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Chapter 5 
 
Divide and Conquer 
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Divide-and-Conquer 

Divide-and-conquer. 
■  Break up problem into several parts. 
■  Solve each part recursively. 
■  Combine solutions to sub-problems into overall solution. 

Most common usage. 
■  Break up problem of size n into two equal parts of size ½n. 
■  Solve two parts recursively. 
■  Combine two solutions into overall solution in linear time. 

 
Consequence. 
■  Brute force:  n2. 
■  Divide-and-conquer:  n log n. Divide et impera. 

Veni, vidi, vici. 
        - Julius Caesar 



5.1  Mergesort 
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Obvious sorting applications. 
List files in a directory. 
Organize an MP3 library. 
List names in a phone book. 
Display Google PageRank 
results. 
 

Problems become easier once 
sorted. 

Find the median.  
Find the closest pair. 
Binary search in a 
database. 
Identify statistical 
outliers. 
Find duplicates in a mailing 
list. 
 

Non-obvious sorting applications. 
Data compression. 
Computer graphics. 
Interval scheduling. 
Computational biology. 
Minimum spanning tree. 
Supply chain management. 
Simulate a system of 
particles. 
Book recommendations on 
Amazon. 
Load balancing on a parallel 
computer. 
. . . 

Sorting 

Sorting.  Given n elements, rearrange in ascending order. 
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Mergesort 

Mergesort. 
■  Divide array into two halves. 
■  Recursively sort each half. 
■  Merge two halves to make sorted whole. 

merge 

sort 

divide 

A L G O R I T H M S 

A L G O R I T H M S 

A G L O R H I M S T 

A G H I L M O R S T 

Jon von Neumann (1945) 

O(n) 

2T(n/2) 

O(1) 
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Merging 

Merging.  Combine two pre-sorted lists into a sorted whole. 
 
How to merge efficiently? 
■  Linear number of comparisons. 
■  Use temporary array. 

Challenge for the bored.  In-place merge.  [Kronrud, 1969] 

A G L O R H I M S T 

A G H I 

using only a constant amount of extra storage 
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A Useful Recurrence Relation 

Def.  T(n)  = number of comparisons to mergesort an input of size n. 
 
Mergesort recurrence.   

 
 
 
Solution.  T(n) = O(n log2 n).  
 
 
Assorted proofs.  We describe several ways to prove this recurrence. 
Initially we assume n is a power of 2 and replace ≤ with =. 
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Proof by Recursion Tree 

T(n) 

T(n/2) T(n/2) 

T(n/4) T(n/4) T(n/4) T(n/4) 

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) 

n 

T(n / 2k) 

2(n/2) 

4(n/4) 
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n/2 (2) 

. . . 

. . . 
log2n 

n log2n 
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Proof by Telescoping 

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n. 
 
 
 
 
 
 
Pf.  For n > 1: 
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assumes n is a power of 2 
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Proof by Induction 

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n. 
 
 
 
 
 
 
Pf.  (by induction on n) 
■  Base case:  n = 1. 
■  Inductive hypothesis:  T(n) =  n log2 n. 
■  Goal:  show that T(2n) =  2n log2 (2n). 

  

€ 

T(2n) = 2T(n)  +  2n
= 2n log2 n  +  2n
= 2n log2(2n)−1( )  +  2n
= 2n log2(2n)

assumes n is a power of 2 
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5.3  Counting Inversions 
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Music site tries to match your song preferences with others. 
■  You rank n songs. 
■  Music site consults database to find people with similar tastes. 

Similarity metric:  number of inversions between two rankings. 
■  My rank:  1, 2, …, n. 
■  Your rank:  a1, a2, …, an. 
■  Songs i and j inverted if i < j, but ai > aj. 

Brute force:  check all Θ(n2) pairs i and j. 

You 

Me 

1 4 3 2 5 

1 3 2 4 5 

A B C D E 

Songs 

Counting Inversions 

Inversions 
3-2, 4-2 
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Applications 

Applications. 
■  Voting theory. 
■  Collaborative filtering. 
■  Measuring the "sortedness" of an array. 
■  Sensitivity analysis of Google's ranking function.  
■  Rank aggregation for meta-searching on the Web. 
■  Nonparametric statistics  (e.g., Kendall's Tau distance). 
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Counting Inversions:  Divide-and-Conquer 

Divide-and-conquer. 

4 8 10 2 1 5 12 11 3 7 6 9 
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Counting Inversions:  Divide-and-Conquer 

Divide-and-conquer. 
■  Divide:  separate list into two pieces. 

4 8 10 2 1 5 12 11 3 7 6 9 

4 8 10 2 1 5 12 11 3 7 6 9 

Divide:  O(1). 
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Counting Inversions:  Divide-and-Conquer 

Divide-and-conquer. 
■  Divide:  separate list into two pieces. 
■  Conquer: recursively count inversions in each half. 

4 8 10 2 1 5 12 11 3 7 6 9 

4 8 10 2 1 5 12 11 3 7 6 9 

5 blue-blue inversions 8 green-green inversions 

Divide:  O(1). 

Conquer:  2T(n / 2) 

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7 
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Counting Inversions:  Divide-and-Conquer 

Divide-and-conquer. 
■  Divide:  separate list into two pieces. 
■  Conquer: recursively count inversions in each half. 
■  Combine: count inversions where ai and aj are in different halves, 

and return sum of three quantities. 

4 8 10 2 1 5 12 11 3 7 6 9 

4 8 10 2 1 5 12 11 3 7 6 9 

5 blue-blue inversions 8 green-green inversions 

Divide:  O(1). 

Conquer:  2T(n / 2) 

Combine:  ??? 9 blue-green inversions 
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7 

Total = 5 + 8 + 9 = 22. 
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13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0  

Counting Inversions:  Combine 

Combine:  count blue-green inversions  
■  Assume each half is sorted. 
■  Count inversions where ai and aj are in different halves.  
■  Merge two sorted halves into sorted whole. 

  

Count:  O(n) 

Merge:  O(n) 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 18 19 23 25 16 17 

  

€ 

T(n) ≤  T n /2# $( ) + T n /2% &( ) + O(n) ⇒ T(n) = O(n log n)

6 3 2 2 0 0 

to maintain sorted invariant 
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Counting Inversions:  Implementation 

Pre-condition. [Merge-and-Count]  A and B are sorted. 
Post-condition.  [Sort-and-Count]  L is sorted. 

Sort-and-Count(L) { 
   if list L has one element 
      return 0 and the list L 
    
   Divide the list into two halves A and B 
   (rA, A) ← Sort-and-Count(A) 
   (rB, B) ← Sort-and-Count(B) 
   (rB, L) ← Merge-and-Count(A, B) 
 
   return r = rA + rB + r and the sorted list L 
} 



5.4  Closest Pair of Points 
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Closest Pair of Points 

Closest pair.  Given n points in the plane, find a pair with smallest 
Euclidean distance between them. 

Fundamental geometric primitive. 
■  Graphics, computer vision, geographic information systems, 

molecular modeling, air traffic control. 
■  Special case of nearest neighbor, Euclidean MST, Voronoi. 

Brute force.  Check all pairs of points p and q with Θ(n2) comparisons. 

1-D version.  O(n log n) easy if points are on a line. 

Assumption.  No two points have same x coordinate. 

to make presentation cleaner 

fast closest pair inspired fast algorithms for these problems 
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Closest Pair of Points:  First Attempt 

Divide.  Sub-divide region into 4 quadrants. 

L 



24 

Closest Pair of Points:  First Attempt 

Divide.  Sub-divide region into 4 quadrants. 
Obstacle.  Impossible to ensure n/4 points in each piece. 
 

L 
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Closest Pair of Points 

Algorithm. 
■  Divide:  draw vertical line L so that roughly ½n points on each side. 

L 
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Closest Pair of Points 

Algorithm. 
■  Divide:  draw vertical line L so that roughly ½n points on each side. 
■  Conquer:  find closest pair in each side recursively. 

12 

21 

L 
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Closest Pair of Points 

Algorithm. 
■  Divide:  draw vertical line L so that roughly ½n points on each side. 
■  Conquer:  find closest pair in each side recursively. 
■  Combine:  find closest pair with one point in each side. 
■  Return best of 3 solutions. 

12 

21 
8 

L 

seems like Θ(n2)  
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Closest Pair of Points 

Find closest pair with one point in each side, assuming that distance < δ. 

12 

21 

δ = min(12, 21) 

L 
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Closest Pair of Points 

Find closest pair with one point in each side, assuming that distance < δ. 
■  Observation:  only need to consider points within δ of line L. 

12 

21 

δ 

L 

δ = min(12, 21) 
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12 

21 

1 
2 

3 

4 5 
6 

7 

δ 

Closest Pair of Points 

Find closest pair with one point in each side, assuming that distance < δ. 
■  Observation:  only need to consider points within δ of line L. 
■  Sort points in 2δ-strip by their y coordinate. 

L 

δ = min(12, 21) 
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12 

21 

1 
2 

3 

4 5 
6 

7 

δ 

Closest Pair of Points 

Find closest pair with one point in each side, assuming that distance < δ. 
■  Observation:  only need to consider points within δ of line L. 
■  Sort points in 2δ-strip by their y coordinate. 
■  Only check distances of those within 11 positions in sorted list! 

(why ?) 

L 

δ = min(12, 21) 



32 

Closest Pair of Points 

Def.  Let si be the point in the 2δ-strip, with 
the ith smallest y-coordinate. 
 
Claim.  If |i – j| ≥ 12, then the distance between 
si and sj is at least δ. 
Pf. 
■  No two points lie in same ½δ-by-½δ box. 
■  Two points at least 2 rows apart 

have distance ≥  2(½δ).   ▪ 
■  If two points were to have the distance smaller  
   then delta, they must be within two rows of  
   each other. (two rows up and down in each row 
   you need to check just 3 boxes, so 3x2x2) 

Fact.  Still true if we replace 12 with 7. 

δ 

27 

29 
30 

31 

28 

26 

25 

δ 

½δ 

 2 rows 
½δ 

½δ 

39 

i 

j 
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Closest Pair Algorithm 

Closest-Pair(p1, …, pn) { 
   Compute separation line L such that half the points 
   are on one side and half on the other side. 
 
   δ1 = Closest-Pair(left half) 
   δ2 = Closest-Pair(right half) 
   δ  = min(δ1, δ2) 
 
   Delete all points further than δ from separation line L 
 
   Sort remaining points by y-coordinate. 
 
   Scan points in y-order and compare distance between 
   each point and next 11 neighbors. If any of these 
   distances is less than δ, update δ. 
 
   return δ. 
} 

O(n log n) 

2T(n / 2) 

O(n) 

O(n log n) 

O(n) 
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Closest Pair of Points:  Analysis 

Running time. 
 
 
 
 
 
Q.  Can we achieve O(n log n)? 
 
A.  Yes. Don't sort points in strip from scratch each time. 
■  Each recursive returns two lists: all points sorted by y coordinate, 

and all points sorted by x coordinate. 
■  Sort by merging two pre-sorted lists. 

  

€ 

T(n) ≤ 2T n /2( ) + O(n) ⇒ T(n) = O(n logn)

  

€ 

T(n) ≤ 2T n /2( ) + O(n log n) ⇒ T(n)  =  O(n log2 n)


