Neural networks

Chapter 20, Section 5

Brains

10^{11} neurons of > 20 types, 10^{14} synapses, 1ms–10ms cycle time
Signals are noisy “spike trains” of electrical potential

Activation functions

(a) is a step function or threshold function
(b) is a sigmoid function $1/(1 + e^{-x})$

Changing the bias weight W_0 moves the threshold location

Implementing logical functions

McCulloch and Pitts: every Boolean function can be implemented

Outline

- Brains
- Neural networks
- Perceptrons
- Multilayer perceptrons
- Applications of neural networks

McCulloch–Pitts “unit”

Output is a “squashed” linear function of the inputs:

$$a_i = g(in_i) = g(\sum W_{j,i}a_j)$$

A gross oversimplification of real neurons, but its purpose is to develop understanding of what networks of simple units can do.
Network structures

Feed-forward networks:
- single-layer perceptrons
- multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
- Hopfield networks have symmetric weights \((W_{ij} = W_{ji})\)

\[g(x) = \text{sign}(x), \quad a_i = \pm 1; \quad \text{holographic associative memory} \]
- Boltzmann machines use stochastic activation functions, \(\approx \text{MCMC in Bayes nets} \)
- recurrent neural nets have directed cycles with delays

\(\Rightarrow\) have internal state (like flip-flops), can oscillate etc.

Expressiveness of perceptrons

Consider a perceptron with \(g = \text{step function}\) (Rosenblatt, 1957, 1960)

Can represent AND, OR, NOT, majority, etc., but not XOR

Represents a linear separator in input space:

\[\sum_j W_j x_j > 0 \quad \text{or} \quad W \cdot x > 0 \]

Minsky & Papert (1969) pricked the neural network balloon

Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input \(x\) and true output \(y\)

\[E = \frac{1}{2} \text{Err}^2 \equiv \frac{1}{2} (y - g(W \cdot x))^2 \]

Perform optimization search by gradient descent:

\[\frac{\partial E}{\partial W_j} = \text{Err} \times \frac{\partial Err}{\partial W_j} = \text{Err} \times \frac{\partial}{\partial W_j} (y - g(\sum_{j=0}^{n} W_j x_j)) \]

\[= -\text{Err} \times g'(w) \times x_j \]

Simple weight update rule:

\[W_j \leftarrow W_j + \alpha \times \text{Err} \times g'(w) \times x_j \]

E.g., +ve error \(\Rightarrow\) increase network output

\(\Rightarrow\) increase weights on +ve inputs, decrease on -ve inputs

Perceptron learning contd.

Perceptron learning rule converges to a consistent function for any linearly separable data set

Perceptron learns majority function easily, DTL is hopeless

DTL learns restaurant function easily, perceptron cannot represent it

Feed-forward networks:

Feed-forward example

Single-layer perceptrons

Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff

Perceptron output

Decision tree

Decision tree

Proportion correct on test set

Training set size - MAJORITY on 11 inputs

Training set size - RESTAURANT data
Multilayer perceptrons

Layers are usually fully connected; numbers of hidden units typically chosen by hand

Output units
\[a_i \]
\[W_{ij} \]
Hidden units
\[a_j \]
\[W_{kj} \]
Input units
\[a_k \]

Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface
Proof requires exponentially many hidden units (cf DTL proof)

Back-propagation derivation

The squared error on a single example is defined as
\[E = \frac{1}{2} \sum (y_i - a_i)^2 \]
where the sum is over the nodes in the output layer.
\[
\frac{\partial E}{\partial W_{kj}} = -(y_i - a_i) \frac{\partial a_i}{\partial W_{kj}} = -(y_i - a_i) g'(m_i) \frac{\partial g(m_j)}{\partial W_{kj}} = -(y_i - a_i) g'(m_i) \frac{\partial}{\partial W_{kj}} (\sum W_{kj} a_j)
\]

Back-propagation learning

Output layer: same as for single-layer perceptron,
\[W_{ij} \leftarrow W_{ij} + \alpha \times a_j \times \Delta_i \]
where \(\Delta_i = Err_i \times g'(m_i) \)
Hidden layer: back-propagate the error from the output layer:
\[\Delta_j = g'(m_j) \sum W_{kj} a_k \Delta_k \]
Update rule for weights in hidden layer:
\[W_{kj} \leftarrow W_{kj} + \alpha \times a_k \times \Delta_j \]
(Most neuroscientists deny that back-propagation occurs in the brain)

Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply
Training curve for 100 restaurant examples: finds exact fit

Typical problems: slow convergence, local minima
Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:

![Learning curve](image)

MLPs are quite good for complex pattern recognition tasks, but resulting hypotheses cannot be understood easily.

Handwritten digit recognition

![Digits](image)

3-nearest-neighbor = 2.4% error
400–300–10 unit MLP = 1.6% error
LeNet: 768–192–30–10 unit MLP = 0.9% error
Current best (kernel machines, vision algorithms) ≈ 0.6% error

Summary

Most brains have lots of neurons; each neuron ≈ linear–threshold unit (?)
Perceptrons (one-layer networks) insufficiently expressive
Multi-layer networks are sufficiently expressive; can be trained by gradient descent, i.e., error back-propagation
Many applications: speech, driving, handwriting, fraud detection, etc.
Engineering, cognitive modelling, and neural system modelling subfields have largely diverged