 0; 1)T.
Consequently, the variance in general depends on the location of the image point qi. Assuming
that the a prior distributions of !; v are uniform, the MAP estimates are then given by the !�; v�
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which minimize the normalized epipolar constraint:

V (!; v) =
NX
i=1

(uiT v̂qi + qiT !̂v̂qi)2

k be3v̂qik2 : (75)

A desirable property of MAP estimates is that they are asymptotically unbiased (approaching the
MMSE), i.e., when the number of sample points N is large, the bias is reduced dramatically. It is
important to notice that if the translation v is in the X-Y plane, i.e., v = (v1; v2; 0)

T , k be3v̂qik = kvk
is independent of the image point qi. The normalized version (75) is therefore equivalent to the
unnormalized version (72). Consequently, the normalization will not have much e�ect on the
obtained estimates. Note that this is exactly the case when our algorithm performs better than
the subspace method. For the case that the Z-axis translation is present, the performance of both
algorithms can be further improved by solving the normalized version (especially when a large
number of sample points are available). This is, in general, a nonlinear optimization problem and
is beyond the scope of this paper. However, since nonlinear algorithms usually only guarantee local
convergence, a good linear algorithm may provide a good initial state for a nonlinear search scheme.

To demonstrate the e�ect of normalization, we have run our linear algorithm for the normalized
objective function (75) using the actual translation velocity in the denominator to normalize the
epipolar constraint and compare the results with those from the unnormalized one (a loyal imple-
mentation of the nonlinear optimization scheme can be found in [13]). Since the advantage of MAP
estimate is only observed asymptotically, we here pick a large number of sample points N = 500.
Because, up to N = 500, the improvement in rotation estimate is less signi�cant, we only plot the
translation bias with respect to di�erent noise levels in Figure 6. Both the translation direction
and rotation axis are along the Z-axis.
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Figure 6: Translation bias of using normalized and unnormalized epipolar constraints. Bias for
each noise level is estimated by running 50 trials. Both rotation and translation is along the Z-axis
and the ratio between the magnitude of linear and angular velocities is 1.
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3.3 Sensitivity to the Depth Variation Parameter c

Simulations also show that the depth variation parameter c = (b � a)=a is another important
measure of the performance of the linear algorithm. We ran our algorithm at noise levels 0:3; 0:6
and 0:9 pixel with respect to depth variation parameter c = 2:5; 3:0; 3:5; 4:0 for a cloud of 200 points.
Translation and rotation biases are plotted in Figure 7. One should notice that at high noise levels,
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Figure 7: Translation bias and rotation bias with respect to di�erent depth variation parameter
c. Bias for each noise level and depth variation parameter is estimated by running 500 trials.
Translation is along the X-axis and rotation axis is the Z-axis and the ratio between the magnitude
of linear and angular velocities is 1.

the bias increases almost exponentially when the depth variation parameter c decreases. When
the depth variation parameter is small and noise level is high, the proposed algorithm gives less
robust estimates. Especially, estimates of the bias and sensitivity become less stable. In order to
demonstrate the true monotonic relation between the sensitivity and noise level, a larger number of
trials have to be performed. In this case, the fact that the points in the scene are (almost) coplanar
has to be incorporated in the designing of motion estimation algorithms [10, 19].

3.4 Translation estimates v0 versus v
�

Further evaluation of the results and more extensive simulations are currently underway. We
believe that thoroughly understanding the source of translational bias, we can obtain even better
performance by utilizing additional information about the linear velocity which is embedded in the
special symmetric part of the di�erential essential matrix, i.e., v� (see step 4 of the algorithm in
the preceding section). In the above simulations, the linear velocity v was estimated only from the
v0, the skew symmetric part of the di�erential essential matrix. Figure 8 demonstrates that v0 is
in general a much better estimate than v�. A more detailed analysis of the statistical correlation
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between v0 and v� is currently under investigation.
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Figure 8: Bias and sensitivity of the translation estimates v0 from the skew symmetric part and
v� from the special symmetric part of the di�erential essential matrix. Bias and sensitivity for
each noise level are estimated by running 200 trials for a cloud of 50 points. Both translation and
rotation are along the X-axis and the ratio between the magnitude of linear and angular velocities
is 5.

4 Discussions and Future Work

This paper presents a uni�ed (linear) approach for the problem of egomotion estimation using dis-
crete and di�erential epipolar constraints. In either the discrete or di�erential setting, a geometric
characterization is given for the space of essential matrices or di�erential essential matrices. Such
characterization gives a natural geometric interpretation for the number of possible solutions to
the motion estimation problem. In addition, in the di�erential case, understanding of the space of
di�erential essential matrices leads to a new egomotion estimation algorithm, which is a natural
counterpart of the well-known three-step SVD based algorithm developed for the discrete case by
[22].

In order to exploit temporal coherence of motion and improve algorithm's robustness, a dynamic
(recursive) motion estimation scheme, which uses implicit extended Kalman �lter for estimating
the essential parameters, has been proposed by Soatto et al [18] for the discrete case. The same
ideas certainly apply to our algorithm.

Although only linear algorithms are studied in this paper, the understanding of the geomet-
ric characterization of the essential matrix spaces leads to natural geometric nonlinear search al-
gorithms based on optimization techniques on Riemannian manifolds. Those intrinsic nonlinear
algorithms will be presented in the sequel of this paper [13]. The problem of 3D structure recon-
struction is not discussed in this paper. Like the motion estimation, this subject has also been
studied extensively in the computer vision literature. A uni�ed approach has been proposed in a

23



sequel paper [11].

In this paper, we have assumed that the camera is calibrated. Our approach can be extended to
uncalibrated camera case, where the motion estimation and camera self-calibration problem can be
solved simultaneously, using the di�erential essential constraint [24, 1]. In this case, the essential
matrix is replaced by the fundamental matrix which captures both motion information and camera
intrinsic parameters. It is shown in [1, 12], that besides �ve motion parameters only two extra
intrinsic parameters can be recovered.
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