
CS483 - Practice
Jana Košecká

1. Chapter 5, Problem 2

We will design a recursive divide and conquer algorithm for counting significant inversions. The main
difference will be that in the merge stage we merge twice; first merge b1, . . . bk with bk+1, . . . bn just
for sorting and then we merge b1, . . . bk with 2bk+1, . . . 2bn for counting significant inversions. In the
merge step the ALG returns N1 and b1, . . . bk and N2 and bk+1, . . . bn which are sorted and N1 and N2

are the numbers of significant inversions. Then we need to compute the number of significant inversion
N3 and returns N1 + N2 + N3.

2. Chapter 5 , Problem 3.

This problem can be solved using divide and conquer. Suppose that you divide the cards into two
equal n/2 parts and call this algorithm recursively on both sides. In order to have a majority (more
then n/2) cards which are equivalent, if we split the away into two subarrays A and B, each having
n/2 cards. In order for the final set to have more then n/2 cards, one of the subsets has to have more
then half of the cards which are equivalent (if both would have less then half (n/4) then if could never
add up to n/2). Take that set which has the majority (e.g. A) return one card and check that card
against the set B - that will take O(n). If A does not have a majority, try if the B has majority, if
yes then pick a card from set B and check it against the set A. Now that portion of the algorithm for
checking whether set has a majority of the cards which are equivalent will be run recursively on both
sets, i.e. in the worst case you try it on A and if it does not have majority, you will need to run it on
the set B, so the recurrence is T (n) = 2T (n/2) + 2n for two subproblems and then for checking the
rest of the array.

3. Chapter 6, Problem 17

a) Consider sequence 1,4,2,3. The greedy algorithm produces rising trend 1,4 while the optimal solution
is 1,2,3.

b) Let OPT (j) be the length of the longest increasing subsequence on the set P [j] . . . P (n) including
element P [j]. OPT (n) = 1 and OPT (1) is the length of the longest rising period.

Consider OPT (j); its first element is P(j) and its next element is P [k] for some k > j and for P [k] >
P [j]. From k onwards it is simply the longest sequence that starts with P [k]. Hence we have a following
recurrence

OPT (j) = 1 + max
k>j:P [k]>P [j]

OPT (k)

OPT can be build in the decreasing order and the total running time is O(n2).

4. Suppose that you have two strings on length m and n.

a) What is the worst case running time of a brute force algorithm for finding longest common subse-
quence of the two strings ?

O(m2n). There are 2n possible subsequences on X and for each of them it takes O(m) steps to compare
the two strings.

b) Come up with a dynamic programming solution and demonstrate your algorithm on a following
example X = XMKJYWZ and Y = MZJAWXU .

Consider LCS(Xi, Yj) be the length of the LCS of strings x1, . . . xj and y1 . . . yj . The recursive solution
is defined by the following 3 cases :



LCS(Xi, Yj) = 0 if i = 0 and j = 0.
LCS(Xi, Yj) = LCS(Xi−1, Yj−1) + 1 if xi = yj .
LCS(Xi, Yj) = max(LCS(Xi, Yj−1), LCS(Xi−1, Yj)) if xi 6= yj .

Set up m×n table similar to the sequence alignment problem and fill it top down, left to right. Running
time will be O(mn).


