CS483 - Practice Problems 5 (Due Nov 17th)
 Jana Košecká

Chapter 7

1. (5) Problem 1 (Chapter 7) $(\{\mathrm{s}\},\{\mathrm{u}, \mathrm{v}, \mathrm{t}\}),(\{\mathrm{s}, \mathrm{v}\},\{\mathrm{u}, \mathrm{t}\}),(\{\mathrm{s}, \mathrm{u}, \mathrm{v}\},\{\mathrm{t}\}))$ The unique minimum cut is ($\mathrm{s}, \mathrm{v}, \mathrm{u}, \mathrm{t}$), with two edges of capacity 2 going across.
2. (5) Problem 2 (Chapter 7) The flow value is 18 . It is not a maximum flow. Define the set A to be s and the top node. The cut $(A, V-A)$ is minimum and has capacity 21 .
3. (5) Problem 4 (Chapter 7) False. Consider graph with nodes s, v, w, t and edges $(s, v),(v, w),(w, t)$ capacities of 2 on (s, v) and (w, t) and capacity of 1 on (v, w). Then the maximum flow has value 1 and it does not saturate the edge out of s.
4. (5) Problem 5 (Chapter7) False. Consider graph with nodes $S, v_{1}, v_{2}, v_{3}, w, t$ and edges (s, v_{i}) and $\left(v_{i}, w\right)$ for each i and an edge (w, t). There is a capacity of 4 on (w, t) and a capacity of 1 on all other edges. Then $A=s$ and $B=V-A$ is the min cut with capacity 3 . If we add 1 to every edges then this cut has capacity 6 which is more then cut with $B=t$ and $A=V-B$.
