
Experiments in Behavior Composition
Jana Ko�seck�ay Henrik I Christensenz Ruzena Bajcsyy

y GRASP Laboratory z Laboratory of Image Analysis
University of Pennsylvania Aalborg University

3401 Walnut Street Fr. Bajers Vej 7, Bldg. D1
Philadelphia, PA 19104, USA DK-9220 Aalborg East, Denmark

fjanka,bajcsyg@grip.cis.upenn.edu hic@vision.auc.dk

Abstract

Widespread use of mobile robots can only be achieved when frame-
works that enable speci�cation, design and implementation of systems
are available. These frameworks must provide a level of abstraction
that enables use of the same methods for di�erent tasks/missions to
facilitate fast prototyping and design at low cost. In this paper a
Task Description Language (TDL) for task speci�cation is outlined.
The tasks are speci�ed as network of processes. The processes are de-
scribed in terms of �nite state machines (FSM) and their composition
is achieved via set of composition operators, common to many process
algebra models. From the obtained description of the task a Discrete
Event Systems supervisory controller can be synthesized. To demon-
strate that such an approach is a suitable basis for description of robot
tasks a set of experiments with two di�erent platforms situated in two
di�erent laboratories is described. The elementary processes neces-
sary to carry out these experiments are presented. Obtained results
are reported for three di�erent experiments. The results demonstrate
that the presented framework has the required characteristics.

1 Introduction

In a large number of application domains it is apparent that autonomous
mobile agents might be of considerable utility; examples include intelligent
delivery agents, assistance to disabld, exploration and map generation for
environmental cleanup, etc. So far only a very limited number of systems
has been put into real-world operation. Today the ability to handle rich real
world environments is almost impossible, and there is consequently a need for

1

engineering of the environment. It has been envisaged that use of purposive
sensing to a certain degree might circumvent this problem. Another problem
has been the lack of suitable frameworks for speci�cation, design and control
of autonomous mobile agents.

Empirical work has demonstrated that the traditional recovery based
paradigm which has dominated perception, and vision in particular, is not
robust or intractable for many real-world problems [2]. This has led to design
of behavior based systems, where a set of perception-action modules is com-
bined to provide the functionality needed for a given application. Examples
of such systems have been reported by a number of researchers [3, 6, 16, 5].
The successful systems reported in the literature are, however, all character-
ized by use of a small number of behaviors, and a high degree of tailoring to
the task at hand. It is consequently not obvious how this approach will scale
to realistic industrial applications. In spite of the claims that the behavior
based approach becomes intractable for large scale problems [15] and there-
fore unsuitable as a model of general purpose intelligent agents, by adopting
this approach incremental progress has been achieved and several robustly
working systems have been developed. One of the major criticisms against
the behavior-based approach has been the lack of facilities for explicit system
level control and planning.

In this paper a methodology for speci�cation and analysis of behavior
based systems is presented (Section 2), and it is outlined how this method-
ology may be used for expressing plans in the context of such systems. The
methodology is based on the use of abstraction and explicit composition rules
for combination of di�erent elementary behaviors. It is further demonstrated
how such an abstraction may be compiled/converted into a set of �nite state
machines, that enable use of traditional control methods in a run-time sys-
tem. The expressiveness of the framework is shown on examples of tasks for
a navigation/delivery agent (Section 3). To demonstrate the potential of the
approach a set of experiments is outlined (Section 4). These experiments has
been carried out on two di�erent platforms in two di�erent laboratories, to
justify that the methodology has a su�cient level of abstraction to enable a
description of `general' behaviors rather than embodied ones. At the end of
the paper the consequences of such a representation are discussed.

2

2 A Framework for Description of Behavior

Based Systems

2.1 Basic System Components

Before de�ning a framework for description of the behavior of a complex
system one has to settle clearly on what are the elementary components of
such a framework. In the case of autonomous mobile agents we can clearly
partition these into the following categories:

Action Component With each actuator of the mobile agent we associate a
set of elementary motion strategies, which can be parameterized based
on the task to be accomplished.

Perception Component With each sensor we associate a set of strategies
for acquisition and processing of sensory data. In case of visual behav-
iors, these strategies correspond to various purposive visual routines
needed for a variety of tasks.

Computation Component This category comprises computational pro-
cedures that does not directly rely on or inuence the perception and
action components. Most of the procedures in the category can be ex-
ecuted both o�ine and online. To this category belongs, for example,
global path planning and human-computer interfaces.

For the modeling purposes each elementary strategy or computation is
represented as a process1 and has a �nite state machine model (FSM) as-
sociated with it. The transitions between the states of the FSM model are
modeled by events, capturing clearly initiation, termination, interruption or
change of the global variables of the elementary strategy. The global vari-
ables (or more speci�cally predicates on them) play an important role in
our framework, expressing the goals the robot should achieve, maintain or
prevent from happening. The set of �nal states of elementary strategies is
partitioned into a set of successful and unsuccessful states. Communica-
tion between two processes running in parallel is modeled via shared events.
If the two processes share an event a communication link between them is
established.

1The word process and strategy will be used interchangeably throughout out the article.

3

2.2 Composition of Elementary Processes

To achieve tasks it is necessary to combine the processes outlined above into
complete systems. To ensure generality in the design of such systems, a
programming type of framework is needed. A basic characteristic of a pro-
gramming/scripting facility is the ability to combine basic operations into
more 'complex' ones. In the domain of intelligent agents the basic opera-
tions comprise elementary strategies and their composition is achieved using
composition operators.

The operators (common to almost any process model) capture the tem-
poral and structural dependencies between the processes. As we mentioned
earlier, since the types of behaviors which need to be invoked depend on
the task to be accomplished, we adopt the notion of task representation as
a network of processes. The idea of representing tasks as networks of pro-
cesses has originally been proposed by [10]. Lyons proposed the RS (Robot
Schema) model, where both plans and the world were modeled as networks
of processes. The semantics of the composition operators was modeled in
terms of port automata. We propose, from an RS-like speci�cation of the
task, how one can synthesize a �nite state machine supervisor which serves
as a discrete event controller for the task. The brief description of the com-
position operators, their semantics in terms of �nite state machines and some
examples follow. For more details see [8, 9].

Sequential composition P = R ; S. Process P behaves like R until R
terminates and then behaves like S. P terminates when S terminates
and has the same termination status as S.

Parallel composition P = R k S. Process P behaves likeR and S running
in parallel. P terminates with the termination and status of the last
terminated process2.

Conditional composition P = R < v > : S(v). Process P behaves like
R until R terminates successfully computing v which is then used to
initialize process S3. If R fails the composition fails.

2The composition of parallel processes requires synchronization of the processes in
terms of shared events. The exact formulation of this is described in [9].

3The variable v is a global variable. In our case it is always a global variable, that
may be accessed by multiple processes. Global variables are not explicitly modeled in

4

Disabling composition P = R] S. Disabling composition is similar to
parallel but if one of the processes terminates the other process is ter-
minated as well. P has the same termination status as the process
that caused the termination of the composition (i.e., the process that
�nished �rst).

Synchronous recurrent composition P = R < v > :;S(v) is recursively
de�ned as R < v > :;S(v) = R < v > : (S(v) ; (R < v > :;S(v))). This
composition terminates with the failure of process R.

Asynchronous recurrent composition P = R < v > :: S(v) is recur-
sively de�ned as R <v> :;S(v) = R <v> : (S(v) k (R <v> :: S(v))).
This composition terminates with the failure of process R.

An elementary process is de�ned as a generator G = (Q;�; �; q0; F),
where:

Q is the set of states;

� is the set of events such that � 2 �;

q0 is the initial state;

F � Q is a set of \marked" states, such that F = Fs [Fu where Fs \ Fu =
;, Fu 6= ;, Fs is a set of successful �nal states, and Fu is a set of
unsuccessful �nal states;

� � (Q�� �Q) is the transition relation such that 8(q; e; q0) 2 �: q 62 F .

Elementary strategies are modeled in terms of FSM's and their composition
operators are de�ned in the following manner 4.

our framework at this moment; but can be passed as parameters or returned as values by
individual processes.

4Throughout the paper the strategies are identi�ed by name in capital italics (e.g.
GoTo). In the �nite state machine description lower case italics are used to denote events.
Lower case italics are also used to denote variables representing both the values returned
by the strategy upon completion and the values passed to the strategy as parameters.

5

.

R

iF

Fs

. . .

iF

Fs

. . .

S

ε

ε

Figure 1: Sequential composition of two processes R and S.

.

R

iF

Fs

. . .

iF

Fs

. . .

S

ε

Figure 2: Conditional composition of two processes R and S.

Sequential composition: P = R ; S. Sequential composition of pro-
cesses R and S, is achieved by connecting the �nal states of process R with
the initial state of the process S through an �-transition. The sequential
composition of the two processes is depicted in Figure 1.

An example of the sequential composition could be:

GoToA(goal1) ; GoToA(goal2)

where goali is (x; y) position in a global reference frame. The GoToi(goalj)
is an elementary control strategy of the mobile base which speci�es for the
agent i to reach goalj. In the composition above even if the �rst process
terminates unsuccessfully the second process is still initiated and goal2 can
be reached.

Conditional composition: P = R < v > : S(v). The conditional com-
position is formed by joining the successful �nal states of process R and the
initial state of the process S via �-transitions. A graphical representation of
the conditional composition of two processes is shown in Figure 2.

The notion of conditional composition resembles the notion of precondi-
tion as often used in the traditional AI planning. One possible way of inter-

6

preting the conditional composition is that the �rst argument is a process
which monitors certain condition to be true. This condition can be viewed
as a precondition of the second process. Once the condition is achieved the
�rst process terminates and the second process is initiated. An example of
such a composition could be:

Locate <landmark> : Servo(landmark)

A robot, upon recognizing the landmark, heads towards it. In this case
Servo(landmark) is with respect to the environment a closed-loop strategy,
since the landmark is beeing monitored throughout the process.

Parallel composition: P = R k S. Parallel composition is formed as a
synchronous product5 of participating FSM's. An example specifying that
the two mobile agents A and B should explore the environment in parallel
can be expressed in the following way:

ExploreA k ExploreB

Another example demonstrating the concept of parallel composition of two
elementary strategies is GoTo k Detect, corresponds to the task of reaching
the desired goal while avoiding obstacles and is shown in Figure 3.

Disabling composition: P = R] S. The disabling composition is mod-
eled as a synchronous product of the participating FSM's. Prior to forming
this synchronous product, all terminal events are relabeled to a common la-
bel to ensure synchronization and preemption of other running process. This
common event then becomes the shared event between the processes and
causes all participating processes to terminate when one of them terminates.
An example of two mobile agents following one another can be expressed as:

GoToA(goal1)] FollowB(agentA)

If any on the agents terminates the other agent is terminated. Disabling
composition of these two elementary strategies is depicted in Figure 4.

5Synchronous product of two �nite state machines is a more general version of Cartesian
product. If two FSM's share an event in their alphabet, they are synchronized on that
event (i.e. the event is asserted only if it can be asserted by both processes).

7

goto

goto

goto
goto

detect detect detect

+
GTintr
GTsucc

+
GTintr
GTsucc

goal

goal

intrD intrD intrD

goal

obst
+

GTsucc

GTintr

detect intrD

obst

Parallel compositionGoTo

Detect
goal

obst
+

Figure 3: Parallel composition of two processes GoTo and Detect is
formed as a synchronous product of their �nite state machines. In this
case processes share an event obst. The succesfull and unssuccessfull states
of the composite �nite state machines are joined together to a single �nal
state.

gotoA

gotoA

followB followB

goal

obst
+

succ + intr succ + intr

succ + intr

Figure 4: Disabling composition of two processes GoToA and FollowB

is formed as a synchronous product of their �nite state machines after a
relabeling of the events which go to the �nal state. In this case the processes
share an events intr and succ.

8

.

R

iF

Fs

. . .

iF

Fs

. . .

S

ε

ε

ε

Figure 5: Synchronous recurrent composition.

Synchronous Recurrent Composition: P = R < v > :; S(v). This
can be recursively written as R <v> :; S(v) = R <v> : (S(v) ; (R <v> :
; S(v))). Once process R successfully terminates process S is initiated. Upon
completion of S, process R is again initiated and so on. The synchronous
recurrent composition of two processes is outlined in Figure 5. To model
the behavior of looking for targets and tracking them upon detection can be
expressed in the following way:

LookFor < target > :; Track(target)

When the process LookFor detects an ahead speci�ed target, the process
Track then locks on it and tries to keep the target in the �eld of view. If the
target is lost the target searching process is reinvoked.

Asynchronous Recurrent Composition: P = R < v > :: S(v). This
can be recursively written as
R < v > :: S(v) = R < v > : (S(v) k (R < v > :: S(v))). Once process R
successfully terminates a recursive copy of process (S(v) k (R < v > ::
S(v))) is created. This means that R is asynchronously initiating instances
of S. For more examples see [8]. The fact that this composition operator
creates multiple copies of process S brings some subtleties to the pictorial
representation of the �nite state machine composition.

2.3 Composition of Tasks

In the examples in the previous paragraph the arguments of the composition
operators were both the elementary and composite processes. Since more

9

complicated tasks require invocation of more than one elementary strategy,
the model of the desired behavior in terms of a �nite state machine is ob-
tained by traversing a parse tree obtained from the expression in the task
speci�cation language.

#

GoToA DetectA BGoTo DetectB

#

Figure 6: Task tree for the task of two mobile agents marching coop-
eratively while avoiding obstacles. The nodes of the tree are labeled by
composition operators and leaves by elementary strategies.

The nodes of the parse tree are the composition operators and the leaves
are the elementary strategies. An example of a parse tree [1] for the task
of two mobile agents marching together cooperatively to a given destination
goal is shown in Figure 66. The task speci�cation for this task is:

(GoToA(goal)] DetectA)] (GoToB(goal)] DetectB):

From the �nite state machine description of the task, we can directly ob-
tain a �nite state supervisory controller as de�ned in the Supervisory Control
Theory of Discrete Event Systems (see [14] for a concise introduction to the
subject). For a more precise description of the composition operators and
the synthesis of the supervisory controller see [8].

3 Elementary Behaviors

To demonstrate the utility of the proposed methodology for robotics tasks,
the domain of an \intelligent delivery agent" has been chosen. The choice
is mainly motivated by a large variety of tasks that may be modeled as a
delivery task. The scenario used in experiments is an indoors laboratory
environment where the robot is required to perform both navigation within
a room, with obstacle avoidance, as well as movement between rooms.

6The task speci�cation language can be represented by so called operator grammar for
which the LR parser can be e�ectively constructed.

10

3.1 Macro Behaviors

For this domain a set of \macro" level behaviors is used. A more detailed
description of these behaviors is outlined below.

Bumper The Bumper behavior is a low level process which is responsible
for stopping the robot if it comes too close to an object in the environ-
ment. The bumper is implemented either as a physical bumper con-
nected to an electronic switch or as a low-level sonar loop that detects
objects close to the platform. Once activated, the Bumper behavior
continuously monitors either the switch or the sonar readings. Once
the `collision' is detected it generates a `collision' event and terminates.

GoTo(goal; obstacles) The GoTo behavior is a process/strategy that brings
the platform to a pre-speci�ed con�guration. The movement from the
present con�guration to the goal is currently based on the feedback con-
trol law derived from an arti�cial potential function, but other meth-
ods might also be used. The strategy is used for navigation within a
single room. Once the strategy is invoked the control law repeatedly
computes the commands to the mobile base actuators. Once the goal
con�guration is reached the strategy terminates successfully. The pro-
cess takes as parameter information about obstacles in the vicinity of
the robot, so if it is invoked in parallel with the obstacle detection pro-
cess, it successfully avoids obstacles. The information about obstacles
can also be provided from the outside by any other process if necessary
(e.g., a global model of the world). The strategy terminates unsuccess-
fully, if the �nal goal is in an obstacle region or if the platform fails
mechanically.

Detect(obst) The Detect behavior is responsible for detection of obstacles
on the path the robot is currently traversing. This process produces an
`obstacle' event if an obstacle is detected. The behavior is either based
on vision or sonar information.

Servo(landmark) This behavior does servoing on a landmark, to bring the
platform to a speci�ed con�guration with respect to the landmark.
Landmarks are de�ned to have a 2D or 3D structure. In the present

11

system only information about 'doorways' (a 2D structure) has pro-
vided. For this landmark the robot is required to position itself cen-
tered and perpendicular to the landmark, before it tries to approach the
landmark. Initially the robot is controlled to be positioned centered on
the landmark, and then the motion strategy is to drive directly towards
the landmark. The process will generate a `door-completed' event when
servoing terminates. The event description includes a speci�cation of
the robots present position.

Plan(goal0; :::; goaln) Path planning, being a part of the computation com-
ponent of the system, is used for introduction of deliberation into the
behavior based architecture. The process is activated when a long-term
plan (in our case we will restrict ourselves to path planning) of inter-
mediate goals is required. The process (procedure) terminates with a
`path-available' or `not-accessible' event depending of the availability
of a path to the goal location and returns the path to be followed by
the mobile base.

Localize(x; y; �) This behavior is a periodic process that is activated for
self-localization of the platform with respect to the environment. The
process generates a `robot-re-initialized' or `unable-to-localize' event
upon completion, depending on the ability to localize the robot with
respect to the landmark in the environment.

Init This behavior is used for startup and self-calibration of the system. The
process generates a 'robot-active' or `robot-failure' event depending on
the success of the initialization process.

3.2 Handling of errors and uncertainty

It is well known that the sensory system does not provide reliable readings,
which causes problems in terms of interpretation and control. The set of be-
haviors outlined in section 3.1 is at a level of abstraction where the majority
of uncertainty handling is internal to each of the behaviors. For example for
the Servo(door) strategy the servoing is based on a PID controller where the
sensor noise is modeled explicitly as part of the controller design. Another
type of robustness comes from the fact that for most of the tasks the elemen-
tary motion strategies are invoked in parallel with sensory strategies closing

12

the loop with the environment. That way the unexpected deviations due
to the unforeseen events, can be accommodated by the low-level controllers
while executing the task. For example the Detect behavior encounters an
obstacle in the robot's path, it will update the obstacles parameters of the
GoTo behavior using using the obst event. The Detect behavior can be ro-
bustly tuned up (calibrated) for a variety of oors and lighting conditions.
There is consequently no need for explicit modeling of random noise at this
level of system description. In addition to that each elementary strategy has
a set of predicates associated with unsuccessful termination, therefore certain
types of errors due to uncertainties or unexpected dynamic interactions can
be detected and particular error recovery routines invoked. An example of
this is the tracking task, where when the target is lost the LookFor behavior
is reinitiated.

4 Experiments

We veri�ed the suitability of the framework for modeling the operation of
a platform in delivery tasks. It is important to note that the framework
itself has the full power of a programming language that is able to express
arbitrary logical and temporal dependencies between individual processes.
The types of tasks which can be reliably executed then depend on the types
of available elementary motor and perceptual strategies. While the motor
strategies are determined by the physical characteristics of the agent (i.e.
degrees of freedom), the perceptual strategies are for now chosen purposively
depending on the task at hand.

A set of experiments has been designed, which exploit the elementary
behaviors outlined in the previous section. Two di�erent scenarios are used
for the experiments. The �rst scenario includes navigation within a single
room. The robot is supposed to go from the initial location to a desired goal

location, while avoiding obstacles. Intermediate points along the path are
not speci�ed.

4.1 Description of system controllers/behaviors

The functionality of the robots may be described by the composition

Agent := Init ; (Bumper] (P lan < goal > ; (GoTo(goal)] Detect)))

13

Similarly, for the navigation task which includes several rooms a speci�-
cation as shown below may be used

Agent := Init ; Bumper] (P lan < goali; doori >

:; ((GoTo(goali) ; Servo(doori)] Detect))

4.2 Outline of bases

Experiments involving two di�erent platforms in two di�erent laboratories
(GRASP Laboratory, University of Pennsylvania and Laboratory of Image
Analysis, Aalborg University) have been conducted.

The �rst platform is a TRC Labmate with a half circular array of ul-
trasonic sensors, stereo pair of cameras tilted with respect to the horizontal
plane, and structured light sensor. The robot is controlled by a PC-based
vehicle controller that is connected to a on-board SPARC station where most
of the processing of sensory data takes place. The detailed description of the
experimental platform can be found in [8].

The other platform is a RoboSoft Robuter 20, equipped with an array
of 24 ultrasonic sensors and a binocular camera head. The robot has three
on-board Motorola computers (two running the real-time operating system
OS/9 and one running UNIX V). The robot is described in detail in [12].

The behaviors outlined in section 3.1 have been implemented on both
platforms. Presently the Servo(door) behavior has only been implemented
on the Robuter. Thus, experiments involving room to room navigation has
only been tested on that platform.

4.3 The Experiments

To evaluate the performance of the robot systems a set of experiments has
been de�ned:

1. Go from A to B in the same room (without meeting obstacles)

2. Go from A to B in the same room (while avoiding obstacles)

3. Go from A to B where start and goal points are in di�erent rooms.

14

The �rst experiment is primarily carried out to verify that basic naviga-
tional capabilities can be performed.

In the second set of experiments the obstacles are introduced into the
workspace obstructing the path towards the speci�ed goal. This experiment
includes the case where the goal position is occupied by another object, so
it is impossible for the robot to succeed.

In the third set of experiments the robot is required to perform the same
actions as in second set of experiments, but in addition the robot is required
to plan a path with intermediate goals to traverse the passage between dif-
ferent rooms (which requires activation of the door servoing behavior).

Due to space limitations it is not possible to report the results from all
of the above experiments in any detail. The results from a few test examples
will, however, be presented.

In Figure 7 the basic layout of the environment for the TRC Labmate
experiments is shown. The robot has no a priori information about the
environment, so all the object elevated above the ground plane are considered
to be obstacles. The desired goal is speci�ed in the area on the other side of
the laboratory behind the desks.

Figure 7: The laboratory layout where the experiments were carried out,
as viewed from the approximate starting position of the robot.

15

The TRC Labmate was used for the experiment series 1 and 2. In Figure 9
the results from the series 2 experiment are shown. It is evident how the
GoTo and the Detect behaviors interact with each other to arrive at the
goal position. The obstacles detected by Detect are superimposed on the
original layout of the environment, where the center of each grid cell in the
common �eld of view of the stereo pair, mapped to the ground plane is
marked by a cross. In this particular setup it appears as though the robot
is running into objects/obstacles. In reality the robot successfully avoids
these objects, but due to the discrepancy between the real position of the
robot and the expected one, the recorded trajectories and obstacles are not
superimposed correctly to the global coordinate system. This error is due to
the fact that the present setup does not contain facilities for self localization of
the platform. Through out the experiment the control system relies entirely
on the odometric readings which given slippage is not a very reliable measure.

The result from another experiment is shown in Figure 10. Again the in-
teraction between the di�erent behaviors is obvious. In both cases it is worth
noting the narrow �eld of view of the obstacle detection process. Finally the
TRC platform was given an exploration command (i.e. the GoTo strategy
was invoked without any speci�c goal directing the platform to move in the
direction of the current heading) to explore the free space. The results are
shown in Figure 11.

Similar experiments have been carried out with the Robuter platform.
Some of the results have already been presented, see [13] for details. To
demonstrate the full set of behaviors the third series of experiments were
carried out with this platform.

To give an impression of the complexity of the environment the layout of
the laboratory is shown in Figure 12.

The result from one of the experiments is shown in Figure 13. In this
particular case the robot is required to move from the back of room D1-
105 to the hallway. This implies that it has to go to the other side of the
room, and then traverse through the door to arrive in the hallway. It is here
seen how the GoTo and the Detect behaviors interact to enable avoidance of
obstacles. Once the doorway is expected to be in sight the GoTo behavior
is exchanged with the Servo(door) serving behavior to enable detection and
negotiation of the doorway. It appears as though the robot is running very
close to the frame of the doorway, this is due to use of odometric information
for plotting of the path. In reality the robot passes through the middle of

16

−6000 −4000 −2000 0 2000 4000 6000 8000
−6000

−4000

−2000

0

2000

4000

6000

*

GOAL

START

X[mm]

Y
[m

m
]

East Part of the lab

*

Figure 8: The graphical layout of the environment from Figure 7. The
beginning of the global coordinate frame is in the middle of the room and
the robot has no apriori information about the obstacles.

−6000 −4000 −2000 0 2000 4000 6000 8000
−6000

−4000

−2000

0

2000

4000

6000

East part of the lab

X[mm]

Y
[m

m
]

Figure 9: This series of experiments demonstrates the parallel execution
of the GoTo and Detect elementary behaviors. The goals are speci�ed in
the global coordinate system. Since we currently do not use the localization
procedure, the current position of the robot does not exactly correspond to
its real position. In the �rst experiment the initial position of the mobile
base is in the south part of the lab [0;�5500] and the desired goal is speci�ed
between the two tables on the other side of the lab at the position [0; 4000].
The robot successfully avoided the obstacle in the middle of the room and
reached the goal behind the tables, while detecting the tables (as obstacles).
The mobile base terminated successfully at the desired destination.

17

−6000 −4000 −2000 0 2000 4000 6000 8000
−6000

−4000

−2000

0

2000

4000

6000

East part of the lab

X[mm]

Y
[m

m
]

Figure 10: In the second experiment the desired goal location was the
same as in the �rst experiment. The goal was not reached due to the
collision with the table. The extent of the table was not estimated correctly
by the obstacle detection routine. Since the Bumper behavior was not
invoked, the mobile base completed the task unsuccessfully and did not
retry to avoid the obstacle after detecting the collision.

−6000 −4000 −2000 0 2000 4000 6000 8000
−6000

−4000

−2000

0

2000

4000

6000

East part of the lab

X[mm]

Y
[m

m
]

Figure 11: In the third experiment the robot was in exploration mode,
with no particular goal. It successfully avoided all the obstacles and contin-
ued straight in the heading direction. The detected obstacles on the right
were other mobile robots parked on the side of the room. The obstacles in
the upper right part of the �gure corresponds to the pillar and the tables
in the right corner of the lab.

18

Hall

D1-101

D1-105

Figure 12: Layout of the environment used for the experiments with the
Robuter platform.

the doorway.
To determine the robustness of the developed systems, a long series of

experiments has been carried out (in total more than 100 experiments were
conducted). An average of 45-50% success was obtained with both systems.
The primary cause for mission failures is inadequate modeling of structures
in the environment (i.e., something looking like a door is mistakenly taken
to be a doorway), and inadequate fusion of the available information.

5 Discussion

In this paper a formal framework for modular composition of behaviors has
been outlined and it has been indicated how it may be used for speci�cation
of robots used for delivery tasks. The presented framework provides an ab-
straction mechanism which enables formulation of a recon�gurable `general'
performance of a robot rather than an embodied performance, where speci�c
facilities of the used platform must be included.

To demonstrate the characteristics of the framework for real robots a set
of experiments has been carried out. The results from these experiments
clearly demonstrate feasibility of the framework for de�nition of the same

19

0 2 4 6 8

0

1

2

3

4

5

6

 Room D1-105

Y [m]

X
 [m

]

Door-->

Start

Figure 13: The robot starts out with an `empty' world model, in which
only static structures as shown in Figure 10 are represented. Having
planned a path to the doorway the behavior is determined by obstacles
in the vicinity of the robot. Once the door should be visible, the robot
turns to face the door and servoing on the door is driving the platform.

20

control strategy for two quite di�erent platforms, provided that the basic
capabilities of the platforms are the same. A variety of tasks can be speci�ed
by combining some basic strategies.

In the process of de�ning the tasks and carrying out the experiments is has
become clear that the presented framework is very powerful for describing the
interaction between behaviors. Given the level of abstraction details, such
as handling of noise, are at the same time hidden, which results in a concise
and intuitive description. Tasks speci�ed as networks of processes composed
via composition operators can easily be compiled into FSM controllers for
supervisory control in a DES formalism [8].

During the course of the study it became obvious that the formalism
has an implicit assumption that the interactions between di�erent behaviors
speci�ed by the desired tasks are correct and well captured by the compo-
sition operators. The framework does, however, not provide any guarantees
in terms of logical reasoning about the correctness of the given task spec-
i�cation. To have a system with full reasoning capabilities, one needs to
incorporate an explicit global model of the environment (database, which
is updated using sensory input). This model is presently incorporated im-
plicitly in terms of goals, targets to achieve, and obstacles to avoid. The
presented research concentrated mostly at modeling of reactive interactions
between behaviors, while future research will address the incorporation of
explicit global model of the world and planning.

6 Acknowledgement

The experiments involving the Robuter was using the AMOR control systems
developed by Paolo Pirjanian and Hans Bl�asv�r, AUC.

The presented research has been sponsored by the EC-US explorative
action ECUS-003 \Control of Perception", the EEC Basic Research Project
EP-7108-VAP-II \Vision as Process", and the EEC HCM network SMART,
Navy Grant N00014-92-J-1647, AFOSR Grant 88-0296; Army/DAAL 03-89-
C-0031PRI; NSF Grants CISE/CDA 88-22719, IRI 89-06770, and ASC 91
0813; and Du Pont Corporation.

21

References

[1] A. Aho and R. Sethi and J. Ullman. Compilers, Principles, Techniques
and Tools. Addison Wesley, 1986.

[2] Y. Aloimonos. Purposive and qualitative active vision. In Proc. DARPA

Image Understanding Workshop, pages 816{828, 1990.

[3] R. A. Brooks. Intelligence without reason. Arti�cial Intelligence, 1991.

[4] R. A. Brooks. Intelligence without representation. A.I. Memo, 1990.

[5] R. C. Arkin. Motor schema based navigation for a mobile robot. In
IEEE Proc. Intl. Conf. on Robotics and Automation, pages 264{271,
1987.

[6] I. Horswill. A simple, cheap, and robust visual navigation system. In
From Animals to Animats II: Proceedings of the Second International

Conference on Simulation of Adaptive Behaviour. MIT Press, 1993.

[7] J. Ko�seck�a and R. Bajcsy. Discrete Event Systems for Autonomous
Mobile Agents. Journal of Robotics and Autonomous Systems, pages
187{198, No. 12, 1994.

[8] J. Ko�seck�a. Supervisory Control Theory of Autonomous Mobile Agents,
Ph.D. Thesis, GRASP Laboratory, University of Pennsylvania, February
1996.

[9] J. Ko�seck�a and H. Ben-Abdallah. An Automaton Based Algebra for
Specifying Robotic Agents. AMAST Workshop on Real-Time Systems,
Salt Lake City, 1996 (submitted).

[10] D. M. Lyons. A formal model of computation for sensory-based robotics.
IEEE Transactions of Robotics and Automation, 5(3):280 { 293, 1989.

[11] P. Maes. Situated Agents Can Have Goals. In Designing Autonomous

Agents, Elsevier Science Publishers, 1990.

[12] P. Pirjanian, H. Bl�asv�r, and H. I. Christensen, AMOR: An Au-
tonomous Mobile Robot System. Proc. IEEE Conf. on Systems, Man
and Cybernetics, San Antonio, pages 2266{2271. Oct. 1994.

22

[13] P. Pirjanian and H. I. Christensen, "Hierarchical Control using Heteroge-
neous Models", in Environmental Modeling, H. Bunke, H. Noldemeyer,
& T. Kanade (Eds), World Scienti�c Press, Singapore, pages 344{361,
Nov. 1995.

[14] P. J. Ramadge and W. M. Wonham. The control of discrete event
systems. Proceedings of the IEEE, 77(1):81{97, January 1989.

[15] J. K. Tsotsos. Behaviorist intelligence and the scaling problem. Tech-
nical report, Department of Computer Science, University of Toronto,
1986.

[16] A. Flynn. Combining Sonar and Infrared Sensors for Mobile Robot
Navigation. Intl. Journal of Robotics Research, Dec. 1988.

23

