

8.5 Sequencing Problems

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR
- Numerical problems: SUBSET-SUM, KNAPSACK.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph $G=(V, E)$, does there exist a simple cycle Γ that contains every node in V

YES: vertices and faces of a dodecahedron

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph $G=(V, E)$, does there exist a simple cycle Γ that contains every node in V.

NO: bipartite graph with odd number of nodes.

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3 -SAT $\leq p$ DIR-HAM-CYCLE.
Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

Construction. First, create graph that has 2^{n} Hamiltonian cycles which correspond in a natural way to 2^{n} possible truth assignments.

Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a digraph $G=(V, E)$, does there exists a simple directed cycle Γ that contains every node in V ?

Claim. DIR-HAM-CYCLE \leq p HAM-CYCLE.
Pf. Given a directed graph $G=(V, E)$, construct an undirected graph G with $3 n$ nodes.

G

Longest Path

SHORTEST-PATH. Given a digraph $G=(V, E)$, does there exists a simple path of length at most k edges?

LONGEST-PATH. Given a digraph $G=(V, E)$, does there exists a simple path of length at least k edges?

Claim. 3 -SAT $\leq p$ LONGEST-PATH.
Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from \dagger to s. Pf 2. Show HAM-CYCLE $\leq p$ LONGEST-PATH.

The Longest Path

Lyrics. Copyright © 1988 by Daniel J. Barrett Music. Sung to the tune of The Longest Time by Billy Joel.

```
Woh-oh-oh-oh, find the longest path!
If you said P is NP tonigh
There would still be papers left to write,
I have a weakness,
I Ind I keep searching for the longest path.
The algorithm I would like to see
Is of polynomial degree,
Is
Nobody has found concusive
Novody has found conclusive  I have been hard working for so long.
I swear it's sight, and he marks it wrong,
Some how I'll feel sorry when it's done: GPA 2.1
Is more than I hope for
Garey, Johnson, Karp and other men (and women) Tried to make it order \(N \log N\). A I a mad fool
If I spend my life in
Forever following the longest path?
Woh-oh-oh-oh, find the longest path Woh-oh-oh-oh, find the longest path.
```

\dagger Recorded by Dan Barrett while a grad student at Johns Hopkins during a difficult algorithms final.

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

Optimal TSP tour
Referenee: hotrip ${ }_{14}$

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?
 15

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq \mathrm{D}$?

8.6 Partitioning Problems

asic genres

- Packing problems: SET-PACKING, INDEPENDENT SET
- Covering problems: SET-COVER, VERTEX-COVER
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR
- Numerical problems: SUBSET-SUM, KNAPSACK.

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

HAM-CYCLE: given a graph $G=(V, E)$, does there exists a simple cycle that contains every node in V ?

Claim. HAM-CYCLE $\leq p$ TSP
Pf.

- Given instance $G=(V, E)$ of HAM-CYCLE, create n cities with distance function

$$
d(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ 2 & \text { if }(u, v) \notin E\end{cases}
$$

- TSP instance has tour of length $\leq n$ iff G is Hamiltonian. -

Remark. TSP instance in reduction satisfies Δ-inequality

3-Dimensional Matching

3D-MATCHING. Given n instructors, n courses, and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

Instructor	Course	Time
Wayne	$\cos 423$	MW 11-12:20
Wayne	$\cos 423$	TTh 11-12:20
Wayne	$\cos 226$	TTh 11-12:20
Wayne	$\cos 126$	TTh 11-12:20
Tardos	$\cos 523$	TTh 3-4:20
Tardos	$\cos 423$	TTh 11-12:20
Tardos	$\cos 423$	TTh 3-4:20
Kleinberg	$\cos 226$	TTh 3-4:20
Kleineerg	$\cos 226$	MW 11-12:20
Kleinberg	$\cos 423$	MW 11-12:20

3-Dimensional Matching

3D-MATCHING. Given disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

Claim. 3-SAT $\leq p$ INDEPENDENT-COVER.
Pf. Given an instance Φ of 3 -SAT, we construct an instance of 3Dmatching that has a perfect matching iff Φ is satisfiable.

3-Colorability

3-COLOR: Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color?

8.7 Graph Coloring

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET
- Covering problems: SET-COVER, VERTEX-COVER
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP
- Partitioning problems: 3D-MATCHING, 3-COLOR
- Numerical problems: SUBSET-SUM, KNAPSACK.

Register Allocation

Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. $3-C O L O R \leq p k-R E G I S T E R-A L L O C A T I O N$ for any constant $k \geq 3$.

8.8 Numerical Problems

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET
- Covering problems: SET-COVER, VERTEX-COVER
- Constraint satisfaction problems: SAT, 3-SAT
- Sequencing problems: HAMILTONIAN-CYCLE, TSP
- Partitioning problems: 3-COLOR,3D-MATCHING.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Extra Slides

Planarity Testing

Planarity testing. [Hopcroft-Tarjan 1974] O(n).
simple planar graph can have at most 3n edges

Remark. Many intractable graph problems can be solved in poly-time if the graph is planar: many tractable graph problems can be solved faster if the graph is planar.

Planar 3-Colorability

Claim. 3 -COLOR $\leq p$ PLANAR-3-COLOR
Proof sketch: Given instance of 3-COLOR, draw graph in plane, letting edges cross if necessary
. Replace each edge crossing with the following planar gadget W in any 3-coloring of W, opposite corners have the same color any assignment of colors to the corners in which opposite corners have the same color extends to a 3-coloring of W

Planar k-Colorability

PLANAR-2-COLOR. Solvable in linear time.
PLANAR-3-COLOR. NP-complete

PLANAR-4-COLOR. Solvable in O(1) time

Theorem. [Appel-Haken, 1976] Every planar map is 4-colorable.

- Resolved century-old open problem.
- Used 50 days of computer time to deal with many special cases.
- First major theorem to be proved using computer.

False intuition. If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR and PLANAR-5-COLOR.

