

3.1 Basic Definitions and Applications

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

- Two representations of each edge.
- Space proportional to m + n.
- Checking if (u, v) is an edge takes O(deg(u)) time.
- Identifying all edges takes $\Theta(m + n)$ time.

Cycles

Def. A cycle is a path v_1 , v_2 , ..., v_{k-1} , v_k in which v_1 = v_k , k > 2, and the first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, ..., v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has n-1 edges.

Connectivity

s-t connectivity problem. Given two node s and t, is there a path between s and t?

s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Applications.

- Friendster.
- Maze traversal.
- Kevin Bacon number.
- Fewest number of hops in a communication network.

Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.

... -

- L₀ = { s }.
- L_1 = all neighbors of L_0 .
- L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if the graph is given by its adjacency representation.

Pf.

- Easy to prove O(n²) running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs ≤ n times
- when we consider node u, there are ≤ n incident edges (u, v), and we spend O(1) processing each edge
- Actually runs in O(m + n) time:
 - when we consider node u, there are deg(u) incident edges (u,v)
 - total time processing edges is $\Sigma_{u \in V} \deg(u) = 2m$

each edge (u, v) is counted exactly twice in sum: once in deg(u) and once in deg(v)

20


```
Depth-First Search: The Code

DFS_Visit(u)
{
    for each vertex u ∈ G->V
    {
        Mark v unexplored;
    }
    time = 0;
    for each vertex u ∈ G->V
    {
        if (u is UNEXPLORED)
            DFS_Visit(u);
    }
}

DFS_Visit(u)
{
    Mark u EXPLORED;
    add u to R;
    for each v ∈ u->Adj[]
    {
        if (v is
        NOT_EXPLORED)
        DFS_Visit(v);
    }
}
```

Depth-First Search: The Code What will be the running time of DFS? DFS (G) DFS Visit(u) for each vertex u ∈ G->V Mark u EXPLORED; add u to R; Mark v unexplored ; for each v ∈ u->Adj[] time = 0;if (v is for each vertex u ∈ G->V NOT EXPLORED) DFS Visit(v); if (u is UNEXPLORED) DFS_Visit(u); }

```
Depth-First Search: The Code
Running time: O(n^2) because call DFS_Visit on each vertex,
and the loop over Adj[] can run as many as |V| times
                                 DFS Visit(u)
  for each vertex u ∈ G->V
                                    Mark u EXPLORED;
                                     add u to R;
     Mark v unexplored ;
                                     for each v ∈ u->Adj[]
  time = 0;
                                        if (v is
  for each vertex u ∈ G->V
                                 NOT EXPLORED)
                                            DFS Visit(v);
     if (u is UNEXPLORED)
        DFS_Visit(u);
```

```
Depth-First Search: The Code
Running time: There is a tighter bound O(V+E) or O(m+n)
n = |V| and m = |E|
DFS (G)
                                  DFS Visit(u)
  for each vertex u ∈ G->V
                                     Mark u EXPLORED:
      Mark v unexplored ;
                                     for each v \in u-Adj[]
  time = 0:
                                         if (v is
  for each vertex u ∈ G->V
                                  NOT EXPLORED)
                                            DFS_Visit(v);
     if (u is UNEXPLORED)
        DFS_Visit(u);
}
```

Connected Component Connected component. Find all nodes reachable from s. The nodes can be reached by BFS, DFS R will consist of nodes to which s has a path Initially R = [s] While there is an edge (u, v) where u \in R and v \neq R Add v to R Endwhile Theorem. Upon termination, R is the connected component containing s. BFS = explore in order of distance from s. DFS = explore in a different way. For any two node s and t their connected components are either identical or disjoint.

Adjacency Matrix vs Lists

n = |V| and m = |E|

Running time depends on the relationship between n and m

Dense graph
$$\binom{n}{2} \le n^2 \text{ edge}$$

Connected graph at least $m \ge n-1$

Space and time considerations depend on the algorithm

n = |V| and m = |E|

· Important to maintain an order which elements are visited

Queues vs Stacks

- · Implemented as doubly linked lists
- · FIFO first in first out QUEUE
- LIFO last in first out STACK
- · BSF Implementation (QUEUE or STACK)
- DFS Implementation (STACK)
- Finding number of Connected Components (find the node which has not been visited by and start a new DFS/BFS. Keep on going until all nodes are visited.)
- · Look at the pseudo-code for DFS and BSF in the book

Queues vs Stacks

n = |V| and m = |E|

- · Important to maintain an order which elements are visited
- Implemented as doubly linked lists
- FIFO first in first out QUEUE
- LIFO last in first out STACK
- BSF Implementation ? QUEUE OR STACK
- DFS Implementation? QUEUE OR STACK
- Finding number of Connected Components

Queues vs Stacks

n = |V| and m = |E|

- · Important to maintain an order which elements are visited
- · Implemented as doubly linked lists
- FIFO first in first out QUEUE
- · LIFO last in first out STACK
- BSF Implementation (QUEUE or STACK)
- DFS Implementation (STACK)
- · Finding number of Connected Components
- · Look at the pseudo-code for DFS and BSF in the book

32

3.4 Testing Bipartiteness

Bipartite Graphs Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end. Applications. Stable marriage: men = red, women = blue. Scheduling: machines = red, jobs = blue.

Testing Bipartiteness. Given a graph G, is it bipartite? • Many graph problems become: • easier if the underlying graph is bipartite (matching) • tractable if the underlying graph is bipartite (independent set) • Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

Bipartite Graphs

Lemma. Let G be a connected graph, and let $L_0, ..., L_k$ be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Bipartite Graphs

Lemma. Let G be a connected graph, and let $L_0, ..., L_k$ be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

- Suppose (x, y) is an edge with x, y in same level L_i.
- Let z = lca(x, y) = lowest common ancestor.
- Let L; be level containing z.
- Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.
- Its length is 1 + (j-i) + (j-i), which is odd. (x, y) path from path from

z = lca(x, y)

Bipartite Graphs

Lemma. Let G be a connected graph, and let $L_0, ..., L_k$ be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

- Suppose no edge joins two nodes in the same layer.
- In BFS either edged join nodes in the same layer or adjacent layers, since the assumption is i) then all nodes are in adjacent layers.
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contains no odd length cycle.

not bipartite (not 2-colorable)

3.5 Connectivity in Directed Graphs

Directed Graphs

Directed graph. G = (V, E)

■ Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.

- Directedness of graph is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

Pf. ⇒ Follows from definition.

Pf. \Leftarrow Path from u to v: concatenate u-s path with s-v path.

Path from v to u: concatenate v-s path with s-u path.

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time. Pf

- Pick any node s.
- Run BFS from s in G. reverse orientation of every edge in G
- Run BFS from s in Grev.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma. •

Example 1 (yes)

strongly connected

not strongly connected

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (v_i, v_j) means v_i must precede v_j .

Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as $v_1, v_2, ..., v_n$ so that for every edge (v_i, v_i) we have i < j.

a DAG

a topological ordering

3.6 DAGs and Topological Ordering

Precedence Constraints

Precedence constraints. Edge (v_i, v_i) means task v_i must occur before v_i .

Applications.

- ullet Course prerequisite graph: course v_i must be taken before v_i .
- Compilation: module v_i must be compiled before v_j. Pipeline of computing jobs: output of job v_i needed to determine input of job v_i.

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

- Suppose that G has a topological order v₁, ..., v_n and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i: thus (v_i, v_i) is an edge.
- By our choice of i, we have i < j.
- On the other hand, since (v_j, v_i) is an edge and $v_1, ..., v_n$ is a topological order, we must have j < i, a contradiction.

the supposed topological order: $v_1, ..., v_n$

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

- Q. Does every DAG have a topological ordering?
- Q. If so, how do we compute one?

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v
 has at least one incoming edge (u, v) we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle.

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)

- Given DAG on n > 1 nodes, find a node v with no incoming edges.
- G { v } is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, G { v } has a topological ordering.
- Place v first in topological ordering; then append nodes of G { v }
- in topological order. This is valid since v has no incoming edges.

To compute a topological ordering of G:

Find a node $\boldsymbol{\nu}$ with no incoming edges and order it first Delete $\boldsymbol{\nu}$ from \boldsymbol{G}

Recursively compute a topological ordering of $G-\{v\}$ and append this order after v

Copyright 2000, Kevin Wayne

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.

- Maintain the following information:
 - $\mathtt{count}[\mathtt{w}]$ = remaining number of incoming edges
 - S = set of remaining nodes with no incoming edges
- Initialization: O(m + n) via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement $\mathtt{count}[\mathtt{w}]$ for all edges from v to w, and add w to S if c $\mathtt{count}[\mathtt{w}]$ hits 0
 - this is O(1) per edge •

53