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Chapter 3 
 
Graphs 
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computer, and then open the file again. If the red x 
still appears, you may have to delete the image and 
then insert it again.

3.1  Basic Definitions and Applications 
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Undirected Graphs 

Undirected graph.  G = (V, E) 
■  V = nodes. 
■  E = edges between pairs of nodes. 
■  Captures pairwise relationship between objects. 
■  Graph size parameters:  n = |V|, m = |E|. 

 

V = { 1, 2, 3, 4, 5, 6, 7, 8 } 
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 } 
n = 8 
m = 11 
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Some Graph Applications 

transportation 

Graph 
street intersections 

Nodes Edges 
highways 

communication computers fiber optic cables 

World Wide Web web pages hyperlinks 

social people relationships 

food web species predator-prey 

software systems functions function calls 

scheduling tasks precedence constraints 

circuits gates wires 
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World Wide Web 

Web graph. 
■  Node:  web page. 
■  Edge:  hyperlink from one page to another. 

cnn.com 

cnnsi.com novell.com netscape.com timewarner.com 

hbo.com 

sorpranos.com 
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9-11 Terrorist Network 

Social network graph. 
■  Node:  people. 
■  Edge:  relationship between two people. 

Reference:  Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs 
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Ecological Food Web 

Food web graph. 
■  Node = species.  
■  Edge = from prey to predator. 

Reference:  http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff 
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Graph Representation:  Adjacency Matrix 

Adjacency matrix.  n-by-n matrix with Auv = 1 if (u, v) is an edge. 
■  Two representations of each edge. 
■  Space proportional to n2. 
■  Checking if (u, v) is an edge takes Θ(1) time.  
■  Identifying all edges takes Θ(n2) time. 

  1 2 3 4 5 6 7 8 
1 0 1 1 0 0 0 0 0 
2 1 0 1 1 1 0 0 0 
3 1 1 0 0 1 0 1 1 
4 0 1 0 1 1 0 0 0 
5 0 1 1 1 0 1 0 0 
6 0 0 0 0 1 0 0 0 
7 0 0 1 0 0 0 0 1 
8 0 0 1 0 0 0 1 0 
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Graph Representation:  Adjacency List 

Adjacency list.  Node indexed array of lists. 
■  Two representations of each edge. 
■  Space proportional to m + n. 
■  Checking if (u, v) is an edge takes O(deg(u)) time. 
■  Identifying all edges takes Θ(m + n) time. 

1 2 3 

2 

3 

4 2 5 

5 

6 

7 3 8 

8 

1 3 4 5 

1 2 5 8 7 

2 3 4 6 

5 

degree = number of neighbors of u 

3 7 
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Paths and Connectivity 

Def.  A path in an undirected graph G = (V, E) is a sequence P of nodes 
v1, v2, …, vk-1, vk with the property that each consecutive pair vi, vi+1 is 
joined by an edge in E. 
 
Def.  A path is simple if all nodes are distinct. 
 
Def.  An undirected graph is connected if for every pair of nodes u and 
v, there is a path between u and v. 
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Cycles 

Def.  A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the 
first k-1 nodes are all distinct. 

cycle C = 1-2-4-5-3-1 
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Trees 

Def.  An undirected graph is a tree if it is connected and does not 
contain a cycle. 
 
Theorem.  Let G be an undirected graph on n nodes. Any two of the 
following statements imply the third. 
■  G is connected. 
■  G does not contain a cycle. 
■  G has n-1 edges. 
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Rooted Trees 

Rooted tree.  Given a tree T, choose a root node r and orient each edge 
away from r. 
 
Importance.  Models hierarchical structure. 

a tree the same tree, rooted at 1 

v 

parent of v 

child of v 

root r 

14 

Phylogeny Trees 

Phylogeny trees.  Describe evolutionary history of species.  

15 

GUI Containment Hierarchy 

Reference:  http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html 

GUI containment hierarchy.  Describe organization of GUI widgets. 3.2  Graph Traversal 
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Connectivity 

s-t connectivity problem.  Given two node s and t, is there a path 
between s and t? 

s-t shortest path problem.  Given two node s and t, what is the length 
of the shortest path between s and t? 

Applications. 
■  Friendster. 
■  Maze traversal. 
■  Kevin Bacon number. 
■  Fewest number of hops in a communication network. 
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Breadth First Search 

BFS intuition.  Explore outward from s in all possible directions, adding 
nodes one "layer" at a time. 
 
 
BFS algorithm. 
■  L0 = { s }. 
■  L1 = all neighbors of L0. 
■  L2 = all nodes that do not belong to L0 or L1, and that have an edge 

to a node in L1. 
■  Li+1 = all nodes that do not belong to an earlier layer, and that have 

an edge to a node in Li. 

Theorem.  For each i, Li consists of all nodes at distance exactly i 
from s.  There is a path from s to t iff t appears in some layer. 

s L1 L2 L n-1 
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Breadth First Search 

Property.  Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of 
G. Then the level of x and y differ by at most 1. 

L0 

L1 

L2 

L3 
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Breadth First Search:  Analysis 

Theorem.  The above implementation of BFS runs in O(m + n) time if 
the graph is given by its adjacency representation. 
 
Pf. 
■  Easy to prove O(n2) running time: 

–  at most n lists L[i] 
–  each node occurs on at most one list; for loop runs ≤ n times 
–  when we consider node u, there are ≤ n incident edges (u, v), 

and we spend O(1) processing each edge 

■  Actually runs in O(m + n) time: 
–  when we consider node u, there are deg(u) incident edges (u, v) 
–  total time processing edges is Σu∈V deg(u) = 2m     ▪ 

each edge (u, v) is counted exactly twice 
in sum: once in deg(u) and once in deg(v) 
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Connected Component 

Connected component.  Find all nodes reachable from s. 
 
 
 
 
 
 
 
 
 
 
 
Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }. 
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Flood Fill 

Flood fill.  Given lime green pixel in an image, change color of entire 
blob of neighboring lime pixels to blue. 
■  Node:  pixel. 
■  Edge:  two neighboring lime pixels. 
■  Blob:  connected component of lime pixels. 

recolor lime green blob to blue 
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Flood Fill 

Flood fill.  Given lime green pixel in an image, change color of entire 
blob of neighboring lime pixels to blue. 
■  Node:  pixel. 
■  Edge:  two neighboring lime pixels. 
■  Blob:  connected component of lime pixels. 

recolor lime green blob to blue 

Depth-First Search: The Code 

DFS(G) 

{ 

   for each vertex u ∈ G->V 

   { 

      Mark v unexplored ; 

   } 

   time = 0; 

   for each vertex u ∈ G->V 

   { 

      if (u is UNEXPLORED) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   Mark u EXPLORED; 

   add u to R; 

   for each v ∈ u->Adj[] 
   { 
      if (v is 
NOT_EXPLORED) 
         DFS_Visit(v); 
   } 
} 
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Depth-First Search: The Code 

DFS(G) 

{ 

   for each vertex u ∈ G->V 

   { 

      Mark v unexplored ; 

   } 

   time = 0; 

   for each vertex u ∈ G->V 

   { 

      if (u is UNEXPLORED) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   Mark u EXPLORED; 

   add u to R; 

   for each v ∈ u->Adj[] 
   { 
      if (v is 
NOT_EXPLORED) 
         DFS_Visit(v); 
   } 
} 
   

What will be the running time of DFS ?  

Depth-First Search: The Code 

DFS(G) 

{ 

   for each vertex u ∈ G->V 

   { 

      Mark v unexplored ; 

   } 

   time = 0; 

   for each vertex u ∈ G->V 

   { 

      if (u is UNEXPLORED) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   Mark u EXPLORED; 

   add u to R; 

   for each v ∈ u->Adj[] 
   { 
      if (v is 
NOT_EXPLORED) 
         DFS_Visit(v); 
   } 
} 
   

Running time: O(n2) because call DFS_Visit on each vertex,  
and the loop over Adj[] can run as many as |V| times 

Depth-First Search: The Code 

DFS(G) 

{ 

   for each vertex u ∈ G->V 

   { 

      Mark v unexplored ; 

   } 

   time = 0; 

   for each vertex u ∈ G->V 

   { 

      if (u is UNEXPLORED) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   Mark u EXPLORED; 

   add u to R; 

   for each v ∈ u->Adj[] 
   { 
      if (v is 
NOT_EXPLORED) 
         DFS_Visit(v); 
   } 
} 
   

Running time: There is a tighter bound  O(V+E)  or O(m + n) 
n = |V| and m = |E| 
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Connected Component 

Connected component.  Find all nodes reachable from s. 
 
The nodes can be reached by BFS, DFS 
 
 
 
 
 
 
 
Theorem.  Upon termination, R is the connected component containing s. 
■  BFS = explore in order of distance from s. 
■  DFS = explore in a different way. 

■  For any two node s and t their connected components are either 
identical or disjoint.  

s 

u v 

R 

it's safe to add v 
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Adjacency Matrix vs Lists 

n = |V| and m = |E| 
 
Running time depends on the relationship between n and m 
 
Dense graph                  edges 
 
Connected graph at least 
 
Space and time considerations depend on the algorithm  
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n
2
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##
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%
&& ≤ n

2

m ≥ n−1

Queues vs Stacks 

n = |V| and m = |E| 
 
•  Important to maintain an order which elements are visited 
•  Implemented as doubly linked lists 
•  FIFO – first in first out QUEUE 
•  LIFO – last in first out STACK 
 
•  BSF Implementation ? QUEUE OR STACK  

•  DFS Implementation ? QUEUE OR STACK 

•  Finding number of Connected Components 
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Queues vs Stacks 

n = |V| and m = |E| 
 
•  Important to maintain an order which elements are visited 
•  Implemented as doubly linked lists 
•  FIFO – first in first out QUEUE 
•  LIFO – last in first out STACK 
 
•  BSF Implementation  (QUEUE or STACK) 

•  DFS Implementation (STACK) 

•  Finding number of Connected Components (find the node which has 
not been visited by and start a new DFS/BFS. Keep on going until  

     all nodes are visited.) 

•  Look at the pseudo-code for DFS and BSF in the book 
 
 31 

Queues vs Stacks 

n = |V| and m = |E| 
 
•  Important to maintain an order which elements are visited 
•  Implemented as doubly linked lists 
•  FIFO – first in first out QUEUE 
•  LIFO – last in first out STACK 
 
•  BSF Implementation  (QUEUE or STACK) 

•  DFS Implementation (STACK) 

•  Finding number of Connected Components 

 
•  Look at the pseudo-code for DFS and BSF in the book 
 
 

32 
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3.4  Testing Bipartiteness 
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Bipartite Graphs 

Def.  An undirected graph G = (V, E) is bipartite if the nodes can be 
colored red or blue such that every edge has one red and one blue end. 
 
Applications. 
■  Stable marriage:  men = red, women = blue. 
■  Scheduling:  machines = red, jobs = blue. 

 

a bipartite graph 

35 

Testing Bipartiteness 

Testing bipartiteness.   Given a graph G, is it bipartite? 
■  Many graph problems become: 

–  easier if the underlying graph is bipartite (matching) 
–  tractable if the underlying graph is bipartite (independent set) 

■  Before attempting to design an algorithm, we need to understand 
structure of bipartite graphs. 

v1 

v2 v3 

v6 v5 v4 

v7 

v2 

v4 

v5 

v7 

v1 

v3 

v6 

a bipartite graph G another drawing of G 
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An Obstruction to Bipartiteness 

Lemma.  If a graph G is bipartite, it cannot contain an odd length cycle. 
 
Pf.  Not possible to 2-color the odd cycle, let alone G. 

bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 
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Bipartite Graphs 

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers 
produced by BFS starting at node s.  Exactly one of the following holds. 
(i)   No edge of G joins two nodes of the same layer, and G is bipartite. 
(ii)  An edge of G joins two nodes of the same layer, and G contains an 

   odd-length cycle (and hence is not bipartite). 

Case (i) 

L1 L2 L3 

Case (ii) 

L1 L2 L3 
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Bipartite Graphs 

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers 
produced by BFS starting at node s.  Exactly one of the following holds. 
(i)   No edge of G joins two nodes of the same layer, and G is bipartite. 
(ii)  An edge of G joins two nodes of the same layer, and G contains an 

   odd-length cycle (and hence is not bipartite). 

Pf.  (i) 
■  Suppose no edge joins two nodes in the same layer. 
■  In BFS either edged join nodes in the same layer or adjacent layers,  
    since the assumption is i) then all  nodes are in adjacent layers. 
■  Bipartition:  red = nodes on odd levels, blue = nodes on even levels. 

Case (i) 

L1 L2 L3 
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Bipartite Graphs 

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers 
produced by BFS starting at node s.  Exactly one of the following holds. 
(i)   No edge of G joins two nodes of the same layer, and G is bipartite. 
(ii)  An edge of G joins two nodes of the same layer, and G contains an 

   odd-length cycle (and hence is not bipartite). 

Pf.  (ii) 
■  Suppose (x, y) is an edge with x, y in same level Lj. 
■  Let z = lca(x, y) = lowest common ancestor. 
■  Let Li be level containing z. 
■  Consider cycle that takes edge from x to y, 

then path from y to z, then path from z to x. 
■  Its length is  1  +   (j-i)  +  (j-i),  which is odd.  ▪ 

z = lca(x, y) 

(x, y) path from 
y to z 

path from 
z to x 

40 

Obstruction to Bipartiteness 

Corollary.  A graph G is bipartite iff it contains no odd length cycle. 
 

5-cycle C 

bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 
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3.5  Connectivity in Directed Graphs 
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Directed Graphs 

Directed graph.  G = (V, E) 
■  Edge (u, v) goes from node u to node v. 

Ex.  Web graph - hyperlink points from one web page to another. 
■  Directedness of graph is crucial. 
■  Modern web search engines exploit hyperlink structure to rank web 

pages by importance. 

43 

Graph Search 

Directed reachability.  Given a node s, find all nodes reachable from s. 
 
Directed s-t shortest path problem.  Given two node s and t, what is 
the length of the shortest path between s and t? 
 
Graph search.  BFS extends naturally to directed graphs. 
 
 
 
Web crawler.  Start from web page s.  Find all web pages linked from s, 
either directly or indirectly. 
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Strong Connectivity 

Def.  Node u and v are mutually reachable if there is a path from u to v 
and also a path from v to u. 
 
Def.  A graph is strongly connected if every pair of nodes is mutually 
reachable. 
 
Lemma.  Let s be any node.  G is strongly connected iff every node is 
reachable from s, and s is reachable from every node. 
 
Pf.  ⇒  Follows from definition. 
Pf.  ⇐  Path from u to v: concatenate u-s path with s-v path. 
            Path from v to u: concatenate v-s path with s-u path.   ▪ 
 
 
 s 

v 

u 

ok if paths overlap 
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Strong Connectivity:  Algorithm 

Theorem.  Can determine if G is strongly connected in O(m + n) time. 
Pf. 
■  Pick any node s. 
■  Run BFS from s in G. 
■  Run BFS from s in Grev. 
■  Return true iff all nodes reached in both BFS executions. 
■  Correctness follows immediately from previous lemma.   ▪ 

reverse orientation of every edge in G 

strongly connected not strongly connected 

Example 1 (yes) Example 2 (no) 

3.6  DAGs and Topological Ordering 
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Directed Acyclic Graphs 

Def.  An DAG is a directed graph that contains no directed cycles. 
 
Ex.  Precedence constraints:  edge (vi, vj) means vi must precede vj. 
 
Def.  A topological order of a directed graph G = (V, E) is an ordering 
of its nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j. 

a DAG a topological ordering 

v2 v3 

v6 v5 v4 

v7 v1 

v1 v2 v3 v4 v5 v6 v7 

48 

Precedence Constraints 

Precedence constraints.  Edge (vi, vj) means task vi must occur before vj. 

Applications. 
■  Course prerequisite graph:  course vi must be taken before vj. 
■  Compilation:  module vi must be compiled before vj. Pipeline of 

computing jobs:  output of job vi needed to determine input of job vj. 
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Directed Acyclic Graphs 

Lemma.  If G has a topological order, then G is a DAG. 
 
Pf.  (by contradiction) 
■  Suppose that G has a topological order v1, …, vn and that G also has a 

directed cycle C.  Let's see what happens. 
■  Let vi be the lowest-indexed node in C, and let vj be the node just 

before vi; thus (vj, vi) is an edge. 
■  By our choice of i, we have i < j. 
■  On the other hand, since (vj, vi) is an edge and v1, …, vn is a 

topological order, we must have j < i, a contradiction.   ▪ 

v1 vi vj vn 

the supposed topological order:  v1, …, vn 

the directed cycle C 
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Directed Acyclic Graphs 

Lemma.  If G has a topological order, then G is a DAG. 
 
Q.  Does every DAG have a topological ordering? 
 
Q.  If so, how do we compute one? 
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Directed Acyclic Graphs 

Lemma.  If G is a DAG, then G has a node with no incoming edges. 
 
Pf.  (by contradiction) 
■  Suppose that G is a DAG and every node has at least one incoming 

edge.  Let's see what happens. 
■  Pick any node v, and begin following edges backward from v.  Since v 

has at least one incoming edge (u, v) we can walk backward to u. 
■  Then, since u has at least one incoming edge (x, u), we can walk 

backward to x. 
■  Repeat until we visit a node, say w, twice. 
■  Let C denote the sequence of nodes encountered between 

successive visits to w.  C is a cycle.   ▪ 

w x u v 
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Directed Acyclic Graphs 

Lemma.  If G is a DAG, then G has a topological ordering. 
 
Pf.  (by induction on n) 
■  Base case:  true if n = 1. 
■  Given DAG on n > 1 nodes, find a node v with no incoming edges. 
■  G - { v } is a DAG, since deleting v cannot create cycles. 
■  By inductive hypothesis, G - { v } has a topological ordering. 
■  Place v first in topological ordering; then append nodes of G - { v } 
■  in topological order. This is valid since v has no incoming edges.   ▪ 

DAG 

v 
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Topological Sorting Algorithm:  Running Time 

Theorem.  Algorithm finds a topological order in O(m + n) time. 
 
Pf.   
■  Maintain the following information: 

–  count[w] = remaining number of incoming edges 
–  S = set of remaining nodes with no incoming edges 

■  Initialization:  O(m + n) via single scan through graph. 
■  Update:  to delete v 

–  remove v from S 
–  decrement count[w] for all edges from v to w, and add w to S if c 
count[w] hits 0 

–  this is O(1) per edge    ▪ 


