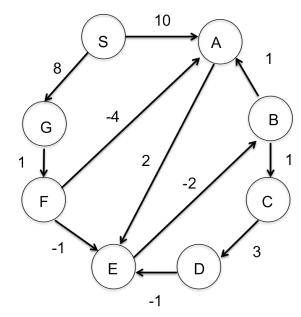
CS483 - Final Exam Pratice

Prof. Jana Košecká

1. (10) Find the shortest distances from the vertex S to all the other vertices. Show the intermediate distance values of all the nodes at each iteration of the algorithm.



2. (10) Give a liner time algorithm that takes as input directed acyclic graph G = (V, E) and two vertices s and t and returns the number of simple paths from s to t. Your algorithm should just count the paths not list them. Simple path is a path with no repeated vertices or edges. The algorithm should be linear in O(V + E) and exploit the fact that the graph is acyclic.

3. (10) How to cut steel rod into pieces to maximize the revenue you can get? Each cut is free and rods are always integral number of inches.

Input: A length n and table of prices p_i for $i = 1 \dots n$.

Output: The maximum revenue obtainable for rods whose lengths sum to n, computed as sum of the prices of individual rods.

For example given following prices and lengths:

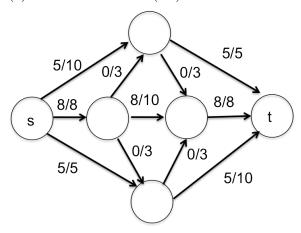
length i	1	2	3	4	5	6	7	8
price p_i	1	5	8	9	10	17	17	20

To cut a rod of length 4, the best way to cut it is in to 2-ich pieces, getting revenue $p_2 + p_2 = 5 + 5 = 10$.

Design an algorithm to solve the above problem. Give the running time complexity of your algorithm.

4. (10) Given a sequence o n real numbers A(1), ..., A(n) determine a contiguous subsequence A(i) ... A(j) for which the sum of elements in the subsequence is maximized. (Note that the array can have negative numbers). The algorithm should run in O(n) time.

- 5. (10) The figure below shows a network on which flow has been computed. Each edge is labelled by flow/capacity on that edge.
 - (a) what is the value of the flow?
 - (b) Is this a maximum (s-t) flow? Argue why yes or no.
 - (c) Find a minimum (s-t) cut in the flow network and and say what's its capacity.



6.	(15) Are the following statements TRUE or FALSE. Justify in few sentences.(3) A greedy algorithm for a problem can never give an optimal solution on all inputs.
	(3) Every NP-complete problem is in NP.
	(3) If a problem A is polynomially reducible to problem B and problem A is NP-complete then problem B is also NP-complete.
	(3) The approximate solutions to NP-complete problems can never give an optimal answer.
	(3) Suppose you have a graph G and its Minimum Weight Spanning Tree T . Now replace each edge cost with c_e with c_e^2 . T must still be a minimum spanning tree for this new instance. If it is true give a short explanation, if it is false give a counter example.

7. (10) Let 2-CNF-SAT be a set of satisfiable boolean formulas in CNF with exactly 2 literals per clause. Show that 2-CNF-SAT \in P. Suggest an efficient algorithm. (Hint: Observe that $x \vee y$ is equivalent to $\neg x \rightarrow y$). Reduce 2-CNF-SAT to a problem in a directed graph that is efficiently solvable.