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Interval Scheduling 

Interval scheduling. 
■  Job j starts at sj and finishes at fj. 
■  Two jobs compatible if they don't overlap. 
■  Goal: find maximum subset of mutually compatible jobs. 
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Interval Scheduling:  Greedy Algorithms 

Greedy template.  Consider jobs in some order. Take each job provided 
it's compatible with the ones already taken. 
 
■  [Earliest start time]  Consider jobs in ascending order of start time 

sj. 

■  [Earliest finish time]  Consider jobs in ascending order of finish 
time fj. 

■  [Shortest interval]  Consider jobs in ascending order of interval 
length  fj - sj. 

■  [Fewest conflicts]  For each job, count the number of conflicting 
jobs cj. Schedule in ascending order of conflicts cj. 
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Interval Scheduling:  Greedy Algorithms 

Greedy template.  Consider jobs in some order. Take each job provided 
it's compatible with the ones already taken. 
 

breaks earliest start time 

breaks shortest interval 

breaks fewest conflicts 
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Greedy algorithm.  Consider jobs in increasing order of finish time. 
Take each job provided it's compatible with the ones already taken. 
 
 
 
 
 
 
 
 
 
 
 
Implementation.  O(n log n). 
■  Remember job j* that was added last to A. 
■  Job j is compatible with A if sj ≥ fj*. 

 

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn. 
 
 
A ← φ 
for j = 1 to n { 
   if (job j compatible with A) 
      A ← A ∪ {j} 
} 
return A   

jobs selected  

Interval Scheduling:  Greedy Algorithm 
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Interval Scheduling:  Analysis 

Theorem.  Greedy algorithm is optimal. 
 
Pf.  (by contradiction) 
■  Assume greedy is not optimal, and let's see what happens. 
■  Let i1, i2, ... ik denote set of jobs selected by greedy. 
■  Let j1, j2, ... jm  denote set of jobs in the optimal solution with 

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.  

j1 j2 jr 

i1 i1 ir ir+1 

. . . 

Greedy: 

OPT: jr+1 

why not replace job jr+1 
with job ir+1? 

job ir+1 finishes before jr+1 
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j1 j2 jr 

i1 i1 ir ir+1 

Interval Scheduling:  Analysis 

Theorem.  Greedy algorithm is optimal. 
 
Pf.  (by contradiction) 
■  Assume greedy is not optimal, and let's see what happens. 
■  Let i1, i2, ... ik denote set of jobs selected by greedy. 
■  Let j1, j2, ... jm  denote set of jobs in the optimal solution with 

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r. 

. . . 

Greedy: 

OPT: 

solution still feasible and optimal, 
but contradicts maximality of r. 

ir+1 

job ir+1 finishes before jr+1 

Proof by induction that for each r >= 1 the greed  
algorithm stays ahead of the optimal algorithm 



4.1  Interval Partitioning 
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Interval Partitioning 

Interval partitioning. 
■  Lecture j starts at sj and finishes at fj. 
■  Goal:  find minimum number of classrooms to schedule all lectures so 

that no two occur at the same time in the same room. 

Ex:  This schedule uses 4 classrooms to schedule 10 lectures. 
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Interval Partitioning 

Interval partitioning. 
■  Lecture j starts at sj and finishes at fj. 
■  Goal:  find minimum number of classrooms to schedule all lectures so 

that no two occur at the same time in the same room. 

Ex:  This schedule uses only 3. 

Time 
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Interval Partitioning:  Lower Bound on Optimal Solution 

Def.  The depth of a set of open intervals is the maximum number that 
contain any given time. 
 
Key observation.  Number of classrooms needed  ≥  depth. 
 
Ex:  Depth of schedule below = 3  ⇒  schedule below is optimal. 
 
 
Q.  Does there always exist a schedule equal to depth of intervals? 
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Interval Partitioning:  Greedy Algorithm 

Greedy algorithm.  Consider lectures in increasing order of start time:  
assign lecture to any compatible classroom. 
 
 
 
 
 
 
 
 
 
 
 
Implementation.  O(n log n). 
■  For each classroom k, maintain the finish time of the last job added. 
■  Keep the classrooms in a priority queue. 

Sort intervals by starting time so that s1 ≤ s2 ≤ ... ≤ sn. 
d ← 0 
 
for j = 1 to n { 
   if (lecture j is compatible with some classroom k) 
      schedule lecture j in classroom k 
   else 
      allocate a new classroom d + 1 
      schedule lecture j in classroom d + 1 
      d ← d + 1  
}     

number of allocated classrooms 
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Interval Partitioning:  Greedy Analysis 

Observation.  Greedy algorithm never schedules two incompatible 
lectures in the same classroom. 
 
Theorem.  Greedy algorithm is optimal. 
Pf.   
■  Let d = number of classrooms that the greedy algorithm allocates. 
■  Classroom d is opened because we needed to schedule a job, say j, 

that is incompatible with all d-1 other classrooms. 
■  Since we sorted by start time, all these incompatibilities are caused 

by lectures that start no later than sj. 
■  Thus, we have d lectures overlapping at time sj + ε. 
■  Key observation  ⇒  all schedules use ≥ d classrooms.  ▪ 



4.2  Scheduling to Minimize Lateness 
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Scheduling to Minimizing Lateness 

Minimizing lateness problem. 
■  Single resource processes one job at a time. 
■  Job j requires tj units of processing time and is due at time dj. 
■  If j starts at time sj, it finishes at time fj = sj + tj.  
■  Lateness:  ℓj = max { 0,  fj - dj }. 
■  Goal:  schedule all jobs to minimize maximum lateness L = max ℓj. 

Ex: 
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Minimizing Lateness:  Greedy Algorithms 

Greedy template.  Consider jobs in some order.  
 
■  [Shortest processing time first]  Consider jobs in ascending order 

of processing time tj. 

■  [Earliest deadline first]  Consider jobs in ascending order of 
deadline dj. 

■  [Smallest slack]  Consider jobs in ascending order of slack dj - tj. 
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Greedy template.  Consider jobs in some order.  
 
■  [Shortest processing time first]  Consider jobs in ascending order 

of processing time tj. 

■  [Smallest slack]  Consider jobs in ascending order of slack dj - tj. 

counterexample 
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Minimizing Lateness:  Greedy Algorithms 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9 

max lateness = 1 

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn 
 
t ← 0 
for j = 1 to n 
   Assign job j to interval [t, t + tj] 
   sj ← t, fj ← t + tj 
   t ← t + tj 
output intervals [sj, fj] 

Minimizing Lateness:  Greedy Algorithm 

Greedy algorithm.  Earliest deadline first. 
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Minimizing Lateness: No Idle Time 

Observation.  There exists an optimal schedule with no idle time. 
 
 
 
 
 
 
 
 
Observation. The greedy schedule has no idle time. 
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Minimizing Lateness: Inversions 

Def.  An inversion in schedule S is a pair of jobs i and j such that: 
i < j but j scheduled before i. 

 
 
 
Observation.  Greedy schedule has no inversions. 
 
Observation.  If a schedule (with no idle time) has an inversion, it has 
one with a pair of inverted jobs scheduled consecutively. 
 

i j before swap 

inversion 
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Minimizing Lateness: Inversions 

Def.  An inversion in schedule S is a pair of jobs i and j such that: 
i < j but j scheduled before i. 

 
 
 
 
Claim.  Swapping two adjacent, inverted jobs reduces the number of 
inversions by one and does not increase the max lateness. 

Pf.  Let ℓ  be the lateness before the swap, and let ℓ ' be it afterwards. 
■  ℓ'k = ℓk for all k ≠ i, j 
■  ℓ'i ≤ ℓi  
■  If job j is late: 
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Minimizing Lateness: Analysis of Greedy Algorithm 

Theorem.  Greedy schedule S is optimal. 
Pf.  Define S* to be an optimal schedule that has the fewest number of 
inversions, and let's see what happens. 
■  Can assume S* has no idle time. 
■  If S* has no inversions, then S = S*. 
■  If S* has an inversion, let i-j be an adjacent inversion. 

–  swapping i and j does not increase the maximum lateness and 
strictly decreases the number of inversions 

–  this contradicts definition of S*  ▪ 
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Greedy Analysis Strategies 

Greedy algorithm stays ahead.  Show that after each step of the 
greedy algorithm, its solution is at least as good as any other 
algorithm's.  
 
Exchange argument.  Gradually transform any solution to the one found 
by the greedy algorithm without hurting its quality. 
 
Structural.  Discover a simple "structural" bound asserting that every 
possible solution must have a certain value. Then show that your 
algorithm always achieves this bound. 
 
 



4.3 Optimal Caching 



26 

Optimal Offline Caching 

Caching. 
■  Cache with capacity to store k items. 
■  Sequence of m item requests d1, d2, …, dm. 
■  Cache hit:  item already in cache when requested. 
■  Cache miss:  item not already in cache when requested:  must bring 

requested item into cache, and evict some existing item, if full. 

Goal.  Eviction schedule that minimizes number of cache misses. 
 
Ex:  k = 2, initial cache = ab, 
       requests:  a, b, c, b, c, a, a, b. 
Optimal eviction schedule:  2 cache misses. 

a b 
a b 
c b 
c b 
c b 
a b 

a 
b 
c 
b 
c 
a 

a b a 
a b b 

cache requests 
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Optimal Offline Caching:  Farthest-In-Future 

Farthest-in-future.  Evict item in the cache that is not requested until 
farthest in the future. 
 
 
 
 
 
 
 
Theorem.  [Bellady, 1960s]  FF is optimal eviction schedule. 
Pf.  Algorithm and theorem are intuitive; proof is subtle. 
 

a b 

g a b c e d a b b a c d e a f a d e f g h ...  

current cache: c d e f 

future queries: 

cache miss eject this one 



4.4  Shortest Paths in a Graph 

shortest path from Princeton CS department to Einstein's house 
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Shortest Path Problem 

Shortest path network. 
■  Directed graph G = (V, E). 
■  Source s, destination t. 
■  Length ℓe = length of edge e. 

 
Shortest path problem:  find shortest directed path from s to t. 

 

Cost of path s-2-3-5-t 
     =  9 + 23 + 2 + 16 
     = 48. 

s 

3 

t 

2 

6 

7 

4 
5 

 23 

 18 
 2 

 9 

 14 

 15  5 

 30 

 20 

 44 

 16 

 11 

 6 

 19 

 6 

cost of path = sum of edge costs in path 
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Dijkstra's Algorithm 

Dijkstra's algorithm. 
■  Maintain a set of explored nodes S for which we have determined the 

shortest path distance d(u) from s to u. 
■  Initialize S = { s }, d(s) = 0. 
■  Repeatedly choose unexplored node v which minimizes (go through edges) 

 
 
add v to S, and set d(v) = π(v). 

■  Add only node for which π(v) is  minimum  
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shortest path to some u in explored 
part, followed by a single edge (u, v) 
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Dijkstra's Algorithm 

Dijkstra's algorithm. 
■  Maintain a set of explored nodes S for which we have determined 

the shortest path distance d(u) from s to u. 
■  Initialize S = { s }, d(s) = 0. 
■  Repeatedly choose unexplored node v which minimizes 

 
 
add v to S, and set d(v) = π(v). 

■  Running time ?  
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Dijkstra's Algorithm 

Dijkstra's algorithm. 
■  Maintain a set of explored nodes S for which we have determined 

the shortest path distance d(u) from s to u. 
■  Initialize S = { s }, d(s) = 0. 
■  Repeatedly choose unexplored node v which minimizes 

 
 
add v to S, and set d(v) = π(v). 

■  Running time  O(mn)- simple implementation 
■  Can we do better ? 
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Dijkstra's Algorithm:  Proof of Correctness 

Invariant.  For each node u ∈ S, d(u) is the length of the shortest s-u path. 
Pf.  (by induction on |S|) 
Base case:  |S| = 1 is trivial. 
Inductive hypothesis:  Assume true for |S| = k  ≥  1. 
■  Let v be next node added to S, and let u-v be the chosen edge. 
■  The shortest s-u path plus (u, v) is an s-v path of length π(v). 
■  Consider any s-v path P. We'll see that it's no shorter than π(v). 
■  Let x-y be the first edge in P that leaves S, 

and let P' be the subpath to x. 
■  P is already too long as soon as it leaves S. 

 ℓ (P)  ≥ ℓ (P') + ℓ (x,y)  ≥  d(x) + ℓ (x, y)  ≥  π(y)  ≥  π(v) 

nonnegative 
weights 

inductive 
hypothesis 

defn of π(y) Dijkstra chose v 
instead of y 
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x 
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Dijkstra's Algorithm:  Implementation 

For each unexplored node, explicitly maintain  
 
■  Next node to explore = node with minimum π(v). 
■  When exploring v, for each incident edge e = (v, w), update 

Efficient implementation.  Maintain a priority queue of unexplored 
nodes, prioritized by π(v). 

†  Individual ops are amortized bounds 

PQ Operation 

Insert 

ExtractMin 

ChangeKey 

Binary heap 

log n 
log n 
log n 

Fib heap † 

1 
log n 

1 

Array 

n 
n 
1 

IsEmpty 1 1 1 

Priority Queue 

Total m log n m + n log n n2 

Dijkstra 

n 
n 
m 
n 

d-way Heap 

d log d n 
d log d n 
log d n 

1 
m log m/n n 

    

€ 

π (v) = min
e = (u,v) : u∈ S

d (u) +  e  .

  

€ 

π (w) = min { π (w),  π (v)+  e }.



Extra Slides 



Coin Changing 

Greed is good. Greed is right. Greed works. 
Greed clarifies, cuts through, and captures the 
essence of the evolutionary spirit. 
        - Gordon Gecko (Michael Douglas) 
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Coin Changing 

Goal.  Given currency denominations: 1, 5, 10, 25, 100, devise a method 
to pay amount to customer using fewest number of coins. 
 
Ex:  34¢. 

Cashier's algorithm.  At each iteration, add coin of the largest value 
that does not take us past the amount to be paid. 
 
Ex:  $2.89. 
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Coin-Changing:  Greedy Algorithm 

Cashier's algorithm.  At each iteration, add coin of the largest value 
that does not take us past the amount to be paid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q.  Is cashier's algorithm optimal? 

Sort coins denominations by value: c1 < c2 < … < cn. 
 
 
S ← φ  
while (x ≠ 0) { 
   let k be largest integer such that ck ≤ x 
   if (k = 0) 
      return "no solution found" 
   x ← x - ck 
   S ← S ∪ {k} 
} 
return S 

coins selected  
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Coin-Changing:  Analysis of Greedy Algorithm 

Theorem.  Greed is optimal for U.S. coinage:  1, 5, 10, 25, 100. 
Pf. (by induction on x) 
■  Consider optimal way to change ck ≤ x < ck+1 :  greedy takes coin k. 
■  We claim that any optimal solution must also take coin k. 

–  if not, it needs enough coins of type c1, …, ck-1  to add up to x 
–  table below indicates no optimal solution can do this 

■  Problem reduces to coin-changing x - ck cents, which, by induction, is 
optimally solved by greedy algorithm.  ▪ 
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P ≤ 4 

All optimal solutions 
must satisfy 

N + D ≤ 2 

Q ≤ 3 

5 N ≤ 1 

no limit 
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- 

Max value of coins 
1, 2, …, k-1 in any OPT 

4 + 5 = 9 

20 + 4 = 24 

4 

75 + 24 = 99 
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Coin-Changing:  Analysis of Greedy Algorithm 

Observation.  Greedy algorithm is sub-optimal for US postal 
denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500. 

Counterexample.  140¢. 
■  Greedy:  100, 34, 1, 1, 1, 1, 1, 1. 
■  Optimal:  70, 70. 


