Heaps

A heap can be seen as a complete
binary tree:

What makes a binary tree complete?
Is the example above complete?

Heaps

* A heap can be seen as a complete binary
tree:

Heaps

 Inpractice, heaps are usually
implemented as arrays:

(A =[16/14]10/8]7]19[3]|2[4] 1]z &

Heaps
+ To represent a complete binary tree as an array:
- The root node is A[1]
- Node /is A[/]
= The parent of node /is A[i/2] (note: integer divide)
- The left child of node /is A[2/]
= The right child of node iis A[2/+ 1]

2/3/14



Referencing Heap Elements

+ So..
Parent(i) { return |i/2]:; }
Left(i) { return 2%i; }
right(i) { return 2%i + 1; }

+ Anaside: How would you implement this
most efficiently?

* Another aside:

The Heap Property
* Heaps also satisfy the heap property:
A[Parent()] = A[/] for all nodes /> 1
- In other words, the value of a node is at
most the value of its parent
- Where is the largest element in a heap
stored?
+ Definitions:
= The height of a node in the tree = the
number of edges on the longest
downward path to a leaf
= The height of a tree = the height of its
root

Heap Height

« What is the height of an n-element
heap? Why?

+ This is nice: basic heap operations
take at most time proportional to the
height of the heap

Heap Height

* Heapify
* Build-heap

¢ Heapsort

2/3/14



Heap Operations: Heapify()

* Heapify () : maintain the heap property

- Given: a hode /in the heap with children /and r

- Given: two subtrees rooted at /and r, assumed to be
heaps

= Problem: The subtree rooted at / may violate the heap
property (How?)

= Action: let the value of the parent node “float down”
so subtree at i satisfies the heap property
» What do you suppose will be the basic operation

between i, |, and r?

Heap Operations: Heapify()

Heapify (A, i)
{
1 = Left(i); r = Right(i);
if (1 <= heap_size(A) && A[1l] > A[i])
largest = 1;
else
largest = i;
if (r <= heap_size(A) && A[r] > A[largest])
largest = r;
if (largest !'= i)
Swap (A, i, largest);
Heapify (A, largest);

Heapify(A,2) Example

(A =|16[4]1014[7]9]|3[2]8] 1|

Heapify(A,2) Example

Y N
(A =|16[4]1014[7]9]|3[2]8] 1|

2/3/14



Heapify(A,2) Example

(A =|16[14]10/4[7]9]|3[2]8] 1|

Heapify(A,2) Example

(A =|16[14]10/4[7]9]|3[2]8] 1|

Heapify(A . 4) Example

T
(A =|16[14]10/4[7]9]|3[2]8]1|

Heapify(A . 4) Example

(A =|16[14]10/8[7]9]|3[2]4]1|

2/3/14



Heapify(A ,4) Example

(A =|16[14]10/8[7]9]|3[2]4]1|

Heapify(A,9) Example

(A =|16[14]10/8[7]9]|3[2]4]1|

Analyzing Heapify(): Informal

¢ Aside from the recursive call, what is the
running time of Heapify () ?

* How many times can Heapify ()
recursively call itself?

* What is the worst-case running time of
Heapify () on a heap of size n?

2/3/14



