
1

Chapter 10

Extending the Limits
of Tractability

Slides by Kevin Wayne.
Copyright @ 2005 Pearson-Addison Wesley.
All rights reserved.

2

Coping With NP-Completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?
A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
■  Solve problem to optimality.
■  Solve problem in polynomial time.
■  Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems that
arise in practice.

10.1 Finding Small Vertex Covers

4

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ⊆ V such that |S| ≤ k, and for each edge (u, v)
either u ∈ S, or v ∈ S, or both.

3

6

10

7

1

5

8

2

4 9

k = 4
S = { 3, 6, 7, 10 }

5

Finding Small Vertex Covers

Q. What if k is small?

Brute force. O(k nk+1).
■  Try all C(n, k) = O(nk) subsets of size k.
■  Takes O(k n) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, e.g., to O(2k k n).

Ex. n = 1,000, k = 10.
Brute. k nk+1 = 1034 ⇒ infeasible.
Better. 2k k n = 107 ⇒ feasible.

Remark. If k is a constant, algorithm is poly-time; if k is a small
constant, then it's also practical.

6

Finding Small Vertex Covers

Claim. Let u-v be an edge of G. G has a vertex cover of size ≤ k iff
at least one of G - { u } and G - { v } has a vertex cover of size ≤ k-1.

Pf. ⇒
■  Suppose G has a vertex cover S of size ≤ k.
■  S contains either u or v (or both). Assume it contains u.
■  S - { u } is a vertex cover of G - { u }.

Pf. ⇐
■  Suppose S is a vertex cover of G - { u } of size ≤ k-1.
■  Then S ∪ { u } is a vertex cover of G. ▪

Claim. If G has a vertex cover of size k, it has ≤ k(n-1) edges.
Pf. Each vertex covers at most n-1 edges. ▪

delete v and all incident edges

7

Finding Small Vertex Covers: Algorithm

Claim. The following algorithm determines if G has a vertex cover of
size ≤ k in O(2k kn) time.

Pf.
■  Correctness follows previous two claims.
■  There are ≤ 2k+1 nodes in the recursion tree; each invocation takes

O(kn) time. ▪

boolean Vertex-Cover(G, k) {
 if (G contains no edges) return true
 if (G contains ≥ kn edges) return false

 let (u, v) be any edge of G
 a = Vertex-Cover(G - {u}, k-1)
 b = Vertex-Cover(G - {v}, k-1)
 return a or b
}

8

Finding Small Vertex Covers: Recursion Tree

k

k-1 k-1

k-2 k-2 k-2 k-2

0 0 0 0 0 0 0 0

k - i

nkcknT
kcknknT
kcn

knT k2),(
 1if)1,(2
 1if

),(≤⇒
#
$
%

>+−

=
≤

10.2 Solving NP-Hard Problems on Trees

10

Independent Set on Trees

Independent set on trees. Given a tree, find a maximum cardinality
subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has
at least two leaf nodes.

Key observation. If v is a leaf, there exists
a maximum size independent set containing v.

Pf. (exchange argument)
■  Consider a max cardinality independent set S.
■  If v ∈ S, we're done.
■  If u ∉ S and v ∉ S, then S ∪ { v } is independent ⇒ S not maximum.
■  IF u ∈ S and v ∉ S, then S ∪ { v } - { u } is independent. ▪

v

u

degree = 1

11

Independent Set on Trees: Greedy Algorithm

Theorem. The following greedy algorithm finds a maximum cardinality
independent set in forests (and hence trees).

Pf. Correctness follows from the previous key observation. ▪

Remark. Can implement in O(n) time by considering nodes in postorder.

Independent-Set-In-A-Forest(F) {
 S ← φ
 while (F has at least one edge) {
 Let e = (u, v) be an edge such that v is a leaf
 Add v to S
 Delete from F nodes u and v, and all edges
 incident to them.
 }
 return S
}

12

Weighted Independent Set on Trees

Weighted independent set on trees. Given a tree and node weights wv > 0,
find an independent set S that maximizes Σv∈S wv.

Observation. If (u, v) is an edge such that v is a leaf node, then either
OPT includes u, or it includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.
■  OPTin (u) = max weight independent set

rooted at u, containing u.
■  OPTout(u) = max weight independent set

rooted at u, not containing u.

r

u

v w

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still
appears, you may have to delete the image and then insert it again.

x

children(u) = { v, w, x }

13

Independent Set on Trees: Greedy Algorithm

Theorem. The dynamic programming algorithm find a maximum
weighted independent set in trees in O(n) time.

Pf. Takes O(n) time since we visit nodes in postorder and examine each
edge exactly once. ▪

Weighted-Independent-Set-In-A-Tree(T) {
 Root the tree at a node r
 foreach (node u of T in postorder) {
 if (u is a leaf) {
 Min [u] = wu
 Mout[u] = 0
 }
 else {
 Min [u] = Σv∈children(u) Mout[v] + wv
 Mout[u] = Σv∈children(u) max(Mout[v], Min[v])
 }
 }
 return max(Min[r], Mout[r])
}

ensures a node is visited after
all its children

14

Context

Independent set on trees. This structured special case is tractable
because we can find a node that breaks the communication among the
subproblems in different subtrees.

Graphs of bounded tree width. Elegant generalization of trees that:
■  Captures a rich class of graphs that arise in practice.
■  Enables decomposition into independent pieces.

u u

see Chapter 10.4, but proceed with caution

10.3 Circular Arc Coloring

