Chapter 5

Divide and Conquer

N Alorithm Desig

JON KI.EINBERG EVA TARDOS

PEARSON Slides by Kevin Wa yne

——————— Copyright © 2005 Pearson-Addison Wesley.
AAdIROR © All rights reserved.

ey

Divide-and-Conquer

Divide-and-conquer.
« Break up problem into several parts.
« Solve each part recursively.
« Combine solutions to sub-problems into overall solution.

Most common usage.
. Break up problem of size n into two equal parts of size 3n.
« Solve two parts recursively.
« Combine two solutions into overall solution in linear time.

Consequence.
. Brute force: n.
. Divide-and-conquer: n log n. Divide et impera.
Veni, vidi, vici.
- Julius Caesar

5.1 Mergesort

Sorting

Sorting. Given n elements, rearrange in ascending order.

Obvious sorting applications.
List files in a directory.
Organize an MP3 library.

List names in a phone book.

Display Google PageRank
results.

Problems become easier once
sorted.
Find the median.
Find the closest pair.
Binary search ina
database.
Identify statistical
outliers.
Find duplicates in a mailing
list.

Non-obvious sorting applications.

Data compression.
Computer graphics.
Interval scheduling.
Computational biology.
Minimum spanning tree.
Supply chain management.
Simulate a system of
particles.

Book recommendations on
Amazon.

Load balancing on a parallel
computer.

Mergesort

Mergesort.
. Divide array into two halves.
« Recursively sort each half.
« Merge two halves o make sorted whole.

Jon von Neumann (1945)

A L G O R I T H M S divide 0O(1)
A G L O R H I M S T sort 2T(n/2)

A G H I L M O R S T merge O(n)

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? D>
« Linear number of comparisons.
» Use temporary array.

sl SR s -
» ¢ = 1 IR

Challenge for the bored. In-place merge. [Kronrud, 1969]
T

using only a constant amount of extra storage

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

0 if n=1
T(n) =< ¥T([n/2]), + &T (/2])J + 7 otherwise
solve left half solve right half ~ Mereing

Solution. T(n) = O(n log, n).

Assorted proofs. We describe several ways fo prove this recurrence.
Initially we assume n is a power of 2 and replace < with =.

Proof by Recursion Tree

0 if n=1
T(n) = 2T(n/2) + n otherwise

sorting both halves merging

T(n) ‘ n
T(n/2) T(n/2) 2(n/2)
T(n/4) T(n/4) T(n/4) T(n/4) 4(n/4)
log,n
2k(n / 2%)
T(2) T(2) T2) T(2) T(2) T(2) T(2) T(2) | n/2(2)

nlog,n

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.

Pf. Forn»>1:

0

T(n) = 2T(n/2)

— ;
sorting both halves —merging

T(n)

+ n
—

2T(n/2)

n
T(n/2)
n/2
T(n/4)
nl4

T(n/n)
nin

log, n

f

assumes n is a power of 2
if n=1

otherwise

+ 1

+ 1

+ 1 +1

+ 1 +---+1

log, n

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log, n.

0 if n=1
T(n) = 2T(n/2) + n otherwise

sorting both halves —merging

Pf. (by induction on n)

- Base case: n=1

« Inductive hypothesis: T(n) = nlog, n.
« Goal: show that T(2n) = 2n log, (2n).

T2n) = 2T(n) + 2n
= 2nlog,n + 2n
= 2n(log2(2n)—1) + 2n
= 2nlog,(2n)

f

assumes n is a power of 2

10

5.3 Counting Inversions

Counting Inversions

Music site tries fo match your song preferences with others.
= You rank n songs.

« Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
« Myrank: 1,2, .., n.
« Your rank: ay, a,, ..., a,.
. Songs iand j inverted if i< j, but a; > a;.
Songs

A B C D E
e 1 2 3 4 5

Bl : 3 42 2 -5
—

Inversions
3-2,4-2

M

Brute force: check all ©(h?) pairs i and j.

13

Applications

Applications.
« Voting theory.
. Collaborative filtering.
« Measuring the "sortedness" of an array.
. Sensitivity analysis of Google's ranking function.
« Rank aggregation for meta-searching on the Web.

« Nonparametric statistics (e.g., Kendall's Tau distance).

14

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

1 5 4 8 10 2 6 9 12 11 3 7

15

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
« Divide: separate list into two pieces.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

HERIEEE DERNEE

16

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.
. Conquer: recursively count inversions in each half.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).
DEOODDE DOOEEE o oo
5 blue-blue inversions 8 green-green inversions

5-4,5-2,4-2,8-2,10-2 6-3,9-3,9-7,12-3,12-7,12-11, 11-3, 11-7

17

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.
. Conquer: recursively count inversions in each half.
. Combine: count inversions where a; and a; are in different halves,

and return sum of three quantities.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

DEDDDE BODARE o oo

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions Combine: 277
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total =5+8+9 =22,

18

Counting Inversions: Combine

Combine: count blue-green inversions
« Assume each half is sorted. D
. Count inversions where q; and g; are in different halves.
« Merge two sorted halves into sorted whole.

to maintain sorted invariant

537 o 1o 1o [2 i Lo 17 23 s
6 3 2 2 0 0

13 blue-green inversions: 6 +3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25 Merge: O(n)

T(n) = T(|n/2])+T([n/2])+O(n) = T(n)=O(nlogn)

19

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count (L) {
if list L has one element
return 0 and the list L

Divide the list into two halves A and B
(rp, A) < Sort-and-Count (A7)

(rz, B) < Sort-and-Count (B)

(r , L) < Merge-and-Count (A, B)

return r = r, + r; + r and the sorted list L

20

5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
« Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
« Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with ©(h?) comparisons.
1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

T

to make presentation cleaner

22

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

23

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

..
L
.t e,
:. L .. (]
(] (] ®
(] .. e O
(]
. e O ° .
.. .
.. ...
. .. (] ® (]
(]

24

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly n points on each side.

25

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly n points on each side.

» Conquer: find closest pair in each side recursively.

26

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly n points on each side.
« Conquer: find closest pair in each side recursively.
« Combine: find closest pair with one point in each side. « seems like 6(n?)
« Return best of 3 solutions.

° L o . °
° ° °
° ° e °
°
) 80/. /21
° ® °
°
1.2/. ® ° ° ° o
° ° ® o
® °

27

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

5 = min(12, 21)

28

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < d.
» Observation: only need to consider points within & of line L.

° 5 = min(12, 21)

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < d.
» Observation: only need to consider points within & of line L.

= Sort points in 28-strip by their y coordinate.

5 = min(12, 21)

30

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < d.
» Observation: only need to consider points within & of line L.
= Sort points in 28-strip by their y coordinate.
« Only check distances of those within 11 positions in sorted list!
(why ?)

° 5 = min(12, 21)

Closest Pair of Points

Def. Let s; be the point in the 258-strip, with
the ith smallest y-coordinate.

Claim. If |i- j| =12, then the distance between |
;ifand s; is at least o. o

- No two points lie in same 38-by-28 box. X

(N[

o

= Two points at least 2 rows apart ;
have distance = 2(36). = 2 rzwsé

o

(N[

« If two points were to have the distance smalle
then delta, they must be within two rows of

| —

o

(N[

each other. (fwo rows up and down in each row |
you need to check just 3 boxes, so 3x2x2) o

Fact. Still true if we replace 12 with 7.

Closest Pair Algorithm

Closest-Pair(p,, .., P,) {
Compute separation line L such that half the points
are on one side and half on the other side.

9, = Closest-Pair(left half)
9, Closest-Pair (right half)
d = min(4,, 9,)

Delete all points further than § from separation line L
Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these

distances is less than 0§, update §.

return 0.

O(n log n)

2T(n/ 2)

O(n)

O(n log n)

O(n)

33

Closest Pair of Points: Analysis
Running time.

T(n) = 2T(n/2) + O(nlogn) = T(n) = O(nlog”n)

Q. Can we achieve O(n log n)?
A. Yes. Don't sort points in strip from scratch each time.
« Each recursive returns two lists: all points sorted by y coordinate,

and all points sorted by x coordinate.
« Sort by merging two pre-sorted lists.

T(n) = 2T(n/2) + O(n) = T(n) = O(nlogn)

34

