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Coping With NP-Completeness 

Q.  Suppose I need to solve an NP-complete problem. What should I do? 
A.  Theory says you're unlikely to find poly-time algorithm. 

Must sacrifice one of three desired features. 
■  Solve problem to optimality. 
■  Solve problem in polynomial time. 
■  Solve arbitrary instances of the problem. 

This lecture.  Solve some special cases of NP-complete problems that 
arise in practice. 
 



10.1  Finding Small Vertex Covers 
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Vertex Cover 

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S ⊆ V such that |S| ≤ k, and for each edge (u, v) 
either u ∈ S, or v ∈ S, or both. 
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k = 4 
S = { 3, 6, 7, 10 } 
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Finding Small Vertex Covers 

Q.  What if k is small? 
 
Brute force.  O(k nk+1). 
■  Try all C(n, k) = O(nk) subsets of size k. 
■  Takes O(k n) time to check whether a subset is a vertex cover. 

Goal.  Limit exponential dependency on k, e.g., to O(2k k n).  
 
Ex.  n = 1,000, k = 10. 
Brute.    k nk+1  = 1034   ⇒  infeasible. 
Better.  2k k n = 107     ⇒  feasible. 
 
Remark.  If k is a constant, algorithm is poly-time; if k is a small 
constant, then it's also practical. 
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Finding Small Vertex Covers 

Claim.  Let u-v be an edge of G.  G has a vertex cover of size ≤ k iff 
at least one of G - { u } and G - { v } has a vertex cover of size ≤ k-1. 
 
Pf.  ⇒ 
■  Suppose G has a vertex cover S of size ≤ k. 
■  S contains either u or v (or both).  Assume it contains u. 
■  S - { u } is a vertex cover of G - { u }. 

Pf.  ⇐ 
■  Suppose S is a vertex cover of G - { u } of size ≤ k-1. 
■  Then S ∪ { u } is a vertex cover of G.  ▪ 

 
 
Claim.  If G has a vertex cover of size k, it has ≤ k(n-1) edges. 
Pf.  Each vertex covers at most n-1 edges.  ▪ 
 

delete v and all incident edges 
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Finding Small Vertex Covers:  Algorithm 

Claim.  The following algorithm determines if G has a vertex cover of 
size ≤ k in O(2k kn) time. 
 
 
 
 
 
 
 
 
 
Pf. 
■  Correctness follows previous two claims. 
■  There are ≤ 2k+1 nodes in the recursion tree; each invocation takes 

O(kn) time.  ▪ 

boolean Vertex-Cover(G, k) { 
   if (G contains no edges)   return true 
   if (G contains ≥ kn edges) return false 
    
   let (u, v) be any edge of G 
   a = Vertex-Cover(G - {u}, k-1) 
   b = Vertex-Cover(G - {v}, k-1) 
   return a or b 
} 
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Finding Small Vertex Covers:  Recursion Tree 
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10.2  Solving NP-Hard Problems on Trees 
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Independent Set on Trees 

Independent set on trees.  Given a tree, find a maximum cardinality 
subset of nodes such that no two share an edge. 
 
Fact.  A tree on at least two nodes has 
at least two leaf nodes. 
 
 
Key observation.  If v is a leaf, there exists 
a maximum size independent set containing v. 
 
Pf.  (exchange argument) 
■  Consider a max cardinality independent set S. 
■  If v ∈ S, we're done. 
■  If u ∉ S and v ∉ S, then S ∪  { v } is independent ⇒ S not maximum. 
■  IF u ∈ S and v ∉ S, then S ∪  { v } - { u } is independent.  ▪ 

v 

u 

degree = 1 
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Independent Set on Trees:  Greedy Algorithm 

Theorem.  The following greedy algorithm finds a maximum cardinality 
independent set in forests (and hence trees). 
 
 
 
 
 
 
 
 
 
 
 
Pf.  Correctness follows from the previous key observation.  ▪ 
 
Remark.  Can implement in O(n) time by considering nodes in postorder. 

Independent-Set-In-A-Forest(F) { 
   S ← φ 
   while (F has at least one edge) { 
      Let e = (u, v) be an edge such that v is a leaf 
      Add v to S 
      Delete from F nodes u and v, and all edges 
         incident to them. 
   } 
   return S 
} 
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Weighted Independent Set on Trees 

Weighted independent set on trees.  Given a tree and node weights wv > 0, 
find an independent set S that maximizes Σv∈S wv.  
 
Observation.  If (u, v) is an edge such that v is a leaf node, then either 
OPT includes u, or it includes all leaf nodes incident to u. 
 
Dynamic programming solution.  Root tree at some node, say r. 
■  OPTin  (u) = max weight independent set 

rooted at u, containing u. 
■  OPTout(u) = max weight independent set 

rooted at u, not containing u. 
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The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still 
appears, you may have to delete the image and then insert it again.

x 

children(u) = { v, w, x } 
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Independent Set on Trees:  Greedy Algorithm 

Theorem.  The dynamic programming algorithm find a maximum 
weighted independent set in trees in O(n) time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pf.  Takes O(n) time since we visit nodes in postorder and examine each 
edge exactly once.  ▪ 

Weighted-Independent-Set-In-A-Tree(T) { 
   Root the tree at a node r 
   foreach (node u of T in postorder) { 
      if (u is a leaf) { 
         Min [u] = wu 
         Mout[u] = 0 
      } 
      else { 
         Min [u] = Σv∈children(u) Mout[v]  +  wv 
         Mout[u] = Σv∈children(u) max(Mout[v], Min[v]) 
      } 
   } 
   return max(Min[r], Mout[r]) 
} 

ensures a node is visited after 
all its children 
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Context 

Independent set on trees.  This structured special case is tractable 
because we can find a node that breaks the communication among the 
subproblems in different subtrees. 
 
 
 
 
 
 
 
 
 
 
Graphs of bounded tree width.  Elegant generalization of trees that: 
■  Captures a rich class of graphs that arise in practice. 
■  Enables decomposition into independent pieces. 

u u 

see Chapter 10.4, but proceed with caution 



10.3  Circular Arc Coloring 


