
1

Chapter 5

Divide and Conquer

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2

Divide-and-Conquer

Divide-and-conquer.
■  Break up problem into several parts.
■  Solve each part recursively.
■  Combine solutions to sub-problems into overall solution.

Most common usage.
■  Break up problem of size n into two equal parts of size ½n.
■  Solve two parts recursively.
■  Combine two solutions into overall solution in linear time.

Consequence.
■  Brute force: n2.
■  Divide-and-conquer: n log n. Divide et impera.

Veni, vidi, vici.
 - Julius Caesar

5.1 Mergesort

4

Obvious sorting applications.
List files in a directory.
Organize an MP3 library.
List names in a phone book.
Display Google PageRank
results.

Problems become easier once
sorted.

Find the median.
Find the closest pair.
Binary search in a
database.
Identify statistical
outliers.
Find duplicates in a mailing
list.

Non-obvious sorting applications.
Data compression.
Computer graphics.
Interval scheduling.
Computational biology.
Minimum spanning tree.
Supply chain management.
Simulate a system of
particles.
Book recommendations on
Amazon.
Load balancing on a parallel
computer.
. . .

Sorting

Sorting. Given n elements, rearrange in ascending order.

5

Mergesort

Mergesort.
■  Divide array into two halves.
■  Recursively sort each half.
■  Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)

6

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
■  Linear number of comparisons.
■  Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

7

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

Solution. T(n) = O(n log2 n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace ≤ with =.

€

T(n) ≤

 0 if n =1
T n /2# $()
solve left half

+ T n /2% &()
solve right half

+ n
merging
 otherwise

'

(
)

*
)

8

Proof by Recursion Tree

T(n)

T(n/2) T(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

€

T(n) =
0 if n =1
2T(n /2)

sorting both halves
 + n

merging
 otherwise

"

$

% $

9

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. For n > 1:

€

T(n)
n

=
2T(n /2)

n
+ 1

=
T(n /2)

n /2
+ 1

=
T(n / 4)

n / 4
+ 1 + 1

=
T(n /n)

n /n
+ 1 ++ 1

log2 n

= log2 n

€

T(n) =
0 if n =1
2T(n /2)

sorting both halves
 + n

merging
 otherwise

"

$

% $

assumes n is a power of 2

10

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. (by induction on n)
■  Base case: n = 1.
■  Inductive hypothesis: T(n) = n log2 n.
■  Goal: show that T(2n) = 2n log2 (2n).

€

T(2n) = 2T(n) + 2n
= 2n log2 n + 2n
= 2n log2(2n)−1() + 2n
= 2n log2(2n)

assumes n is a power of 2

€

T(n) =
0 if n =1
2T(n /2)

sorting both halves
 + n

merging
 otherwise

"

$

% $

5.3 Counting Inversions

13

Music site tries to match your song preferences with others.
■  You rank n songs.
■  Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
■  My rank: 1, 2, …, n.
■  Your rank: a1, a2, …, an.
■  Songs i and j inverted if i < j, but ai > aj.

Brute force: check all Θ(n2) pairs i and j.

You

Me

1 4 3 2 5

1 3 2 4 5

A B C D E

Songs

Counting Inversions

Inversions
3-2, 4-2

14

Applications

Applications.
■  Voting theory.
■  Collaborative filtering.
■  Measuring the "sortedness" of an array.
■  Sensitivity analysis of Google's ranking function.
■  Rank aggregation for meta-searching on the Web.
■  Nonparametric statistics (e.g., Kendall's Tau distance).

15

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

4 8 10 2 1 5 12 11 3 7 6 9

16

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
■  Divide: separate list into two pieces.

4 8 10 2 1 5 12 11 3 7 6 9

4 8 10 2 1 5 12 11 3 7 6 9

Divide: O(1).

17

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
■  Divide: separate list into two pieces.
■  Conquer: recursively count inversions in each half.

4 8 10 2 1 5 12 11 3 7 6 9

4 8 10 2 1 5 12 11 3 7 6 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

18

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
■  Divide: separate list into two pieces.
■  Conquer: recursively count inversions in each half.
■  Combine: count inversions where ai and aj are in different halves,

and return sum of three quantities.

4 8 10 2 1 5 12 11 3 7 6 9

4 8 10 2 1 5 12 11 3 7 6 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

Combine: ??? 9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

19

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine

Combine: count blue-green inversions
■  Assume each half is sorted.
■  Count inversions where ai and aj are in different halves.
■  Merge two sorted halves into sorted whole.

Count: O(n)

Merge: O(n)

10 14 18 19 3 7 16 17 23 25 2 11

7 10 11 14 2 3 18 19 23 25 16 17

€

T(n) ≤ T n /2# $() + T n /2% &() + O(n) ⇒ T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant

20

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
 if list L has one element
 return 0 and the list L

 Divide the list into two halves A and B
 (rA, A) ← Sort-and-Count(A)
 (rB, B) ← Sort-and-Count(B)
 (rB, L) ← Merge-and-Count(A, B)

 return r = rA + rB + r and the sorted list L
}

5.4 Closest Pair of Points

22

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
■  Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.
■  Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with Θ(n2) comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

23

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

L

24

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

L

25

Closest Pair of Points

Algorithm.
■  Divide: draw vertical line L so that roughly ½n points on each side.

L

26

Closest Pair of Points

Algorithm.
■  Divide: draw vertical line L so that roughly ½n points on each side.
■  Conquer: find closest pair in each side recursively.

12

21

L

27

Closest Pair of Points

Algorithm.
■  Divide: draw vertical line L so that roughly ½n points on each side.
■  Conquer: find closest pair in each side recursively.
■  Combine: find closest pair with one point in each side.
■  Return best of 3 solutions.

12

21
8

L

seems like Θ(n2)

28

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

12

21

δ = min(12, 21)

L

29

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
■  Observation: only need to consider points within δ of line L.

12

21

δ

L

δ = min(12, 21)

30

12

21

1
2

3

4 5
6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
■  Observation: only need to consider points within δ of line L.
■  Sort points in 2δ-strip by their y coordinate.

L

δ = min(12, 21)

31

12

21

1
2

3

4 5
6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
■  Observation: only need to consider points within δ of line L.
■  Sort points in 2δ-strip by their y coordinate.
■  Only check distances of those within 11 positions in sorted list!

(why ?)

L

δ = min(12, 21)

32

Closest Pair of Points

Def. Let si be the point in the 2δ-strip, with
the ith smallest y-coordinate.

Claim. If |i – j| ≥ 12, then the distance between
si and sj is at least δ.
Pf.
■  No two points lie in same ½δ-by-½δ box.
■  Two points at least 2 rows apart

have distance ≥ 2(½δ). ▪
■  If two points were to have the distance smaller
 then delta, they must be within two rows of
 each other. (two rows up and down in each row
 you need to check just 3 boxes, so 3x2x2)

Fact. Still true if we replace 12 with 7.

δ

27

29
30

31

28

26

25

δ

½δ

 2 rows
½δ

½δ

39

i

j

33

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
 Compute separation line L such that half the points
 are on one side and half on the other side.

 δ1 = Closest-Pair(left half)
 δ2 = Closest-Pair(right half)
 δ = min(δ1, δ2)

 Delete all points further than δ from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between
 each point and next 11 neighbors. If any of these
 distances is less than δ, update δ.

 return δ.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

34

Closest Pair of Points: Analysis

Running time.

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.
■  Each recursive returns two lists: all points sorted by y coordinate,

and all points sorted by x coordinate.
■  Sort by merging two pre-sorted lists.

€

T(n) ≤ 2T n /2() + O(n) ⇒ T(n) = O(n logn)

€

T(n) ≤ 2T n /2() + O(n log n) ⇒ T(n) = O(n log2 n)

