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Topics of the class

• Image formation process
• Image processing techniques for color and gray level 

images: edge detection, corner detection, 
segmentation

• Video processing, motion computation and 3D vision 
and geometry

• Basics of image classification, object detection and 
recognition 

• Implement basic vision algorithms in Python/OpenCV 
(open source computer vision library)



Logistics

• Grading: Homeworks 50%,
• Exam 30% Final project: 20% 
• Prerequisites: linear algebra, calculus, probability and statistics
• Lectures: Introduction by an instructor, homeworks every two 

weeks
• Projects: up to teams of 2 people
• Dates

– Project proposals due March 24th
– May week of finals final report due
– Project presentations



Visual Perception

• There are 1.8 billion images uploaded to Internet 
every day

• Every autonomous car, delivery robot, laptop and 
phone is equipped with cameras

• The opportunities and challenges of visual perception



Why study computer vision?

Personal photo albums

Surveillance and security

Movies, news, 
sports

Medical and scientific images

• Vision is useful: Images and video are everywhere!



COMP 776: Computer Vision



Connections to other disciplines

Computer Vision

Image Processing

Machine Learning

Artificial Intelligence

Robotics

Cognitive science
Neuroscience

Computer Graphics



The goal of computer vision
• To extract “meaning” from pixels

What we see What a computer sees
Source: S. Narasimhan



The goal of computer vision
• To extract “meaning” from pixels

Source: “80 million tiny images” by Torralba et al.
Humans are remarkably good at this…



What kind of information can be extracted from an 
image?

Geometric information

…



What kind of information can be extracted from an 
image?

Geometric information
Semantic information

building

person
trashcan car car

ground

tree tree

sky

door
window

building

roof

chimney

Outdoor scene
City European

…



Reconstruction: 3D from photo collections

YouTube Video

Q. Shan, R. Adams, B. Curless, Y. Furukawa, and S. Seitz, The Visual 
Turing Test for Scene Reconstruction, 3DV 2013

https://www.youtube.com/watch?v=NdeD4cjLI0c
http://www.cse.wustl.edu/~furukawa/papers/3dv-2013.pdf


Reconstruction: 4D from depth cameras

YouTube Video

R. Newcombe, D. Fox, and S. Seitz, DynamicFusion: 
Reconstruction and Tracking of Non-rigid Scenes in Real-Time, 
CVPR 2015

https://youtu.be/i1eZekcc_lM
http://homes.cs.washington.edu/~newcombe/papers/DynamicFusion.pdf


Recognition: “Simple” patterns



Recognition: Faces



Recognition: General categories

• Computer Eyesight Gets a Lot More Accurate, 
NY Times Bits blog, August 18, 2014 

• Building A Deeper Understanding of Images, 
Google Research Blog, September 5, 2014

http://bits.blogs.nytimes.com/2014/08/18/computer-eyesight-gets-a-lot-more-accurate/
http://googleresearch.blogspot.com/2014/09/building-deeper-understanding-of-images.html


Recognition: General categories

• ImageNet challenge

http://www.image-net.org/challenges/LSVRC/


Object detection, instance segmentation

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask R-CNN, 
ICCV 2017 (Best Paper Award)

https://research.fb.com/wp-content/uploads/2017/08/maskrcnn.pdf


Image generation

• BigGAN: 512 x 512 resolution, ImageNet

A. Brock, J. Donahue, K. Simonyan, Large scale GAN training for high fidelity natural 
image synthesis, arXiv 2018

https://arxiv.org/pdf/1511.06434.pdf


Image generation

• BigGAN: 512 x 512 resolution, ImageNet

A. Brock, J. Donahue, K. Simonyan, Large scale GAN training for high fidelity natural 
image synthesis, arXiv 2018

Easy classes Difficult classes

https://arxiv.org/pdf/1511.06434.pdf


DeepFakes

• Deep video portraits

• “A quiet wager has taken hold among researchers who study 
artificial intelligence techniques and the societal impacts of 
such technologies. They’re betting whether or not someone will 
create a so-called Deepfake video about a political candidate 
that receives more than 2 million views before getting 
debunked by the end of 2018” – IEEE Spectrum, 6/22/2018

https://web.stanford.edu/~zollhoef/papers/SG2018_DeepVideo/page.html
https://spectrum.ieee.org/tech-talk/robotics/artificial-intelligence/experts-bet-on-first-deepfakes-political-scandal


DeepFakes

https://www.newyorker.com/magazine/2018/11/12/in-the-age-of-ai-is-seeing-still-
believing

https://www.newyorker.com/magazine/2018/11/12/in-the-age-of-ai-is-seeing-still-believing


Course overview

I. Early vision: Image formation and processing
II. Mid-level vision: Grouping and fitting
III. Multi-view geometry
IV. Recognition
V. Additional topics



I. Early vision

• Basic image formation and processing

Cameras and sensors
Light and color

Linear filtering
Edge detection

* =

Feature extraction Optical flow



II. “Mid-level vision”

• Fitting and grouping

Fitting: Least squares
Voting methods

Alignment



III. Multi-view geometry

Structure from motion

Two-view stereoEpipolar geometry

Multi-view stereo



IV. Recognition

Basic classification

Object detection

Deep learning

Segmentation



V. Additional Topics (time permitting)

Video

3D scene understanding Images and text

Generation



Vision-based interaction (and games)

Assistive technologies

Sony EyeToy
Xbox and Kinect sensor

• Human pose estimation
• Activity Recognition



WaymoAmazon Picking Challenge

IGQ REG GQ-Adv-Phys GQ-Adv GQ-S GQ

Success Rate (%) 60±13 52±14 68±13 74±12 72±12 80±11

Precision (%) N/A N/A 68 87 92 100

Robust Grasp Rate (%) N/A N/A 100 30 48 58

Planning Time (sec) 1.8 3.4 0.7 0.7 0.8 0.8

TABLE IV: Performance of grasp planning methods on our grasping bench-
mark with the test dataset of 10 household objects with 95% confidence
intervals for the success rate. Each method was tested for 50 trials, and
details on the methods used for comparison can be found in Section VI-C.
GQ performs best in terms of success rate and precision, with 100% precision
(zero false positives among 29 positive classifications). Performance decreases
with smaller training datasets, but the GQ-CNN methods outperform the
image-based grasp quality metrics (IGQ) and point cloud registration (REG).

Generalization Objects Order Fulfillment

Fig. 7: (Left) The test set of 40 household objects used for evaluating the
generalization performance of the Dex-Net 2.0 grasp planner. The dataset
contains rigid, articulated, and deformable objects. (Right) The experimental
setup for order fulfillment with the ABB YuMi. The goal is to grasp and
transport three target objects to a shipping container (box on right).

(CEM) [33], which iteratively samples a set of candidate
grasps and re-fits the candidate grasp distribution to the grasps
with the highest predicted robustness, in order to find better
maxima of the robust grasping policy. More details can be
found in the supplemental file. The CEM-augmented Dex-Net
2.0 grasp planner achieved 94% success and 99% precision
(68 successes out of 69 grasps classified as robust), and it
took an average of 2.5s to plan grasps.

H. Application: Order Fulfillment
To demonstrate the modularity of the Dex-Net 2.0 grasp

planner, we used it in an order fulfillment application with
the ABB YuMi. The goal was to grasp and transport a set
of three target objects to a shipping box in the presence of
three distractor objects when starting with the objects in a pile
on a planar worksurface, illustrated in Fig. 7. Since the Dex-
Net 2.0 grasp planner assumes singulated objects, the YuMi
first separated the objects using a policy learned from human
demonstrations mapping binary images to push locations [31].
When the robot detected an object with sufficient clearance
from the pile, it identified the object based on color and used
GQ-L-Adv to plan a robust grasp. The robot then transported
the object to either the shipping box or a reject box, depending
on whether or not the object was a distractor. The system
successfully placed the correct objects in the box on 4 out of
5 attempts and was successful in grasping on 93% of 27 total
attempts.

I. Failure Modes
Fig. 8 displays some common failures of the GQ-CNN

grasp planner. One failure mode occured when the RGB-D

RGB-D Sensor Noise Misclassified Collisions

+ + +

Execution

Planned
Grasp

Fig. 8: Four examples of failed grasps planned using the GQ-CNN from Dex-
Net 2.0. The most common failure modes were related to: (left) missing sensor
data for an important part of the object geometry, such as thin parts of the
object surface, and (right) collisions with the object that are misclassified as
robust.

sensor failed to measure thin parts of the object geometry,
making these regions seem accessible. A second type of failure
occured due to collisions with the object. It appears that the
network was not able to fully distinguish collision-free grasps
in narrow parts of the object geometry. This suggests that
performance could be improved with more accurate depth
sensing and using analytic methods to prune grasps in collsion.

VII. DISCUSSION AND FUTURE WORK

We developed a Grasp Quality Convolutional Neural Net-
work (GQ-CNN) architecture that predicts grasp robustness
from a point cloud and trained it on Dex-Net 2.0, a dataset
containing 6.7 million point clouds, parallel-jaw grasps, and
robust grasp metrics. In over 1,000 physical evaluations, we
found that the Dex-Net 2.0 grasp planner is as reliable and
3⇥ faster a method based on point cloud registration, and had
99% precision on a test set of 40 novel objects.

In future work, our goal is to approach 100% success on
known objects by using active learning to adaptively acquire
grasps using a policy initialized with a GQ-CNN. Additionally,
we plan to exend the method to grasp objects in clutter [16, 33]
by using simulated piles of rigid objects from Dex-Net and
by augmenting the grasping policy with an option to push and
separate objects when no robust grasp is available. We also
intend to extend the method to use point clouds from multiple
viewpoints and in grasping tasks with sequential structure,
such as regrasping for assembly. Furthermore, we plan to
release a subset of our code, dataset, and the trained GQ-CNN
weights to facilitate further research and comparisons.

ACKNOWLEDGMENTS

This research was performed at the AUTOLAB at UC Berkeley in affiliation with the Berkeley AI Research (BAIR)

Lab, the Real-Time Intelligent Secure Execution (RISE) Lab, and the CITRIS People and Robots (CPAR) Initiative. The

authors were supported in part by the U.S. National Science Foundation under NRI Award IIS-1227536: Multilateral

Manipulation by Human-Robot Collaborative Systems, the Department of Defense (DoD) through the National Defense

Science & Engineering Graduate Fellowship (NDSEG) Program, the Berkeley Deep Drive (BDD) Program, and by donations

from Siemens, Google, Cisco, Autodesk, IBM, Amazon Robotics, and Toyota Robotics Institute. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the

views of the Sponsors. We thank our colleagues who provided helpful feedback, code, and suggestions, in particular Pieter

Abbeel, Ruzena Bajcsy, Brenton Chu, Roy Fox, David Gealy, Ed Johns, Sanjay Krishnan, Animesh Garg, Sergey Levine,

Pusong Li, Matt Matl, Stephen McKinley, Andrew Reardon, Vishal Satish, Sammy Staszak, and Nan Tian.

Dexnet

ImageNet Coco

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

WACV
#****

WACV
#****

WACV 2020 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

FineHand: Learning Hand Shapes for American Sign Language Recognition

Anonymous WACV submission

Paper ID ****

Abstract

Gesture is the most common form of communication. We
often communicate with others using visual gestures when
vocal conversation is not possible. A more compelling use
case is the conversation with a Deaf and Hard-of-Hearing
(DHH) person. Since they have difficulty in producing
meaningful vocal sound, gesture or sign language is the
only form of reliable communication. Sign languages com-
prise of different visual components such as hand-shapes,
facial expression and head movements. Among these com-
ponents, hand-shape is the vital part of a sign language ges-
ture. Usually, hand-shapes convey visual meaning about
the sign in such a way that, even people totally unaware of
sign language can understand the concept. In this work,
we present an approach where we learn hand shapes using
deep convolutional neural network (CNN). Learned repre-
sentation is further used in sequential modeling to achieve
final sign gesture classification. Our method requires some
manual effort of hand-shape labeling and improves ultimate
sign classification tasks significantly. Existing approaches
exploit different modalities of data while our method de-
pends on single modality of RGB video, yet outperforms
multi-modal approaches. We show improved recognition
accuracy on GMU-ASL51 benchmark and also prepare
frame level hand-shape annotation which will be released
publicly.

1. Introduction
Sometimes we encounter situation where establishing a

verbal communication is not difficult. For example calling
someone by name in a place where high volume music is
playing. This happens because, noise around us makes our
vocal sound indistinguishable. Likewise, when we use in-
telligent virtual assistants using voice command, the noise
level has to be at a minimum level and the command has
to be pronounced clearly. Satisfying these constraints is
not feasible, especially people with Deafness and Hard-of-
Hearing (DHH). Being unable to produce meaningful vocal
sounds, those people use visual gestures as primary form

of communication. This is known as sign language and ap-
proximately 500,000 use American sign language (ASL) to
communicate [20].

Figure 1: Subjects performing different ASL signs and cor-
responding hand-shape pattern.

Intelligent virtual assistant devices are becoming ubiq-
uitous and the types of services they offer continues to ex-
pand. They can help users in answering questions, manag-
ing schedules, describing weather and many more. How-
ever, most of these devices are voice controlled. Hence, a
significant community of DHH people are deprived of the
benefits from these assistants. An automatic sign recognizer
can hence enable interactions between a DHH user and a
digital assistant (e.g. Amazon Echo, Google Now). The
goal of our work is to offer reliable interfaces making them
available for wide population.

Several approaches for ASL recognition have been de-
veloped with input RGB video data [8, 11, 29]. An ASL
sign is performed by a combination of hand gestures, fa-
cial expressions and postures of the body. Further, the se-
quential motion of specific body locations (such as hand-
tip, neck and arm) provide informative cues about a sign.
Depth sensors such as Microsoft Kinect can provide 3D co-
ordinates of a person’s body joints in a video frame. This
sequence of 3D joint location referred by skeletal data [38],
provides a multi-variate time series with 2D or 3D coor-
dinates of body joints [3]. With recent developments in
deep learning based pose estimation methods, the skele-

1

person of interest video segments segment 10-second
(POI) (hours) (hours) (count) clips (count)

real

Hillary Clinton 5.56 2.37 150 22, 059
Barack Obama 18.93 12.51 972 207, 590
Bernie Sanders 8.18 4.14 405 63, 624
Donald Trump 11.21 6.08 881 72, 522

Elizabeth Warren 4.44 2.22 260 31, 713
comedic impersonator

Hillary Clinton 0.82 0.17 28 1, 529
Barack Obama 0.70 0.17 21 2, 308
Bernie Sanders 0.39 0.11 12 1, 519
Donald Trump 0.53 0.19 24 2, 616

Elizabeth Warren 0.11 0.04 10 264
face-swap deep fake

Hillary Clinton 0.20 0.16 25 1, 576
Barack Obama 0.20 11 12 1, 691
Bernie Sanders 0.07 0.06 5 1, 084
Donald Trump 0.22 0.19 24 2, 460

Elizabeth Warren 0.04 0.04 10 277
lip-sync deep fake

Barack Obama 0.99 0.99 111 13, 176
puppet-master deep fake

Barack Obama 0.19 0.20 20 2, 516

Table 1. Total duration of downloaded videos and segments in

which the POI is speaking, and the total number of segments and

10-second clips extracted from the segments.

tinctive for our purposes. These 16 AUs are augmented
with the following four features: (1) head rotation about
the x-axis (pitch); (2) head rotation about the z-axis (roll);
(3) the 3-D horizontal distance between the corners of the
mouth (mouthh); and (4) the 3-D vertical distance between
the lower and upper lip (mouthv). The first pair of features
captures general head motion (we don’t consider the ro-
tation around the y-axis (yaw) because of the differences
when speaking directly to an individual as opposed to a
large crowd). The second pair of these features captures
mouth stretch (AU27) and lip suck (AU28), which are not
captured by the default 16 AUs.

We use the Pearson correlation to measure the linearity
between these features in order to characterize an individ-
ual’s motion signature. With a total of 20 facial/head fea-
tures, we compute the Pearson correlation between all 20 of
these features, yielding 20C2 = (20 × 19)/2 = 190 pairs
of features across all 10-second overlapping video clips (see
Section 2.2). Each 10-second video clip is therefore re-
duced to a feature vector of dimension 190 which, as de-
scribed next, is then used to classify a video as real or fake.

2.2. Data set

We concentrate on the videos of persons of interest
(POIs) talking in a formal setting, for example, weekly ad-
dress, news interview, and public speech. All videos were
manually downloaded from YouTube where the POI is pri-
marily facing towards the camera. For each downloaded
video, we manually extracted video segments that met the
following requirements: (1) the segment is at least 10 sec-

Figure 2. Shown from top to bottom, are five example frames of a

10-second clip from original, lip-sync deep fake, comedic imper-

sonator, face-swap deep fake, and puppet-master deep fake.

onds in length; (2) the POI is talking during the entire seg-
ment; (3) only one face – the POI – is visible in the segment;
and (4) the camera is relatively stationary during the seg-
ment (a slow zoom was allowed). All of the segments were
saved at 30 fps using an mp4-format at a relatively high-
quality of 20. Each segment was then partitioned into over-
lapping 10-second clips (the clips were extracted by sliding
a window across the segment five frames at a time). Shown
in Table 1 are the video and segment duration and the num-
ber of clips extracted for five POIs.

We tested our approach with the following data sets: 1)
5.6 hours of video segments of 1, 004 unique people, yield-
ing 30, 683 10-second clips, from the FaceForensics data
set [23]; 2) comedic impersonators for each POI, (Table 1);
3) face-swap deep fakes, lip-sync deep fakes, and puppet-
master deep fakes (Table 1). Shown in Figure 2 are five
example frames from a 10-second clip of an original video,
a lip-sync deep fake, a comedic impersonator, a face-swap
deep fake, and puppet-master deep fake of Barack Obama.

2.2.1 Deep Fakes

Using videos of their comedic impersonators as a base, we
generated face-swap deep fakes for each POI. To swap faces
between each POI and their impersonator, a generative ad-
versarial network (GAN) was trained based on the Deep-
fake architecture 1. Each GAN was trained with approxi-
mately 5000 images per POI. The GAN then replaces the

1github.com/shaoanlu/faceswap-GAN

40



Unsupervised “Weakly” supervised Supervised

Definition depends on task

Learning approaches proceed in supervised way: need some labeled data



Example Datasets
Motorbike

Caltech 5, Caltech 101

Tiny Images [Torralba et al’07], 
80 million tiny images

LabelMe 
[Russel et al’05

ImageNet [Fei-Fei, 2008]  10K object categories, sync sets, ontology & word hierarchy 

Slide credit Fei-Fei Li 



Object Recognition

Classification Detection

SegmentationDog

Dog

Dog



COCO Common Objects in Context

Coco 80 object categories
500K + 2K + 5K 
Train instances-validate-text

Mapilary Vista 37 object categories
18K + 2K + 5K 
train-validate-text



Multi-object detection 52fps

Fast Single Shot Detection and Pose Estimation P. Poirson, Philip Ammirato, Cheng-Yang Fu  
W.  Liu,  J Kosecka, A.  Berg
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(a) Input image with GT boxes (b) 8⇥ 8 feature map (c) 4⇥ 4 feature map

loc : �(cx, cy, w, h)
conf : (c1, c2, · · · , cp)

Fig. 1: SSD framework. (a) SSD only needs an input image and ground truth boxes for
each object during training. In a convolutional fashion, we evaluate a small set (e.g. 4)
of default boxes of different aspect ratios at each location in several feature maps with
different scales (e.g. 8 ⇥ 8 and 4 ⇥ 4 in (b) and (c)). For each default box, we predict
both the shape offsets and the confidences for all object categories ((c1, c2, · · · , cp)).
At training time, we first match these default boxes to the ground truth boxes. For
example, we have matched two default boxes with the cat and one with the dog, which
are treated as positives and the rest as negatives. The model loss is a weighted sum
between localization loss (e.g. Smooth L1) and confidence loss (e.g. Softmax).

instances in those boxes, followed by a non-maximum suppression step to produce the
final detections. The early network layers are based on a standard architecture used for
high quality image classification (truncated before any classification layers), which we
will call the base network1. We then add auxiliary structure to the network to produce
detections with the following key features:

Multi-scale feature maps for detection We add convolutional feature layers to the end
of the truncated base network. These layers decrease in size progressively and allow
predictions of detections at multiple scales. The convolutional model for predicting
detections is different for each feature layer (cf Overfeat[4] and YOLO[5] that operate
on a single scale feature map).

Convolutional predictors for detection Each added feature layer (or optionally an ex-
isting feature layer from the base network) can produce a fixed set of detection predic-
tions using a set of convolutional filters. These are indicated on top of the SSD network
architecture in Fig. 2. For a feature layer of size m ⇥ n with p channels, the basic el-
ement for predicting parameters of a potential detection is a 3 ⇥ 3 ⇥ p small kernel
that produces either a score for a category, or a shape offset relative to the default box
coordinates. At each of the m⇥ n locations where the kernel is applied, it produces an
output value. The bounding box offset output values are measured relative to a default
box position relative to each feature map location (cf the architecture of YOLO[5] that
uses an intermediate fully connected layer instead of a convolutional filter for this step).

1 In our reported experiments we use the VGG-16 network as a base, but other networks also
produce good results.

• SSD object detector single pass 
• confidences for 80 categories
• and their bounding boxes
• Overall mAP ~ 50%



Semantic Segmentation

• Definition: Assigning a label to each pixel.

• Labels can be object categories such as closet, fridge, chair or 
can be structural categories such as wall and structure.

Kitchen Counter
Wall

Chair

Towel

Cabinet

Fridge

Structure
Box

Microwave

Prop

Semantic Segmentation

5
7



Large Scale Image Categorization

Slide cerdit Fei-Fei Li 

11 million images, 10,000 image categories 15,000+ 
synsets



is a knowledge ontology

• Taxonomy 
• Partonomy
• The “social network” of 

visual concepts
– Hidden knowledge 

and structure among 
visual concepts

– Prior knowledge
– Context



is a knowledge ontology

• Taxonomy 
• Partonomy
• The “social network” of 

visual concepts
– Prior knowledge
– Context
– Hidden knowledge 

and structure among 
visual concepts

Slide cerdit Fei-Fei Li 



Face Detection

Sliding window 
approach:
for each possible 
rectangular region in 
the image asks the 
question, is there a 
face here?

Now even 
integrated into many 
consumer digital 
cameras.

Image from: Viola & Jones, 2004.



Person detection

Bastian Leibe, Edgar Seemann, and Bernt Schiele



Scene Recognition

Lazebnik, Schmid, Ponce



Active Vision Dataset 

9 indoors scenes, 17 scans, 21K images 
P. Ammirato, P. Poirson, E. Park, A.  Berg, J.Kosecka



Slide credit: A. Efros
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