CS483 - Practice Problems 2 (due September 29th)
Jana KoSeckd

Graph, Greedy algorithms

1. (5) When an adjacency-matrix representation is used, most graph algorithms require time (V?2), but
there are some exceptions. Show that determining whether a directed graph G contains a universal
sink a vertex with in-degree |V| — 1 and out-degree 0 can be determined in time O(V'), given an
adjacency matrix for G.

Solution:

Universal sink is a vertex that has out degree zero, i.e. there are no edges going out of that node and
all vertices have edges to it. That corresponding row of that vertex in the adjacency matrix will have
all zeros and the column of that vertex has all one’s expect at the diagonal. If we encounter the row
with all zero’s, we can then check by traversing the first column in O(V') time and see if it has all 1s. If
so then node 1 is a universal sink, otherwise the graph has no universal sink. The algorithm terminates
once we find a row of all zeros whether that row represents a universal sink or not, thus guaranteeing
O(V) running time.

Now suppose that we start traversing the adjacency matrix with the first row. If there are no 1’s
encountered that we check the first column and if it has all 1’s then the vertex 1 is universal sink.
Otherwise we stop at first 1 we encounter, say at k position, then we know that the vertices 1 to k — 1
cannot be universal sinks because vertex 1 has no edge to them, this takes O(k) steps. Then we can
continue on row j and do the same as for the first row.

We begin examining the next available row j and follow a procedure similar to the first row. If no 1
is encountered, we test the 5% column for 1’s and terminate as explained above. If a 1 is encountered
after m zeros then we can eliminate these m nodes from being universal sink. Thus, it can be claimed
that we have eliminated k+m nodes in O(k +m) time. Repeating the above procedure, examining one
row at a time from vertices that have not yet been eliminated, we can find whether a universal sink
exist or not. Thus, finding whether a graph has a universal sink or not, can be determined in O(V)
time.

2. (3) We covered two routines for graph traversal - DFS(G) and BFS(G,s) - where G is a graph and s is
any node in G. These two procedures will create a DFS tree and a BFS tree respectively. If G = (V,E)
is a connected, undirected graph then the height of DFS(G) tree is always larger than or equal to the
height of any of the BFS trees created by BFS(G, s).

Answer:

If we assume that DFS can start from any arbitrary node, we pick the center node. For BFS we pick
any of the boundary nodes. In this case the height of DFS tree is 1, whereas the height of BF'S tree is
2. The example above is an counter example to the statement.

For the part when we assume that they star tat the same node, we can proof the statement as follows.

Let hprs(q,s)(v) be the height of a node in a tree created by breadth first search of the graph G starting
at node s. And let hppg(q,s)(v) be the height of a node in a tree created by depth first search of G
starting at s. We start with hppg(gs)(5) = hprs(a,s)(s) = 0. In either search, whenever a node p is
used to discover a node ¢, we have h(c) = h(p) + 1.

One way to approach the proof is to first show that hprg(q,s)(v) = shortest(s,v) is the length of
the shortest path from s to v. Then, since hppg(a,s)(v) is the length of some path from s to v,
hprs(as) (V) > hersa,s)(v)-

To show that BFS gives the shortest path, consider, as a potential contradiction, that there exists a
node for which this is not true. Let a be a node such that hgpg(gs)(a) > shortest(s,a). (Note the >.
We do not need to consider the < case as h cannot be smaller than the shortest path.) Furthermore,
let a be the closest node to s for which this holds, where closest means having the smallest length
shortest(s,a). Now consider a path of length shortest(s,a) from s to a, and consider the node n
just before s in the path, so that the last edge of the path to a is from n to a. We know that
shortest(s,n) + 1 = shortest(s,a). Consider the possibilities for @ when n is explored by BFS.

(a) If a was not yet discovered, then it is discovered by n and hprs(as)(a) = hprsas(n) +1 =
shortest(s,n) + 1 contradicting hprs(a,s)(a) > shortest(s, a).

(b) If a was discovered but not yet explored, then there it was discovered by some node m that was dis-
covered and explored before n and so we would have hgps(a.s) (M) < hprs(a,s)(n) = shortest(s,n)
and hprs(a.s)(a) < hprs(a,s) (m)+1 < shortest(s,n)+1, contradicting hgps(q,s)(a) > shortest(s, a).

(c) If a was discovered and explored before n then shortest(s,n) = hprs(a,s)(n) > hprsa,s)(a)
contradicting hprg(a,s)(a) > shortest(s, a).

To see that hpps(a,s)(v) is the length of a path from s to v, construct a path back from v to the node
that discovered it during DFS, and continue adding the node that discovered that node until reaching
s. This path is at least as long as the shortest path, and hppg(g,s)(v) is the length of this path, so

hprs(a.s) (v) > shortest(s,v) = hpps(a,s)(v)-

. (9) For the following problem, use the directed unweighted graph given by the following adjacency list.
Be sure to consider the edges in the given order.

B

:CE
:ED

FE

TEgQw
TamEEAQ

(a) For the source vertex s = A what is the order in which the vertices are visited by BFS (breadth
first search)? Also, show the breadth-first search tree that you obtain.

(b) What is the order in which the vertices are visited by DFS (depth first search)? You should assume
that the top-level DFS procedure visits the vertices in alphabetical order. Set up a global counter
which gets incremented every-time when the vertex if first explored or is finished being explored. For
each vertex give the discovery and finishing time.

(c) Suppose that this graph is a precedence graph. Using your work above either give a valid order in
which to perform the tasks (call them task A, task B, . . ., task F') or prove that there is no valid order.

BFS and DFS trees are below:

(b)The order in which the vertices are visited in DFS is as follows A (1/12, B(2/11), D(3/10), E(4/7),
F(5/6), C(8/9), where in the parenthesis are the times when the vertex was first explored / when it
finished exploring.

N o
(8 © (B (D
§ & e

g

®

(¢) The valid order is the order of the vertices is the order using reverse finishing times. The valid
precedence order can be also determined using topological sort and is A, B, D, C, E, F.

. (5pt) Chapter 3.2 (discuss the solution using one the graph traversal algorithms BFS or DFS). Assume
that the graph is connected. Starting from arbitrary node s, obtain BFS tree T. If every edge go G
that appears in the tree, then G = T, so G contains no cycles. Otherwise, there is some edge e = (u, w)
that belongs to G but not T connecting the nodes within the same level or to some of the ancestors
of u. If such edge exists there is a cycle. The cycle can be printed by tracing all the ancestors of
that node along the path in the BFS tree. To do that you may need to associate an additional field
node.parent with each node. This can be done in O(m + n) time.

. Given a set 1 < zg < ... < x,, of points on the real line, give an algorithm to determine the smallest
set of unit-length closed intervals that contains all of the points. A closed interval includes both its
endpoints; for example, the interval [1.25,2.25] includes all z; such that 1.25 < z; < 2.25.

Answer:

Here is a greedy algorithm for this problem: place the 1st interval at [x1,z1 + 1] and remove all points
in [z1,21 + 1], and then repeat this process on the remaining points, x; is the left most point not
contained in any interval, then the next interval is [z;,z; + 1]. This algorithm is clearly O(n). We now
prove it correct.

Let P be any optimal solution and suppose it places its leftmost interval at at [z, + 1]. It must be
that x < x1, since any feasible solution covers the leftmost point x;. Let be P* the solution obtained
by replacing this first interval with [z1, 21 +1]. The new interval still covers every point between z and
x + 1 since there are no points to the left of #; and 1 + 1 > x + 1. Hence, the new solution remains
feasible and it uses the same number of intervals as P so is still optimal. After picking the interval
[x1; 21 + 1] and removing the points it covers, we are left with subproblem P’ and an optimal solution
that covers all points to the right of 7y + 1. Any solution to P’ can be feasibly combined with the
greedy choice because all points to the left of x1 + 1 are already covered.

. (5pt) You are given a sequence of n songs, where the i-th song is {; minutes long. You want to place all
of the songs onto a collection of CDs, each of which can hold m minutes. Furthermore, (i) The songs
must be recorded in the order given: song 1, song 2, . . . , song n. (ii) All songs must be included.
(iii) No song may be split across CDs. Give an algorithm to place songs on CDs so as to minimize the
number of CDs needed.

Answer:

Put as many songs as possible onto one CD without exceeding the m- minute limit. Then, close this
CD, start a new one, and repeat the process for the remaining songs. The decision to close a CD can
be made in constant time per song if we keep a running total of how much time we have used on the
CD so far; hence, the algorithm takes O(n) total time. We now prove it correct:

Let S be an optimal solution in which the 1st CD holds the first k songs. Suppose the greedy algorithm
puts the 1st g songs on this CD. If g = k, we are done; otherwise, g > k, and we modify S to produce
a solution S’ by moving songs from the second and later CD’s to the rest of CD’s until it contains

g songs. If the greedy algorithm could put the 1st g songs on a CD, these songs must take ¢ in m
minutes, and no other CD’s total time increases; hence, the solution is still feasible.

Moreover, the number of CD’s used by S’ is at most as many as for .S, so the solution is still optimal.
After we close CD 1, we have the subproblem PO of putting the remaining songs, from g + 1 to n, on
as few CD’s as possible. Any feasible solution to the subproblem is compatible with our choice for the
1st CD, hence the choice is optimal.

