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Abstract

This article provides an account of sensitivity and robustness of structure
and motion recovery with respect to the errors in intrinsic parameters of the
camera. We demonstrate both analytically and in simulation, the interplay
between measurement and calibration errors and their effect on motion and
structure estimates. In particular we show that the calibration errors intro-
duce an additional bias towards the optical axis, which has opposite sign to
the bias typically observed by egomotion algorithms. The overall bias causes
a distortion of the resulting 3D structure, which we express in a parametric
form. The analysis and experiments are carried out in the differential setting
for motion and structure estimation from image velocities. While the ana-
lytical explanations are derived in the context of linear techniques for motion
estimation, we verify our observations experimentally on a variety of optimal
and suboptimal motion and structure estimation algorithms. The obtained re-
sults illuminate and explain the performance and sensitivity of the differen-
tial structure and motion recovery techniques in the presence of calibration
errors.

1 Introduction

While the basic geometric relationships governing the problem of structure and motion
recovery from image sequences are well understood, the existence of robust automatic
techniques for recovery of motion and structure is still elusive. Different aspects of the
performance and sensitivity of the existing general techniques for motion and structure
recovery have been addressed in the past. While the list of references is by no means ex-
haustive, we mention here few more recent representative works addressing the problem.
The intrinsic sensitivity of the differential formulation of the problem has been studied
thoroughly using analytical techniques as well as simulations [13, 11, 14]. These studies
assumed calibrated cameras and focused on determining sensitive directions of motion,
dependency on the depth variation and field of view [16]. The process of camera cali-
bration introduces additional errors in the measurements, which affect the final estimates.
This is the case both when the camera is calibrated off-line or when self-calibration tech-
niques are used towards this end. With the exception of few, the study of these effects,
has not received much attention. Various empirical observations regarding the stability of
the estimation of intrinsic parameters and their effect on the structure estimation in the
discrete setting have been made by Bougnoux [12]. He pursued the stratified approach to



Euclidean reconstruction and experimentally demonstrated that, in spite of depth distor-
tions caused by calibration errors, the basic geometric relationships (orthogonality, paral-
lelism) were preserved. The effect of calibration errors on motion estimates in the discrete
setting have also been explored in [8], assuming noise free measurements of correspond-
ing points. In [7] the authors derived the covariances of the parameters of an uncalibrated
stereo system, both for fixed calibration parameters and for the hypothesis that ana pri-
ori Gaussian distribution for the calibration parameters is known. The effect of this prior
knowledge on the quality of the final estimates was demonstrated in the context of non-
linear optimization techniques. In the differential setting Cheong [11] characterized the
depth distortions due to the free varying focal length using the analytical iso-distortion
framework developed previously in the uncalibrated case. While the iso-distortion frame-
work enables to study the intrinsic distortions as a family of transformation parametrized
by errors in motion estimates, it does not assume any particular distribution of noise in
the image measurements and camera parameters. Hence it is not suitable for quantifying
the quality of the final estimates.

We present an analytical study of the sensitivity of egomotion and structure estimation
assuming both noisy measurements and errors in intrinsic parameters of the camera. Re-
sorting to some approximations, we both analytically and experimentally demonstrate that
the errors in calibration introducean additional bias termin motion estimation, which re-
duces the previously observed translation bias reported in [2]. The overall translation bias
distorts the resulting structure proportionally to the distance of the measurements from
the optical axis. These distortions are further accentuated by the errors in focal length
and center of the projection. We offer an analytical explanation of the errors introduced
by calibration in the context of linear techniques. The observations are verified by simu-
lation of a variety of linear and nonlinear algorithms for structure and motion estimation
and confirm the intrinsic nature of the errors, making them independent of the algorithm
choice and objective function used.

2 Problem Formulation

In order to study the problem of motion and structure recovery for image sequences, when
the individual frames are closely separated in time, we employ the differential formulation
of the problem. The starting point of our analysis are the basic relationships between the
motion of a 3D pointX = [X, Y, Z]T induced by the camera motion(ω, v) and the
associated image plane motion fieldu:

Ẋ = ω̂X + v and u = A(x)ω +
1
λ

B(x)v (1)

whereω̂ denotes a skew symmetric matrix associated with the vectorω, such that̂ω =
ω × X. The image pointx = [x, y, 1]T and its 3D counterpartX are related by an
unknown scaleλ, such thatλx = X, which in the case of perspective projection is
λ = Z. The image plane motion field isu = [ẋ, ẏ, 0]T = [ux, uy, 0]T andA(x), B(x)
are functions of image coordinates defined as follows:

A =


 xy −(1 + x2) y

(1 + y2) −xy −x
0 0 0


 ; B =


 −1 0 x

0 −1 y
0 0 0


 .



The above relationship assumes so called normalized camera coordinate systemx =
[x, y, 1]T (with the retinal plane atZ = 1). The retinal plane coordinates are related to the
image (pixel) coordinatesxp = [xp, yp, 1]T via matrixK of camera intrinsic parameters.
For the purpose of the analysis we consider simplified model of the calibration matrix
assuming no skewsγ = 0 and the aspect ratioα = kx

ky = 1, where1/kx and1/ky are
horizontal and vertical pixel sizes respectively. Denotingox, oy as the coordinates of the
optical center projection andf as the focal length of the camera expressed in pixel units,
the calibration matrixK is then defined as:

K =


 −f 0 ox

0 −f oy

0 0 1


 .

Camera’s field of view (FOV)θ is related to the dimension of the focal planeI, with
tan θ = I

f .

The focus of this paper is to study the interplay between noisy image velocities and errors
in calibration and their effects on the resulting motion and structure estimates. We initially
assume that the calibration parameters are obtained by an off-line calibration procedure.
For the purpose of sensitivity analysis assume that the entries ofK: f, ox, oy are cor-
rupted by zero-mean Gaussian noisenf ∼ N(0, σ2

f ), nox ∼ N(0, σ2
ox

), noy ∼ N(0, σ2
oy

)
respectively. Since the focal length and optical center position can be measured indepen-
dently and the choice of the axis in the retinal plane is arbitrary, we assume that the focal
lengthf andox, oy are uncorrelated random variables and the errors inox andoy are
identical withσox = σoy = σo. The errors in calibration affect the coordinates of feature
positionsx as well as image velocitiesu. These are measured in the retinal plane and are
expressed as nonlinear functions of the intrinsic parameters of the camera in the following
way:
(

x
y

)
=

1
f

(
ox − xp

oy − yp

)
≡ 1

f

(
∆x

∆y

)
and u =

1
f
up =

1
f

(xp(t + 1) − xp(t)) (2)

where∆x = ox −xp and∆y = oy − yp. Note that image velocitiesu depend only on the
focal lengthf and are unaffected by the knowledge of the center of the projection. We
further assume that the calibration errors are much smaller than optical flow errors. This
approximation is valid for cameras calibrated with a calibration grid where the camera
parameters can be estimated with errors up to few percent [15]. The optical flow errors

are typically on the order of a few tens of percent [1], henceσ2
u

u2 /
σ2

f

f2 u 100. We will refer
to the above assumption later in the text and will use it only to simplify the analytical
derivation. The experimental results will be provided for a broader set of conditions.

The study of the intrinsic sensitivity of the motion and structure estimation in the ana-
lytical setting is a difficult task due to the nonlinear nature of the problem. With the excep-
tion of few, the studies of sensitivity and robustness typically resort to simulations [18].
In the following paragraph we will demonstrate that by making some approximations we
can draw general conclusions regarding the biaseness and sensitivity analytically. In order
to do so, we start with a linear formulation of the structure and motion estimation based
on the bilinear epipolar constraint. In Section 5 we verify our observations by simulation,
using a wide spectrum of different motion estimation algorithms.



2.1 Egomotion Estimation

In order to decouple the effect of measurement errors on the structure and motion esti-
mates we employ the epipolar geometry formulation. The epipolar constraint is obtained
by algebraic elimination of the unknown depthλ from the equation (1) and yields follow-
ing relationships in calibrated and uncalibrated case:

uT v̂x + xT v̂ω̂x = 0 and uT K−T v̂K−1x + xT K−T v̂ω̂K−1x = 0 (3)

Since the uncalibrated differential epipolar constraint does not provide enough constraints
for the recovery of the unknown camera parameters from image measurements only, the
complete camera self-calibration in the differential case is not possible. Equation (3) may
be rewritten to highlight the dependence on the optical flow as:

[A1(u) | A2] e = Ae = 0 (4)

whereA1(u) ∈ <m×3 is a linear function of the measured optical flow andA2 ∈ <m×6 is
a function of the image points alone; vectore ∈ <9, e = [vx, vy, vz, s1, s2, s3, s4, s5, s6]T

is associated with the unknown parametersv and the symmetric parts = 1
2 (ω̂v̂ + v̂ω̂)

of the matrixω̂v̂. Minimizing ‖Ae‖2 leads to LLSE estimate ofe, which is obtained as
the eigenvector ofAT A associated with the smallest eigenvalue. Translation estimatev
is then directly available and angular velocityω can be obtained by decomposition of the
special symmetric matrixs. This particular parametrization and the associated algorithm
is described in greater detail in [9].

Assuming perfect calibration and measurement noise due to the temporal matching,
only the columns ofA related to matrixA1 are corrupted by noise. This causes the lin-
ear techniques to lead to biased estimates. Few techniques for removing the bias were
suggested by [2, 3]. We will now demonstrate the source of this bias and its interplay
with the bias induced by calibration errors. If we assume that calibration is perfect
and each component ofu is corrupted byn ∼ N(0, σ2

u) due to the temporal match-
ing, the noise in image velocities perturbs the matrixA by δA. This perturbation alters
the eigenvectors ofAT A. It can be shown using perturbation theory forHermitian ma-
trices that ifE[δ(AT A)] 6= 0, then the eigenvectors are biased (see [10] or [4]). First
note that the rows ofA1 have the formτ = ûx while those ofA2 are of the form
p = (x2, 2xy, 2xz, y2, 2yz, z2). Lets write the noise freeAT A in terms of constraints
(τi, pi) and denote its upper-left block as D :

AT A =
∑

i

(
τiτ

T
i τip

T
i

piτ
T
i pip

T
i

)
and D =

∑
i

τiτi
T

The entries ofAT A are nonlinear functions ofx andu, which means that if these are
corrupted by zero-mean Gaussian noise, the expectation value of the errorδ(AT A) in
AT A is not zero. Considering the errors in temporal matching only, it is only the block
of the error matrixδ(AT A) associated withD that has expectation value different from
zero1. In fact the non-diagonal block elements are linear inu and thepip

T
i block is

independent ofu. Denote the noisy constraints̃τi, τ̃i = τi + n. By propagating the errors

1The expected values for the remaining blocks are zero. In factE[pip
T
i ] = 0 sincexi, yi are noise free

andE[piτT
i ] ∝ E[ux] = E[uy] = 0 with the assumption that components ofu are IID zero-mean Gaussian,

n ∼ N(0, σ2
u).



in image velocitiesu due to temporal matching to the constraint coefficientsτi, one can
easily compute the covariance matrixΣτi of τi. Let D̃ be the noisy matrixD andE[D̃]
its expectation value, such thatE[D̃] = E[D] + σ2

uΣ whereΣ is:

Σ =
∑

i


 1 0 −xi

0 1 −yi

−xi −yi x2
i + y2

i


 =

∑
i


0 0 0

0 0 0
0 0 x2

i + y2
i − 1


 (5)

Assuming uniformly distributed features,E[
∑

i xi] andE[
∑

i yi] are approximately zero
and the part proportional to identity can be omitted since it does not change the eigenvec-
tors of matrixD. We see thatE[Σ] 6= 0, biasing the final estimate towards the optical
axis. This has been previously observed both analytically and in simulations [5, 2].

3 Calibration and Egomotion

Suppose now that in addition to the errors due to flow computation, we want to under-
stand how are the motion estimates affected by calibration errors. Assume that calibration
parameters form a vector random variablek = [ox, oy, f ]T , where the individual com-
ponents are independent normally distributed random variables withN(0, Σc), where
Σc = diag([σ2

o , σ2
o , σ2

f ]). Each component ofu is also corrupted by errorsn ∼ N(0, σ2
u)

due to temporal matching. By propagating the errors in calibration to image positions and
image velocities, we obtain characterization of the noisy feature positionsx̃ ∼ N(0, Σx)
and noisy image velocities̃u ∼ N(0, Σu) as normal random variables. The form of these
covariance matrices can be found in Appendix A. More detailed derivation can be found
in [10]. Consequently the random variablesx̃ andũ determine the structure of the error
δ(AT A) via constraints(τi, pi). Similarly as in the calibrated case we will justify, that the
expected value ofδ(AT A) is approximately block diagonal. This approximation is valid
given the hypothesis thatx andu are weakly correlated andE[ui], defined in Appendix
A, is zero. In such case we obtain:

E[τip
T
i ] ∝ E[ui]E[x3

i ] = 0 ⇐ E[ui] = 0 (6)

The block relative topip
T
i contains coefficients of 4th powers in the image coordinates.

Under the assumption that optical flow errors are bigger then calibration errorsσ2
u

u2 � σ2
f

f2 ,

the relative errors ofpip
T
i are small compared with the relative errors ofτiτ

T
i . Then

similarly as in the calibrated case we can approximateE[δ(AT A)] considering only the
upper-left blockD, with all the other entries being zero. In the presence of calibration
errors theE[D̃] is augmented by two additional bias terms in the following way:

E[D̃] = E[D] + σ2
1Σ1 + σ2

2Σ2 where Σ2 =
∑

i


0 0 0

0 0 0
0 0 u2

xi
+ u2

yi


 (7)

whereΣ1 ≡ Σ as in the equation (5) andσ2
1 andσ2

2 have the following form:

σ2
1 =

1
2

u2

f2
(
σ2

u

u2
+

σ2
f

f2
) and σ2

2 =
1
2

∆2

f2
(
σ2

f

f2
+

σ2
o

∆2
) (8)



where∆2 is the average distance of the features from the center of the projection, under
the assumption that the features are uniformly distributed in the image plane. Its expected
value can be related to the size of the image plane asE[∆2] = I2/12. Using the assump-

tion that σ2
u

u2 � σ2
f

f2 andE[∆2] = I2/12, the expressions forσ2
1 andσ2

2 can be simplified
to obtain:

σ2
1 =

1
2

σ2
u

f2
and σ2

2 =
1
2

σ2
f

f2
(1 +

tan2 θ

12
) (9)

whereu2 andx2 are the average values of image velocities and feature positions. We can

compare the two terms contributing to bias:1−x2

2
σ2

u

f2 and u2

2

σ2
f

f2 (1 + tan2 θ
12 ). Since1− x2

is on the average negative, the two bias terms have opposite signs and dampen (or under
favorable circumstances cancel) each other. This is demonstrated in Figure 1a where
we computed the bias as a function of the calibration error assuming 70% error in the
measurements of the optical flow. Similarly for 30% error in the optical flow, Figure 1b
shows how the errors in calibration dominate the precision of the translation estimates.
The details of the simulations are outlined in Section 5.

FOV dependency. Equation (9) also reveals the dependence of the motion estimates on
the field of viewθ of the camera. AsFOV → 0 the term1−x2 becomes ’more’ negative
generating a stronger bias as previously shown [18]. The termσ2

2 arising from the noisy
calibration also increases for biggerFOV . This effect is demonstrated in Figure 2 where
we calculated the bias invz (z-component of the linear velocity) as a function ofFOV
for noiseless optical flow and 30 % error on the calibration parameters.

4 3D Structure Distortion

In the following section we study the effect of the calibration errors on the resulting 3D
structure. In order to separate the sensitivity issues pertaining to the translation bias from
those related to the structure of the scene we assume that the motion is purely translational
in the direction of the optical axis. Given the translation estimatevz the unknown structure
is given by the equation (10). Assuming perfect calibration the estimation of the depthZ
is affected both by errors on(vz , x, ẋ, f) and the translation biasδvz in the estimation of
vz itself. This bias will induce an error in the scene depth in the following way:

Z =
vzx

ẋf
and δZ =

vz‖x‖
‖u‖f δvz (10)

We see that the bias in depthδZ is proportional to the distance of the feature from the
optical center with the same sign asδvz . In the casevz is overestimated, the further points
are from the optical axis, the further they are projected. The effect of calibration errors on
the resulting structure can be demonstrated by means of error propagation:

σ2
Z =

‖x‖2v2
z

‖u‖2f2
(
σ2

vz

v2
z

+
σ2

f

f2
+

σ2
o

‖x‖2
+

σ2
u

‖u‖2
) (11)

We see that the error is again proportional to‖x‖, so the features far from the optical
center are affected more. In [10] we also showed thatδvz � σvz which implies that the



errors due to both calibration and optical flow mostly tend skew the structure than dither
it. This conclusion is independent of the algorithm used for the reconstruction and holds
for general camera displacement and rotations. Figures 3 and 4 show the skew for a
general motion on synthetic and real sequences.
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Figure 1: (a) Relationship between translation bias as a function of calibration error, assuming
that the measurement errors were fixed at 70%. Note that the bias is approximately 0 for an error
of calibration parameters of about 70% . This is the situation when the two bias terms cancel each
other. FOV for these experiments was 90◦. (b) The bias and sensitivity of translation estimates
expressed in angular units as a function of the calibration error for a optical flow noise level of 30%.
Note that the bias tends to decrease for amounts of noise smaller compared with the 30% noise on
optical flow and increase again when the calibration error becomes dominating.

5 Experiments

The experiments verifying the observations derived in the previous sections were per-
formed both on synthetic and real sequences. For synthetic data we adopted approach
pursued in [18]. The simulations were performed for random clouds of 100 points. The
focal length was 1 and the focal plane dimension of 512×512 pixels. TheFOV , unless
otherwise stated, was chosen to be 90◦. Motion was realized for various combinations
of translation and rotation. Zero-mean Gaussian noise was added to the components of
image velocities and the standard deviation of such noise was chosen to be constant. The
rotational speed was constant chosen to be 0.23◦ per frame. The magnitude of the linear
velocity was chosen in order to fixate the point at the center of the random cloud of points.
The tested algorithms were those of Horn [17], Heeger and Jepson [5], Kanatani [3] and
MacLean [2], with the implementations made available by [18]. The tested algorithms
differ in the choice of objective function, leading to linear or nonlinear optimization prob-
lems. The linear algorithms of [2] and [3] provide a solution for correcting the bias due
to errors in temporal matching. Bias and sensitivity were measured over one thousand
trials. The camera was first calibrated off-line several times using the Matlab calibration
toolbox [15] and planar calibration grid, to justify the assumptions about the average pre-
cision that can be commonly obtained. The skew results were approximately zero in all
the tests done. The reconstruction of unknown depths was obtained as LLSE problem,
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Figure 2: (a) Dependence of the bias due to noisy calibration of theFOV of the camera. 30%
noise on camera parameters is generated while optical flow is noiseless. The magnitude of the bias
increases with increasingFOV . (b) Dependence of velocity estimation onFOV for 30% error on
calibration parameters and noise-free tracking.

Figure 3:Synthetic sequence : Original model (top figures), model distorted by an underestimated
focal length (bottom-left), model distorted by an overestimated focal length (bottom-right).

with automated rescaling and is described in [6]. The experiments on both real and sim-
ulated sequences are in Figures 3 and 4. The figures demonstrate the effect of over and
under estimation of the focal length on the computed 3D structure. The flattening and
elongation are clearly noticeable.

6 Conclusions

The analysis carried out in this paper demonstrates the sensitivity of structure and mo-
tion estimation with respect to the errors in camera calibration. As the main contribution
we demonstrated that the calibration errors indroduce an additional bias in the direction
of the optical axis with the opposite sign to the one produced by errors due to temporal
matching. Under favorable circumstances the two bias terms cancel each other leading
to unbiased estimates. Moreover the bias produced by erroneous calibration increases in
magnitude for increasingFOV . This is in contrary to what happens to the bias produced



Figure 4: Original model (left) with estimatedvz = 0.5530; model distorted by an un-
derestimated focal length by 50% (center) withvz = 0.7597; model distorted by an
overestimated focal length by 50% (right) andvz = 0.3975.

by noisy image velocities, which in addition to that, depends on the direction of transla-
tion. The relationship betweenFOV and the errors caused by noisy calibration is mostly
independent of the choice of translation direction. The linear velocity bias propagates to
the structure estimation and distorts the resulting 3D structure. The observed distortions
are proportional to the distance of the feature from the optical axis. This is shown analyti-
cally for a simple motion configuration and tested on real sequences on variety of motions
in order to justify the generality of the previous assessment.

The above observations were derived analytically, resorting to some approximations,
in the contex of linear techniques. More extensive simulations confirmed the reasonability
of the approximations and justified the intrinsic nature of the calibration errors indepen-
dent of the algorithm choice.

Appendix A

By propagating the errors in calibration to image positions and image velocities we present
here covariance matrices for noisy feature positions and noisy velocities. The noisy fea-
ture positioñx ∼ N(0, Σx) and noisy image velocitỹu ∼ N(0, Σu) are normal random
variables, with the following covariance matrices:

Σx u
1

2

∆2

f2

0
@

σ2
f

f2 +
σ2

o
∆2

σ2
f

f2

σ2
f

f2
σ2

f

f2 +
σ2

o
∆2

1
A Σu u

1

2

u2

f2

0
@

σ2
u

u2 +
σ2

f

f2
σ2

f

f2

σ2
f

f2
σ2

u
v2 +

σ2
f

f2

1
A (12)

where∆2 is the average distance of the features from the center of the projection under
the assumption that the features are uniformly distributed in the image plane (i.e. on the
average∆2

x u ∆2
y) andu2 = u2

x + u2
y is the average image velocity.

References

[1] Barron J. L. , Fleet D. J. , Beuchemein, S. S. Performance of Optical Flow Techniques,IJCV,
Vol 12:1, pp. 43-77, 1994.

[2] MacLean W. J. Removal of Translational Bias when using Subspace Methods,Proceedings
from ICCV, pp. 753-758, 1999.



[3] Kanatani K. Renormalization for Unbiased Estimation,Proceedings from ICCV, pp. 599-606,
1993.

[4] Kanatani K. Geometric Computation for Machine Vision.Oxford University Press, 1993.

[5] Heeger D. J. , Jepson A. D. Subspace Methods for Recovering Rigid Motion,IJCV, Vol 7:2,
pp. 95-117, 1992.

[6] Zucchelli M. , Christensen H. I. Flow Based Structure from Parallax with Automatic Rescaling,
in submission to BMVC.

[7] Grossman E. Santos-Victor J. Uncertainty Analysis of 3D Reconstruction from Uncalibrated
Views, Image and Vision ComputingVol 18, pp. 685-696, 2000.

[8] Svodoba T. Sturm P. What can be done with a badly calibrated Camera in Ego-motion estima-
tion?,Research ReportCTU-CMP-1996-01 Czech Technical University.

[9] Ma Y., Kosecka J., Sastry S. Linear Differential Algorithm for Motion Recovery:A Geometric
Approach.IJCV Vol. 36 pp. 71-89, January 2000.

[10] Kosecka J., Zucchelli M. Motion Bias and Structure Distortion induced by Calibration Errors,
George Mason University TR-04-01.

[11] Cheong L.-F.and Peh Ch.-H. Characterizing Depth Distortion due to Calibration Uncertainty.
Proceedings of ECCV, 2000, Vol. 2 pp. 665-667.

[12] Bougnoux S. From Projective to Euclidean Space Under any Practical Situation, a Criticism
of Self-Calibration.Proceedings of ICCV, 1998, Vol. 2 pp. 790-795.

[13] K. Danilidis and M. Spetsakis. Understanding noise sensitivity in structure from motion.Vi-
sual Navigation, Eds: Y. Aloimonos, pp. 61-88, 1996.

[14] Oliensis J. A Structure from Motion Ambiguity.PAMI Vol. 22, No. 7, pp. 685–700, 2000.

[15] http : //www.vision.caltech.edu/bouguetj/calib doc/index.html

[16] Zhang T., Tomasi C. Fast, Robust, and Consistent Camera Motion Estimation.Proceedings of
CVPR, pp. 164-170, 1999.

[17] Bruss A.R., Horn B.K.P. Passive Navigation.CVGIP21:3-20, 1983.

[18] Tian T.Y., Tomasi C., Heeger D. J. Comparison of Approaches to Egomotion Computation.
CVPR, pp. 315-320, 1994.


