Chapter 6

Dynamic Programming

\ "l jorthm Uesic

E\ JON KI.EINBERG EVA TARDOS

\ Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

Slides by Kev Wyne

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some
local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve
each sub-problem independently, and combine solution to sub-problems
to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in
the 1950s.

Etymology.
« Dynamic programming = planning over time.
. Secretary of Defense was hostile to mathematical research.
. Bellman sought an impressive name to avoid confrontation.
- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.
« Bioinformatics.
Control theory.
Information theory.
Operations research.
Computer science: theory, graphics, AL, systems,

Some famous dynamic programming algorithms.

. Viterbi for hidden Markov models.

« Unix diff for comparing two files.

- Smith-Waterman for sequence alignment.

Bellman-Ford for shortest path routing in networks.
Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
. Job j starts at ;. finishes at fJ-, and has weight or value v
- Two jobs compatible if they don't overlap.
« Goal: find maximum weight subset of mutually compatible jobs.

J .

» Time

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
. Consider jobs in ascending order of finish time.

« Add job to subseft if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 999 b

weighT =1 a

» Time

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0.

> Time

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requests 1,2, .., .

« Case 1: OPT selects job j.
- can't use incompatible jobs { p(j)+1,p(j)+2, .., j-1}
- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., p(j) N
optimal substructure
« Case 2: OPT does not select job j. !
- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., j-1

0 it j=0
OPT(j)=
(/) {max { v;+ OPT(p(j)), OPT(j-1)} otherwise

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

10

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

v

p(1) =0, p(j) = j-2

1

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as
heeded.

Input: n, s;,..,s, £, , £ v,.,v,

Sort jobs by finish times so that £, = £, = ... = £ _.
Compute p(1), p(2), .., p(n)

for =1 ton
M[j] = empty <« global array
M[j] = 0

M-Compute-Opt (j) ({
if (M[Jj] is empty)
M[j] = max(w; + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[]j]

12

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(nh log n) time.
. Sort by finish time: O(n log n).
Computing p(-): O(n) after sorting by start time.

M-Compute-Opt (j): each invocation takes O(1) time and either
- (i) returns an existing value M[7]
- (i) fills in one new entry M[31 and makes two recursive calls

Progress measure ® = # nonempty entries of M[].
- initially ® = O, throughout ® <n.
- (ii) increases ® by 1 = at most 2n recursive calls.

Overall running time of M-Compute-opt (n) is O(n). =

Remark. O(n) if jobs are pre-sorted by start and finish times.

13

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if
we want the solution itself?

A. Do some post-processing.

Run M-Compute-Opt (n)
Run Find-Solution (n)

Find-Solution (j) {
if (3 = 0)
output nothing
else if (v; + M[p(j)] > M[j-1])

print j
Find-Solution(p(j))
else

Find-Solution(j-1)

= # of recursive calls =n = O(n).

15

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

16

6.3 Segmented Least Squares

Segmented Least Squares

Least squares.
. Foundational problem in statistic and numerical analysis.
« Given n points in the plane: (xq,y1), (X5, ¥2) (Xn Y-
. Find aliney = ax + b that minimizes the sum of the squared error:

SSE = S (y, - ax, - b)*

i=1

Solution. Calculus = min error is achieved when

a=n2ixiyi _(El’xi)(ziyl‘) b=2iyi —ap.X;
" Ei xi2 — (2, X;)2 ’ n

18

Segmented Least Squares

Segmented least squares.
« Points lie roughly on a sequence of several line segments.
« Given n points in the plane (xy, y1), (X2,¥5), (X, Y,) with
= X{< X5< .. <Xy, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and

. 5 f
par'?lmony° goodness of fit

number of lines

19

Segmented Least Squares

Segmented least squares.
« Points lie roughly on a sequence of several line segments.
« Given n points in the plane (xy, y1), (X2,¥5), (X, Y,) with
« X{< X5< .. <Xy, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment
- the number of lines L
« Tradeoff function: E + c L, for some constant c > 0.

20

Dynamic Programming: Multiway Choice

Notation.
« OPT(j) = minimum cost for points py, pi.y , - - ., Pj-
. e(i, j) =minimum sum of squares for points p;, pi.1 , ..., p;.

To compute OPT(;):
« Last segment uses points p;, pi.q , . . ., p; for some i.
« Cost =e(i, j)+ c+ OPT(i-1).

0 if j=0
min { e(i,j) +c+ OPT(i-1)} otherwise

l<sis<j

OPT(})=

21

Segmented Least Squares: Algorithm

INPUT: n, P;,..,Py, C

Segmented-Least-Squares () {
M[O0] = O

for 3 =1 ton
for 1 =1 to j

compute the least square error e;; for

the segment p,,.., pj
for 3 =1 ton

M[j] = min.1sisj (eij-+ c + M[i-1])

return M[n]

.) can be improved to O(n?) by pre-computing various statistics
Running time. O(n3). -

. Bottleneck = computing e(i, j) for O(n?) pairs, O(n) per pair using
previous formula.

22

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.
» Given nobjects and a "knapsack."

- Item i weighs w; > O kilograms and has value v; > O.
« Knapsack has capacity of W kilograms.
« Goal: fill knapsack so as to maximize total value.

Ex: {3, 4} has value 40.

1 1
W= 11 2 6
3 18
4 22
5 28

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not optimal.

1

N O O N

24

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

= Case 1. OPT does not select item i.
- OPT selects bestof {1, 2, ..., i-1}

« Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to
reject other items
- without knowing what other items were selected before i, we don't
even know if we have enough room for i

Conclusion. Need more sub-problems!

25

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

= Case 1. OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1 } using weight limit w

« Case 2: OPT selects item i.
- new weight limit = w - w;
- OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

(0 if 1=0
OPT(i,w)=1OPT(i-1,w) if w,>w
\max{ OPT(i-1,w), v,+ OPT(i-1,w-w;)} otherwise

26

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

27

¢

{1}

n+1 {1,2}
{1,2,3}
{1,2,3,4}

{1,2,3,4,5}

Knapsack Algorithm

0

B :
01 6 7
0o 1 6 7
0o 1 6 7
g0 lal 7
OPT: {4,3)

value = 22 + 18 = 40

W+1

NEEREE
7 77
7 |||| 19 24 25
7 22 24 28
7 18 22 28 29

w=11

Ol D W N~

o] tlelalals]e 7 8]o]0lu
0 0 0 0 0 0 0 0 0 0 O

1
7
25
29
34

1
6
18
22
28

\ 4

1 1
77
25 25

2o 101
34 40

1

N O 0o N

28

Knapsack Problem: Running Time

Running time. ©(n W).
« Not polynomial in input sizel
«» "Pseudo-polynomial."
. Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial algorithm
that produces a feasible solution that has value within 0.01% of
optimum. [Section 11.8]

29

6.5 RNA Secondary Structure

RNA Secondary Structure

RNA. String B = b,b,...b, over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back
and form base pairs with itself. This structure is essential for
understanding behavior of molecule.

C—A
Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA A/ N\ A
N\ /
AU 6—cC
| | / \
C---6—U—A—A G
/ I I I I
G I I I
V) A—U—U A
/N | | ~¢~—
A C G C V)
l I I I I G
I I I I yd
C G C G A G--C
N 7 | |
G
A--U
|
G

complementary base pairs: A-U, C-G

31

RNA Secondary Structure

Secondary structure. A set of pairs S = { (b, b;) } that satisfy:
« [Watson-Crick.] S is a matching and each pair in S is a Watson-
Crick complement: A-U, U-A, C-G, or G-C.
« [No sharp furns.] The ends of each pair are separated by at least 4
intervening bases. If (b, b))E S, theni<j-4.
« [Non-crossing.] If (b;, b;) and (b, b,) are two pairs in S, then we
cannot have i < k< j<|.

J

Free energy. Usual hypothesis is that an RNA molecule will form the

secondary structure with the optimum total free energy.
\

approximate by number of base pairs

Goal. Given an RNA molecule B = b;b,...b,, find a secondary structure S
that maximizes the number of base pairs.

32

RNA Secondary Structure: Examples

Examples.
G G /G\ G G
/ N\ G G / N\
C U \ / C U
N\ /7 AN /7
c---6 C---6 c. v
| | | >< |
A---U A---U A6
| | | l I I
U---A U---A U---A
N
base pair

>
C
®
C o
(OIK4
(OIK4
O e
(9
>
C
>

C

®
O °
D e
D e
aQ

>

C

>

®

C
C o
O °
O °
aOe

(9

>

C

ok sharp turn crossing

33

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary

structure of the substring bib,...b;.

match b, and b,

Difficulty. Results in two sub-problems.
. Finding secondary structure in: b;b,...b; ;. — OPT(-D)
. Finding secondary structure in: b;,;b;,5...b, ;. «— need more sub-problems

34

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary

structure of the substring bb,;...b;.

« Casel Ifi=j-4.
- OPT(i, j) = 0 by no-sharp turns condition.

- Case 2. Base b; is not involved in a pair.
- OPT(i, j) = OPT(i, j-1)

- Case 3. Base b, pairs with b, for some i <1< j- 4.
- non-crossing constraint decouples resulting sub-problems
- OPT(, j) = 1 + max, { OPT(i, t-1) + OPT(¥+1, j-1) }
!

take max over t such that i <t < j-4 and
b, and b; are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse context-free grammars.

35

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

RNA (b, ,..,b.) {

410|0]0
for k =5, 6, .., n-1 3
for i =1, 2, .., n-k : 010
|
j=1i+k 210
Compute M[i, j] 1 S
N\ 6 7 8 9

return M[1, n] using recurrence

Running time. O(n3). Final recurrence

OPT(i, j) = max(OPT(T,j-1), 1 + max; { OPT(i, t-1) + OPT(++1, j-1) })

36

Dynamic Programming Summary

Recipe.
« Characterize structure of problem.
« Recursively define value of optimal solution.
. Compute value of optimal solution.
« Construct optimal solution from computed information.

Dynamic programming techniques.
« Binary choice: weighted interval scheduling. o
) . Viterbi algorlthm for'HMM_alsq uses
= Multi-way choice: segmented least squares. «— DP to optimize a maximun likelihood
radeoff between parsimony and accuracy
» Adding a new variable: knapsack.
« Dynamic programming over intervals: RNA secondary structure.

CKY parsing algorithm for context-free
grammar has similar structure

Top-down vs. bottom-up: different people have different intuitions.

37

6.6 Sequence Alignment

String Similarity

How similar are two strings?

= Ocurrance

- Al - BREEE
- A - A0 -

5 mismatches, 1 gap

o

. OCccurrence

o

O mismatches, 3 gaps

39

Edit Distance

Applications.
« Basis for Unix diff.

« Speech recognition.
« Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
« Gap penalty 8; mismatch penalty o,
. Cost = sum of gap and mismatch penalties.

CCTACT .CTGACCTACT
CCTACT CCTGAC.TACT

Qe+ OlgT+ Olag* 20ca 20+ Ocp

40

Sequence Alignment

Goal: Given two strings X = x; X, ...X,and Y =y;y, ...y, find
alignment of minimum cost.

Def. An alignment M is a set of ordered pairs x;-y; such that each item
occurs in at most one pair and no crossings.

Def. The pair x;-y; and x;-y; cross if i<i’, but j>j'.

cost(M) = Eaxy] + Yy o+ > 6

(x yJ)E M i :x;unmatched j:y; unmatched
mlsmatch gap
1 2 3 4 5 6
Ex: CTACCG vs. TACATG. s . &

Sol: M = X5-Y1, X3-Y5, X4-Y2, X&-Ya, Xc-Ye.
27Y1, X37Y2, X47Y3, X57Ya, X¢~Ye .T A CT G
1 Y3

41

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x; X, ... x;and y; y, ...Y;.
- Case 1: OPT matches x;-y;.
- pay mismatch for x;-y; + min cost of aligning two strings

X1 X ... X1 and Y1Y2... YJ-I
« Case 2a: OPT leaves x; unmatched.

- pay gap for x; and min cost of alighing x; X, . . .

- Case 2b: OPT leaves y; unmatched.

- pay gap for y; and min cost of aligning x; x; . . .

OPT(, j) =+

jo

min -

faxl_yj +OPT(i-1,j-1)

5+OPT(i-1,)

i0

5+OPT(i, j—1)

Xipandyyy, .. - Yj
xiandy; Yz ... Yj
if 1=0

otherwise

if j=0

42

Sequence Alignment: Algorithm

Sequence-Alignment (m, n, X;X,...X_ , Yi¥Y,---Yo, 0, @) {
for i = 0 tom
M[O, i] = id
for j =0 ton
M[j, 0] = 3o

for i =1 tom
for =1 ton
M[i, j] = min(a[xi,yj] + M[i-1, j-1],
O + M[i-1, 3],
O + M[i, j-11])
return M[m, n]

Analysis. ©(mn) time and space.
English words or sentences: m, n < 10.
Computational biology: m = n=100,000. 10 billions ops OK, but 10GB array?

43

6.7 Sequence Alignment in Linear Space

Sequence Alignment: Linear Space (optional)

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
« Compute OPT(i, *) from OPT(i-1,).
« No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and
O(mn) time.

« Clever combination of divide-and-conquer and dynamic programming.

« Inspired by idea of Savitch from complexity theory.

45

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
« Observation: f(i, j) = OPT(i, j).

46

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
. Can compute f (¢, j) for any j in O(mn) time and O(m + n) space.

47

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) o (m, n).

« Can compute by reversing the edge orientations and inverting the
roles of (0, O) and (m, n)

48

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) o (m, n).
« Can compute g(*, j) for any j in O(mn) tfime and O(m + n) space.

49

Sequence Alignment: Linear Space

Observation 1. The cost of the shortest path that uses (i, j) is
f(i,)+ a(i, j).

50

Sequence Alignment: Linear Space

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).
Then, the shortest path from (O, O) to (m, n) uses (g, n/2).

n/?2

51

Sequence Alignment: Linear Space

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP,
- Align x, and y,,.

Conquer: recursively compute optimal alignment in each piece.

n/?2

52

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let T(m, n) = max running time of algorithm on strings of
length at most m and n. T(m, n) = O(mn log n).

T(m,n) <= 2T(m, n/2) + O(mn) = T(m,n) = O(mnlogn)

Remark. Analysis is not tight because two sub-problems are of size
(g, n/2) and (m - g, n/2). In next slide, we save log n factor.

53

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).

Pf. (by induction on n)

« O(mn) time to compute f(+, n/2) and g (+, n/2) and find index q.
T(g, n/2) + T(m - g, n/2) time for two recursive calls.
Choose constant ¢ so that:

T(m,2) = cm
T2, n) = cn
T(m,n) = cmn+71(q, n/2)+T(m-q, n/2)

Base cases:m =2 orn=2.
Inductive hypothesis: T(m, n) < 2cmn.

T(m,n) T(g,n/2)+T(m-q,n/2)+cmn

2cqn/2 +2c(m—q)n/2 +cmn

N IA

cqn + cmn — cqn + cmn

2cmn

54

