
CS483 - Practice Problems
Jana Košecká

Chapter 6

1. (0) Read solved exercise 1 in the book

2. (10) Problem 1

(a) Consider the sequence of weights 3, 6, 5. The greedy algorithm will pick the middle node (as its
weight is maximum) and since the other two nodes are neighbor they gets removed and the algorithm
completes but the maximum weight independent weight consist of the first and third.
(b) Consider the sequence of weights 3, 1, 2, 3. The given algorithm will pick the maximum total
weigth of set S1 (3, 2) or S2 (1, 3) which comes out to be S1 with weight 5, while the maximum weight
independent set consists of the first and fourth with weight equals 6.
(c) Let Si denote an independent set on {v1, ..., vi}, and let Xi denote its weight. Define X0 and note
that X1 = w1. Now, for i ¿ 1, either vi belongs to Si or it doesn’t. In the first case, we know that
vi−1 cannot belong to Si, and so Xi = wi + Xi−2. In the second case, Xi = Xi−1. Thus we have
the recurrence: Xi = max(Xi−1, wi + Xi−2). We thus can compute the values of Xi, in increasing
order from i = 1 to n. We have to find Xn, and we can compute Sn by tracking back through the
computations of the max operator. Since we spend constant time per iteration, over n iterations, the
total running time is O(n).

3. (10) Problem 4

(a) Suppose that M = 10, {N1, N2, N3} = {1, 4, 1}, and {S1, S2, S3} = {20, 3, 20}. Then the optimal
plan would be [NY , NY , NY], while the proposed greedy algorithm would return [NY , SF , NY].
(b) Suppose that M = 10, {N1, N2, N3, N4} = {1, 40, 1, 40}, and {S1, S2, S3, S4} = {40, 1, 40, 1}.
Then the plan [NY , SF , NY , SF] has cost 34, and it moves three times. Any other plan pays at least
40, and so is not optimal.
(c) The basic observation is, the optimal plan either ends in NY, or in SF. If it ends in NY, it will pay
Nn plus one of the following two quantities:

• The cost of the optimal plan on n− 1 months, ending in NY, or

• The cost of the optimal plan on n− 1 months, ending in SF, plus a moving cost of M .

An analogous observation holds if the optimal plan ends in SF. Thus, if OPTN (j) denotes the minimum
cost of a plan on months 1, ..., j ending in NY, and OPTS(j) denotes the minimum cost of a plan on
months 1, ..., j ending in SF, then:
OPTN (n) = Nn + min(OPTN (n− 1), M+OPTS(n− 1))
OPTS(n) = Sn + min(OPTS(n− 1), M+OPTN (n− 1))
This can be translated directly into an algorithm:

OPTN (0) = OPTS(0) = 0

for i = 1, ..., n
OPTN (i) = Ni + min(OPTN (i− 1), M+OPTS(i− 1))
OPTS(i) = Si + min(OPTS(i− 1), M+OPTN (i− 1))

end

return the smaller of OPTN (n) and OPTS(n)

4. (5) Compute the optimal solution to the following instance of the Knapsack problem and show the nW
table where you computed the solution to the smaller sub-problems. Item 1($50, 5 lbs), item 2 ($60,
10 lbs) and item 3 ($140, 20 lbs), with the total knapsack weight W = 30 lbs.

5. (8) See Table 1, Optimal solution = {item 2, item 3}
Compute the optimal solution to the following instance of the Knapsack problem and show the n×W
table where you computed the solution to the smaller sub-problems. Item 1($50, 5 lbs), item 2 ($60,
10 lbs) and item 3 ($140, 20 lbs), with the total knapsack weight W = 30 lbs. x

Table 1: Knapsack Problem

0 5 10 15 20 25 30
{} 0 0 0 0 0 0 0
{1} 0 50 50 50 50 50 50
{1, 2} 0 50 60 110 110 110 110
{1, 2, 3} 0 50 60 110 140 190 200

6. Fractional Knapsack Problem Optimal solution = {item 1, item 3, half of item 2}. Each time choose
the remaining one with highest vi

wi
value. Greedy algorithm on picking the largest amount of the most

valuable item while there is space in knapsack.

7. (0) Problem 2
Hint : (a) Check for instance {l1, l2, l3} = {2, 2, 2}, and {h1, h2, h3} = {1, 5, 10}.
(b) Let OPT (i) denote the maximum revenue achievable in the input instance restricted to weeks 1
through i. The optimal solution for the input instance restricted to weeks 1 through i will select some
job in week i, since it’s not worth skipping all jobs – there are no future high-stress jobs to prepare
for. If it selects a low-stress job, it can behave optimally up to week i− 1, followed by this job, while
if it selects a high-stress job, it can bahave optimally up to week i− 2, followed by this job. Thus we
have justified the following recurrence: OPT (i) = max(li + OPT (i − 1), hi + OPT (i − 2)). We can
compute all OPT values by invoking this recurrence for i = 1, ..., n.

8. (0) Problem 3
Hint : (a) Check for graph on nodes v1, ..., v5 with edges (v1, v2), (v1, v3), (v2, v5), (v3, v4) and (v4,
v5).
(b) Can be solved by dynamic programming. The simplest version to think of using the subproblem
OPT [i] for the length of the longest path from v1 to vi. One point to be careful of is that not all nodes
vi necessarily have a path from v1 to vi. We will use the value -∞ for the OPT [i]value in this case.
We use OPT (1) = 0 as the longest path from v1 to v1 (as it has 0 edges).

9. (0) Problem 6
Hint : We observe that last line ends with word wn and has to start with some word wj ; breaking off
words wj , ..., wn we are left with a recursive subproblem on w1, ..., wj−1.

