
2/10/16

Copyright 2000, Kevin Wayne 1

1

Chapter 3

Graphs

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

The image cannot be displayed. Your computer may
not have enough memory to open the image, or the
image may have been corrupted. Restart your
computer, and then open the file again. If the red x
still appears, you may have to delete the image and
then insert it again.

3.1 Basic Definitions and Applications

3

Undirected Graphs

Undirected graph. G = (V, E)
■  V = nodes.
■  E = edges between pairs of nodes.
■  Captures pairwise relationship between objects.
■  Graph size parameters: n = |V|, m = |E|.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11

4

Some Graph Applications

transportation

Graph
street intersections

Nodes Edges
highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires

2/10/16

Copyright 2000, Kevin Wayne 2

5

World Wide Web

Web graph.
■  Node: web page.
■  Edge: hyperlink from one page to another.

cnn.com

cnnsi.com novell.com netscape.com timewarner.com

hbo.com

sorpranos.com

6

9-11 Terrorist Network

Social network graph.
■  Node: people.
■  Edge: relationship between two people.

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

7

Ecological Food Web

Food web graph.
■  Node = species.
■  Edge = from prey to predator.

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

8

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge.
■  Two representations of each edge.
■  Space proportional to n2.
■  Checking if (u, v) is an edge takes Θ(1) time.
■  Identifying all edges takes Θ(n2) time.

 1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 1 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

2/10/16

Copyright 2000, Kevin Wayne 3

9

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
■  Two representations of each edge.
■  Space proportional to m + n.
■  Checking if (u, v) is an edge takes O(deg(u)) time.
■  Identifying all edges takes Θ(m + n) time.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 8 7

2 3 4 6

5

degree = number of neighbors of u

3 7

10

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes
v1, v2, …, vk-1, vk with the property that each consecutive pair vi, vi+1 is
joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and
v, there is a path between u and v.

11

Cycles

Def. A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the
first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

12

Trees

Def. An undirected graph is a tree if it is connected and does not
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.
■  G is connected.
■  G does not contain a cycle.
■  G has n-1 edges.

2/10/16

Copyright 2000, Kevin Wayne 4

13

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge
away from r.

Importance. Models hierarchical structure.

a tree the same tree, rooted at 1

v

parent of v

child of v

root r

14

Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.

15

GUI Containment Hierarchy

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

GUI containment hierarchy. Describe organization of GUI widgets. 3.2 Graph Traversal

2/10/16

Copyright 2000, Kevin Wayne 5

17

Connectivity

s-t connectivity problem. Given two node s and t, is there a path
between s and t?

s-t shortest path problem. Given two node s and t, what is the length
of the shortest path between s and t?

Applications.
■  Friendster.
■  Maze traversal.
■  Kevin Bacon number.
■  Fewest number of hops in a communication network.

18

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

BFS algorithm.
■  L0 = { s }.
■  L1 = all neighbors of L0.
■  L2 = all nodes that do not belong to L0 or L1, and that have an edge

to a node in L1.
■  Li+1 = all nodes that do not belong to an earlier layer, and that have

an edge to a node in Li.

Theorem. For each i, Li consists of all nodes at distance exactly i
from s. There is a path from s to t iff t appears in some layer.

s L1 L2 L n-1

19

Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.

L0

L1

L2

L3

20

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if
the graph is given by its adjacency representation.

Pf.
■  Easy to prove O(n2) running time:

–  at most n lists L[i]
–  each node occurs on at most one list; for loop runs ≤ n times
–  when we consider node u, there are ≤ n incident edges (u, v),

and we spend O(1) processing each edge

■  Actually runs in O(m + n) time:
–  when we consider node u, there are deg(u) incident edges (u, v)
–  total time processing edges is Σu∈V deg(u) = 2m ▪

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

2/10/16

Copyright 2000, Kevin Wayne 6

21

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.

22

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels to blue.
■  Node: pixel.
■  Edge: two neighboring lime pixels.
■  Blob: connected component of lime pixels.

recolor lime green blob to blue

23

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels to blue.
■  Node: pixel.
■  Edge: two neighboring lime pixels.
■  Blob: connected component of lime pixels.

recolor lime green blob to blue

Depth-First Search: The Code

DFS(G)

{

 for each vertex u ∈ G->V

 {

 Mark v unexplored ;

 }

 time = 0;

 for each vertex u ∈ G->V

 {

 if (u is UNEXPLORED)

 DFS_Visit(u);

 }

}

DFS_Visit(u)

{

 Mark u EXPLORED;

 add u to R;

 for each v ∈ u->Adj[]
 {
 if (v is
NOT_EXPLORED)
 DFS_Visit(v);
 }
}

2/10/16

Copyright 2000, Kevin Wayne 7

Depth-First Search: The Code

DFS(G)

{

 for each vertex u ∈ G->V

 {

 Mark v unexplored ;

 }

 time = 0;

 for each vertex u ∈ G->V

 {

 if (u is UNEXPLORED)

 DFS_Visit(u);

 }

}

DFS_Visit(u)

{

 Mark u EXPLORED;

 add u to R;

 for each v ∈ u->Adj[]
 {
 if (v is
NOT_EXPLORED)
 DFS_Visit(v);
 }
}

What will be the running time of DFS ?

Depth-First Search: The Code

DFS(G)

{

 for each vertex u ∈ G->V

 {

 Mark v unexplored ;

 }

 time = 0;

 for each vertex u ∈ G->V

 {

 if (u is UNEXPLORED)

 DFS_Visit(u);

 }

}

DFS_Visit(u)

{

 Mark u EXPLORED;

 add u to R;

 for each v ∈ u->Adj[]
 {
 if (v is
NOT_EXPLORED)
 DFS_Visit(v);
 }
}

Running time: O(n2) because call DFS_Visit on each vertex,
and the loop over Adj[] can run as many as |V| times

Depth-First Search: The Code

DFS(G)

{

 for each vertex u ∈ G->V

 {

 Mark v unexplored ;

 }

 time = 0;

 for each vertex u ∈ G->V

 {

 if (u is UNEXPLORED)

 DFS_Visit(u);

 }

}

DFS_Visit(u)

{

 Mark u EXPLORED;

 add u to R;

 for each v ∈ u->Adj[]
 {
 if (v is
NOT_EXPLORED)
 DFS_Visit(v);
 }
}

Running time: There is a tighter bound O(V+E) or O(m + n)
n = |V| and m = |E|

28

Connected Component

Connected component. Find all nodes reachable from s.

The nodes can be reached by BFS, DFS

Theorem. Upon termination, R is the connected component containing s.
■  BFS = explore in order of distance from s.
■  DFS = explore in a different way.

■  For any two node s and t their connected components are either
identical or disjoint.

s

u v

R

it's safe to add v

2/10/16

Copyright 2000, Kevin Wayne 8

Adjacency Matrix vs Lists

n = |V| and m = |E|

Running time depends on the relationship between n and m

Dense graph edges

Connected graph at least

Space and time considerations depend on the algorithm

29

n
2

!

"
##

$

%
&& ≤ n

2

m ≥ n−1

Queues vs Stacks

n = |V| and m = |E|

•  Important to maintain an order which elements are visited
•  Implemented as doubly linked lists
•  FIFO – first in first out QUEUE
•  LIFO – last in first out STACK

•  BSF Implementation ? QUEUE OR STACK

•  DFS Implementation ? QUEUE OR STACK

•  Finding number of Connected Components

30

Queues vs Stacks

n = |V| and m = |E|

•  Important to maintain an order which elements are visited
•  Implemented as doubly linked lists
•  FIFO – first in first out QUEUE
•  LIFO – last in first out STACK

•  BSF Implementation (QUEUE or STACK)

•  DFS Implementation (STACK)

•  Finding number of Connected Components (find the node which has
not been visited by and start a new DFS/BFS. Keep on going until

 all nodes are visited.)

•  Look at the pseudo-code for DFS and BSF in the book

 31

Queues vs Stacks

n = |V| and m = |E|

•  Important to maintain an order which elements are visited
•  Implemented as doubly linked lists
•  FIFO – first in first out QUEUE
•  LIFO – last in first out STACK

•  BSF Implementation (QUEUE or STACK)

•  DFS Implementation (STACK)

•  Finding number of Connected Components

•  Look at the pseudo-code for DFS and BSF in the book

32

2/10/16

Copyright 2000, Kevin Wayne 9

3.4 Testing Bipartiteness

34

Bipartite Graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be
colored red or blue such that every edge has one red and one blue end.

Applications.
■  Stable marriage: men = red, women = blue.
■  Scheduling: machines = red, jobs = blue.

a bipartite graph

35

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?
■  Many graph problems become:

–  easier if the underlying graph is bipartite (matching)
–  tractable if the underlying graph is bipartite (independent set)

■  Before attempting to design an algorithm, we need to understand
structure of bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G

36

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

2/10/16

Copyright 2000, Kevin Wayne 10

37

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an

 odd-length cycle (and hence is not bipartite).

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

38

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an

 odd-length cycle (and hence is not bipartite).

Pf. (i)
■  Suppose no edge joins two nodes in the same layer.
■  In BFS either edged join nodes in the same layer or adjacent layers,
 since the assumption is i) then all nodes are in adjacent layers.
■  Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Case (i)

L1 L2 L3

39

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an

 odd-length cycle (and hence is not bipartite).

Pf. (ii)
■  Suppose (x, y) is an edge with x, y in same level Lj.
■  Let z = lca(x, y) = lowest common ancestor.
■  Let Li be level containing z.
■  Consider cycle that takes edge from x to y,

then path from y to z, then path from z to x.
■  Its length is 1 + (j-i) + (j-i), which is odd. ▪

z = lca(x, y)

(x, y) path from
y to z

path from
z to x

40

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contains no odd length cycle.

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

2/10/16

Copyright 2000, Kevin Wayne 11

3.5 Connectivity in Directed Graphs

42

Directed Graphs

Directed graph. G = (V, E)
■  Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.
■  Directedness of graph is crucial.
■  Modern web search engines exploit hyperlink structure to rank web

pages by importance.

43

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is
the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s,
either directly or indirectly.

44

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v
and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually
reachable.

Lemma. Let s be any node. G is strongly connected iff every node is
reachable from s, and s is reachable from every node.

Pf. ⇒ Follows from definition.
Pf. ⇐ Path from u to v: concatenate u-s path with s-v path.
 Path from v to u: concatenate v-s path with s-u path. ▪

 s

v

u

ok if paths overlap

2/10/16

Copyright 2000, Kevin Wayne 12

45

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.
Pf.
■  Pick any node s.
■  Run BFS from s in G.
■  Run BFS from s in Grev.
■  Return true iff all nodes reached in both BFS executions.
■  Correctness follows immediately from previous lemma. ▪

reverse orientation of every edge in G

strongly connected not strongly connected

Example 1 (yes) Example 2 (no)

3.6 DAGs and Topological Ordering

47

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (vi, vj) means vi must precede vj.

Def. A topological order of a directed graph G = (V, E) is an ordering
of its nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j.

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

48

Precedence Constraints

Precedence constraints. Edge (vi, vj) means task vi must occur before vj.

Applications.
■  Course prerequisite graph: course vi must be taken before vj.
■  Compilation: module vi must be compiled before vj. Pipeline of

computing jobs: output of job vi needed to determine input of job vj.

2/10/16

Copyright 2000, Kevin Wayne 13

49

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)
■  Suppose that G has a topological order v1, …, vn and that G also has a

directed cycle C. Let's see what happens.
■  Let vi be the lowest-indexed node in C, and let vj be the node just

before vi; thus (vj, vi) is an edge.
■  By our choice of i, we have i < j.
■  On the other hand, since (vj, vi) is an edge and v1, …, vn is a

topological order, we must have j < i, a contradiction. ▪

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

50

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

51

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)
■  Suppose that G is a DAG and every node has at least one incoming

edge. Let's see what happens.
■  Pick any node v, and begin following edges backward from v. Since v

has at least one incoming edge (u, v) we can walk backward to u.
■  Then, since u has at least one incoming edge (x, u), we can walk

backward to x.
■  Repeat until we visit a node, say w, twice.
■  Let C denote the sequence of nodes encountered between

successive visits to w. C is a cycle. ▪

w x u v

52

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)
■  Base case: true if n = 1.
■  Given DAG on n > 1 nodes, find a node v with no incoming edges.
■  G - { v } is a DAG, since deleting v cannot create cycles.
■  By inductive hypothesis, G - { v } has a topological ordering.
■  Place v first in topological ordering; then append nodes of G - { v }
■  in topological order. This is valid since v has no incoming edges. ▪

DAG

v

2/10/16

Copyright 2000, Kevin Wayne 14

53

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.
■  Maintain the following information:

–  count[w] = remaining number of incoming edges
–  S = set of remaining nodes with no incoming edges

■  Initialization: O(m + n) via single scan through graph.
■  Update: to delete v

–  remove v from S
–  decrement count[w] for all edges from v to w, and add w to S if c
count[w] hits 0

–  this is O(1) per edge ▪

