Midterm Review

Matching Residents to Hospitals

Goal. Given a set of preferences among hospitals and medical school students, design a self-reinforcing admissions process.

Unstable pair: applicant x and hospital y are unstable if:

- x prefers y to its assigned hospital.
- y prefers x to one of its admitted students.

Stable assignment. Assignment with no unstable pairs.

- Natural and desirable condition.
- Individual self-interest will prevent any applicant/hospital deal from being made.

Stable Matching Problem

Goal. Given n men and n women, find a "suitable" matching.

- Participants rate members of opposite sex.
- Each man lists women in order of preference from best to worst.
- Each woman lists men in order of preference from best to worst.

	favorite \downarrow		least favorite \downarrow
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Xavier	Amy	Bertha	Clare
Yancey	Bertha	Amy	Clare
Zeus	Amy	Bertha	Clare

Men's Preference Profile

Propose-And-Reject Algorithm

Propose-and-reject algorithm. [Gale-Shapley 1962] Intuitive method that guarantees to find a stable matching.


```
Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
    Choose such a man m
    w = 1st woman on m's list to whom m has not yet proposed
    if (w is free)
        assign m and w to be engaged
    else if (w prefers m to her fiancé m')
        assign m and w to be engaged, and m' to be free
    else
        w rejects m
}
```


Proof of Correctness: Stability

Claim. No unstable pairs.
Pf. (by contradiction)

- Suppose $A-Z$ is an unstable pair: each prefers each other to partner in Gale-Shapley matching S^{*}.
- Case 1: Z never proposed to A.
men propose in decreasing order of preference
$\Rightarrow Z$ prefers his $G S$ partner to A.
$\Rightarrow A-Z$ is stable.
- Case 2: Z proposed to A.
$\Rightarrow A$ rejected Z (right away or later)
\Rightarrow A prefers her $G S$ partner to Z. \leftarrow women only trade up
$\Rightarrow A-Z$ is stable.
- In either case $A-Z$ is stable, a contradiction.

Summary

Stable matching problem. Given n men and n women, and their preferences, find a stable matching if one exists.

Gale-Shapley algorithm. Guarantees to find a stable matching for any problem instance.
Q. How to implement $G S$ algorithm efficiently?
Q. If there are multiple stable matchings, which one does GS find?

Efficient Implementation

Efficient implementation. We describe $O\left(n^{2}\right)$ time implementation.
Representing men and women.

- Assume men are named 1,..., n.
- Assume women are named $1^{\prime}, \ldots, n^{\prime}$.

Engagements.

- Maintain a list of free men, e.g., in a queue.
- Maintain two arrays wife [m], and husband [w].
- set entry to 0 if unmatched
- if m matched to w then wife $[m]=w$ and husband $[w]=m$

Men proposing.

- For each man, maintain a list of women, ordered by preference.
- Maintain an array count [m] that counts the number of proposals made by man m.

Efficient Implementation

Women rejecting/accepting.

- Does woman w prefer man m to man m'?
- For each woman, create inverse of preference list of men.
- Constant time access for each query after $O(n)$ preprocessing.

Amy	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$	$8^{\text {th }}$
Pref	8	3	7	1	4	5	6	2
Amy	1	2	3	4	5	6	7	8
Inverse	$4^{\text {th }}$	$8^{\text {th }}$	$2^{\text {nd }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$	$3^{\text {rd }}$	$1^{\text {st }}$

Amy prefers man 3 to 6
since inverse [3] < inverse [6]

```
for i = 1 to n
    inverse[pref[i]] = i
```


Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time of algorithm on input of a given size N.

- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.

- Hard (or impossible) to accurately model real instances by random distributions.
- Algorithm tuned for a certain distribution may perform poorly on other inputs.

RUNNING TIME ANALYSIS

Asymptotic Order of Growth

Upper bounds. $T(n)$ is $O(f(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have $T(n) \leq c \cdot f(n)$.

Lower bounds. $T(n)$ is $\Omega(f(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have $T(n) \geq c \cdot f(n)$.

Tight bounds. $T(n)$ is $\Theta(f(n))$ if $T(n)$ is both $O(f(n))$ and $\Omega(f(n))$.

Ex: $T(n)=32 n^{2}+17 n+32$.

- $T(n)$ is $O\left(n^{2}\right), O\left(n^{3}\right), \Omega\left(n^{2}\right), \Omega(n)$, and $\Theta\left(n^{2}\right)$.
- $T(n)$ is not $O(n), \Omega\left(n^{3}\right), \Theta(n)$, or $\Theta\left(n^{3}\right)$.

Notation

Slight abuse of notation. $T(n)=O(f(n))$.

- Asymmetric:
$-f(n)=5 n^{3} ; g(n)=3 n^{2}$
$-f(n)=O\left(n^{3}\right)=g(n)$
- but $f(n) \neq g(n)$.
- Better notation: $T(n) \in O(f(n))$.

Meaningless statement. Any comparison-based sorting algorithm requires at least $O(n \log n)$ comparisons.

- Statement doesn't "type-check."
- Use Ω for lower bounds.

Properties

Transitivity.

- If $f=O(g)$ and $g=O(h)$ then $f=O(h)$.
- If $f=\Omega(g)$ and $g=\Omega(h)$ then $f=\Omega(h)$.
- If $f=\Theta(g)$ and $g=\Theta(h)$ then $f=\Theta(h)$.

Additivity.

- If $f=O(h)$ and $g=O(h)$ then $f+g=O(h)$.
- If $f=\Omega(h)$ and $g=\Omega(h)$ then $f+g=\Omega(h)$.
- If $f=\Theta(h)$ and $g=O(h)$ then $f+g=\Theta(h)$.

Asymptotic Bounds for Some Common Functions

Polynomials. $a_{0}+a_{1} n+\ldots+a_{d} n^{d}$ is $\Theta\left(n^{d}\right)$ if $a_{d}>0$.

Polynomial time. Running time is $O\left(n^{d}\right)$ for some constant d independent of the input size n.

Logarithms. $O\left(\log _{a} n\right)=O\left(\log _{b} n\right)$ for any constants $a, b>0$. can avoid specifying the base

Logarithms. For every $x>0, \log n=O\left(n^{x}\right)$.
log grows slower than every polynomial

Exponentials. For every $r>1$ and every $d>0, n^{d}=O\left(r^{n}\right)$.
\uparrow
every exponential grows faster than every polynomial
Survey of common running times: See examples

GRAPHS

Breadth First Search

Property. Let T be a BFS tree of $G=(V, E)$, and let (x, y) be an edge of G. Then the level of x and y differ by at most 1 .

(c)

Depth-First Search: The Code

```
Running time: There is a tighter bound O(V+E) or O(m+n)
n=|V| and m=|E|
DFS (G)
{
    for each vertex u G G->V
    {
        Mark v unexplored ;
    }
    time = 0;
    for each vertex u G G->V
    {
        if (u is UNEXPLORED)
                DFS_Visit(u);
    }
}
```

```
DFS_Visit(u)
```

DFS_Visit(u)
{
{
Mark u EXPLORED;
Mark u EXPLORED;
add u to R;
add u to R;
for each v G u->Adj[]
for each v G u->Adj[]
{
{
if (v is
if (v is
NOT_EXPLORED)
NOT_EXPLORED)
DFS_Visit(v);
DFS_Visit(v);
}
}
}

```
}
```


Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in $O(m+n)$ time if the graph is given by its adjacency representation.

Pf.

- Easy to prove $O\left(n^{2}\right)$ running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs $\leq n$ times
- when we consider node u, there are $\leq n$ incident edges (u, v), and we spend $O(1)$ processing each edge
- Actually runs in $O(m+n)$ time:
- when we consider node u, there are deg(u) incident edges (u, v)
- total time processing edges is $\Sigma_{u \in V} \operatorname{deg}(u)=2 m \quad$ -

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node $1=\{1,2,3,4,5,6,7,8\}$.

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contains no odd length cycle.

bipartite (2-colorable)

not bipartite
(not 2-colorable)

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in $O(m+n)$ time. Pf.

- Pick any node s.
- Run BFS from s in G. reverse orientation of every edge in G
- Run BFS from s in Grev.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma. .

Example 1 (yes)

strongly connected

Example 2 (no)

not strongly connected

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge $\left(v_{i}, v_{j}\right)$ means v_{i} must precede v_{j}.
Def. A topological order of a directed graph $G=(V, E)$ is an ordering of its nodes as $v_{1}, v_{2}, \ldots, v_{n}$ so that for every edge $\left(v_{i}, v_{j}\right)$ we have $i<j$.

a DAG

a topological ordering

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in $O(m+n)$ time.

Pf.

- Maintain the following information:
- count [w] = remaining number of incoming edges
- $S=$ set of remaining nodes with no incoming edges
- Initialization: $O(m+n)$ via single scan through graph.
- Update: to delete v
- remove v from S
- decrement count [w] for all edges from v to w, and add w to S if c count [w] hits 0
- this is O(1) per edge .

GREEDY ALGS.

Interval Scheduling

Interval scheduling.

- Job j starts at s_{j} and finishes at f_{j}.
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.

Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let $i_{1}, i_{2}, \ldots i_{k}$ denote set of jobs selected by greedy.
- Let $j_{1}, j_{2}, \ldots j_{m}$ denote set of jobs in the optimal solution with $i_{1}=j_{1}, i_{2}=j_{2}, \ldots, i_{r}=j_{r}$ for the largest possible value of r.

Interval Partitioning

Interval partitioning.

- Lecture j starts at s_{j} and finishes at f_{j}.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Scheduling to Minimizing Lateness

Minimizing lateness problem.

- Single resource processes one job at a time.
- Job j requires \dagger_{j} units of processing time and is due at time d_{j}.
- If j starts at time s_{j}, it finishes at time $f_{j}=s_{j}+t_{j}$.
- Lateness: $\ell_{j}=\max \left\{0, f_{j}-d_{j}\right\}$.
- Goal: schedule all jobs to minimize maximum lateness $L=\max \ell_{j}$.

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

```
Sort n jobs by deadline so that }\mp@subsup{d}{1}{}\leq\mp@subsup{d}{2}{}\leq\ldots\leq\mp@subsup{d}{n}{
t}\leftarrow
for j = 1 to n
    Assign job j to interval [t, t + t j
    si
    t}\leftarrowt+\mp@subsup{t}{j}{
output intervals [sj, fig]
```


Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
i < j but j scheduled before i.

Claim. Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the max lateness.

Pf. Let ℓ be the lateness before the swap, and let ℓ ' be it afterwards.

- $\ell_{k}^{\prime}=\ell_{k}$ for all $k \neq i, j$
- $\ell_{i}^{\prime} \leq \ell_{i}$
- If job j is late:

$$
\begin{aligned}
\ell_{j}^{\prime} & =f_{j}^{\prime}-d_{j} & & \text { (definition) } \\
& =f_{i}-d_{j} & & \left(j \text { finishes at time } f_{i}\right) \\
& \leq f_{i}-d_{i} & & (i<j) \\
& \leq \ell_{i} & & \text { (definition) }
\end{aligned}
$$

Shortest Path Problem

Shortest path network.

- Directed graph G = (V, E).
- Source s, destination \dagger.
- Length $\ell_{e}=$ length of edge e.

Shortest path problem: find shortest directed path from s to t.
cost of path = sum of edge costs in path

Cost of path s-2-3-5-t
$=9+23+2+16$
$=48$.

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S=\{s\}, d(s)=0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e}
$$

add v to S, and set $d(v)=\pi(v)$.

- Running time $O(m n)$ - simple implementation
- Can we do better?

Minimum Spanning Tree

Minimum spanning tree. Given a connected graph $G=(V, E)$ with realvalued edge weights c_{e}, an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

$$
G=(V, E)
$$

$\mathrm{T}, \Sigma_{e \in \mathrm{~T}} \mathrm{C}_{e}=50$

Cayley's Theorem. There are n^{n-2} spanning trees of K_{n}.

Implementation: Prim's Algorithm

Implementation. Use a priority queue ala Dijkstra.

- Maintain set of explored nodes S.
- For each unexplored node v, maintain attachment cost $a[v]=$ cost of cheapest edge v to a node in S.
- $O\left(n^{2}\right)$ with an array; $O(m \log n)$ with a binary heap.

```
Prim(G, c) {
    foreach (v G V) a[v] \leftarrow \infty
    Initialize an empty priority queue Q
    foreach (v G V) insert v onto Q
    Initialize set of explored nodes S }\leftarrow
    while (Q is not empty) {
        u }\leftarrow\mathrm{ delete min element from Q
        S}\leftarrowSU{\mp@code{u}
        foreach (edge e = (u, v) incident to u)
            if ((v & S) and (ce < a[v]))
                decrease priority a[v] to ce
}
```


Implementation: Kruskal's Algorithm

Implementation. Use the union-find data structure.

- Build set T of edges in the MST.
- Maintain set for each connected component.
- $O(m \log n)$ for sorting and $O(m \propto(m, n))$ for union-find.

```
            m\leqn}\mp@subsup{n}{}{2}=>\operatorname{log}m\mathrm{ is O(logn)
```

 essentially a constant
    ```
Kruskal (G, c) {
    Sort edges weights so that c}\mp@subsup{c}{1}{}\leqslant\mp@subsup{c}{2}{}\leqslant\ldots\leqslant\mp@subsup{c}{m}{}
    T}\leftarrow
    foreach (u G V) make a set containing singleton u
    for i = 1 to m are u and v in different connected components?
        (u,v) = e i
        if (u and v are in different sets) {
            T}\leftarrowT\{{\mp@subsup{e}{i}{}
            merge the sets containing u and v
        }
    return T
}
```


DIVIDE AND CONQUER

Proof by Recursion Tree

$$
\mathrm{T}(n)= \begin{cases}\begin{array}{ll}
0 & \text { if } n=1 \\
\underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }
\end{array}\end{cases}
$$

Proof by Telescoping

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
assumes n is a power of 2

$$
\mathrm{T}(n)= \begin{cases}0 & \text { if } n=1 \\ \underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. For $n>1$:

$$
\begin{aligned}
\frac{T(n)}{n} & =\frac{2 T(n / 2)}{n}+1 \\
& =\frac{T(n / 2)}{n / 2}+1 \\
& =\frac{T(n / 4)}{n / 4}+1+1 \\
& \cdots \\
& =\frac{T(n / n)}{n / n}+\underbrace{1+\cdots+1}_{\log _{2} n} \\
& =\log _{2} n
\end{aligned}
$$

Proof by Induction

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.

$$
\mathrm{T}(n)= \begin{cases}0 & \text { if } n=1 \\ \underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. (by induction on n)

- Base case: $n=1$.
- Inductive hypothesis: $T(n)=n \log _{2} n$.
- Goal: show that $T(2 n)=2 n \log _{2}(2 n)$.

$$
\begin{aligned}
T(2 n) & =2 T(n)+2 n \\
& =2 n \log _{2} n+2 n \\
& =2 n\left(\log _{2}(2 n)-1\right)+2 n \\
& =2 n \log _{2}(2 n)
\end{aligned}
$$

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.

| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 12 | 11 | 3 | 7 | Divide: $O(1)$. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 12 | 11 | 3 | 7 | |

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_{i} and a_{j} are in different halves, and return sum of three quantities.

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_{i} and a_{j} are in different halves.

- Merge two sorted halves into sorted whole.
to maintain sorted invariant

13 blue-green inversions: $6+3+2+2+0+0$
Count: $O(n)$
$\begin{array}{lllllllllllllll}2 & 3 & 7 & 10 & 11 & 14 & 16 & 17 & 18 & 19 & 23 & 25 & & \text { Merge: } O(n)\end{array}$

$$
T(n) \leq T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

Closest Pair Algorithm

```
Closest-Pair(p
    Compute separation line L such that half the points
    are on one side and half on the other side.
    \delta
    \delta
    \delta}=\operatorname{min}(\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{}
    Delete all points further than \delta from separation line L O(n)
    Sort remaining points by y-coordinate.
    Scan points in y-order and compare distance between
    each point and next }11\mathrm{ neighbors. If any of these
```

$O(n \log n)$
$2 T(n / 2)$
$O(n)$
$O(n \log n)$
$O(n)$

``` distances is less than \(\delta\), update \(\delta\).
```

```
    return \delta.
```

 return \delta.
 }

```

\section*{Closest Pair of Points: Analysis}

Running time.
\[
\mathrm{T}(n) \leq 2 T(n / 2)+O(n \log n) \Rightarrow \mathrm{T}(n)=O\left(n \log ^{2} n\right)
\]
Q. Can we achieve \(O(n \log n)\) ?
A. Yes. Don't sort points in strip from scratch each time.
- Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by \(\times\) coordinate.
- Sort by merging two pre-sorted lists.
\[
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
\]

\section*{DYNAMIC PROGRAMMING}

\section*{Weighted Interval Scheduling}

Notation. Label jobs by finishing time: \(f_{1} \leq f_{2} \leq \ldots \leq f_{n}\). Def. \(p(j)=\) largest index \(i<j\) such that \(j o b i\) is compatible with \(j\). Ex: \(p(8)=5, p(7)=3, p(2)=0\).


\section*{Dynamic Programming: Binary Choice}

Notation. OPT \((\mathrm{j})=\) value of optimal solution to the problem consisting of job requests \(1,2, \ldots, j\).
- Case 1: OPT selects job j.
- can't use incompatible jobs \(\{p(j)+1, p(j)+2, \ldots, j-1\}\)
- must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., \(p(j)\)
- Case 2: OPT does not select job j.
- must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1
\[
O P T(j)=\left\{\begin{array}{cl}
0 & \text { if } \mathrm{j}=0 \\
\max \left\{v_{j}+O P T(p(j)), O P T(j-1)\right\} & \text { otherwise }
\end{array}\right.
\]

\section*{Weighted Interval Scheduling: Brute Force}

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \(\Rightarrow\) exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.


\section*{Segmented Least Squares}

Least squares.
- Foundational problem in statistic and numerical analysis.
- Given \(n\) points in the plane: \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\).
- Find \(a\) line \(y=a x+b\) that minimizes the sum of the squared error:
\[
S S E=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}
\]


Solution. Calculus \(\Rightarrow\) min error is achieved when
\[
a=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}}, \quad b=\frac{\sum_{i} y_{i}-a \sum_{i} x_{i}}{n}
\]

\section*{Segmented Least Squares}

Segmented least squares.
- Points lie roughly on a sequence of several line segments.
- Given \(n\) points in the plane \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\) with
- \(x_{1}<x_{2}<\ldots<x_{n}\), find a sequence of lines that minimizes \(f(x)\).
Q. What's a reasonable choice for \(f(x)\) to balance accuracy and parsimony?
goodness of fit


\section*{Segmented Least Squares}

Segmented least squares.
- Points lie roughly on a sequence of several line segments.
- Given \(n\) points in the plane \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\) with
- \(x_{1}<x_{2}<\ldots<x_{n}\), find a sequence of lines that minimizes:
- the sum of the sums of the squared errors \(E\) in each segment
- the number of lines \(L\)
- Tradeoff function: \(E+c L\), for some constant \(c>0\).


\section*{Dynamic Programming: Multiway Choice}

Notation.
- \(\operatorname{OPT}(j)=\) minimum cost for points \(p_{1}, p_{i+1}, \ldots, p_{j}\).
- \(e(i, j)=\) minimum sum of squares for points \(p_{i}, p_{i+1}, \ldots, p_{j}\).

To compute OPT(j):
- Last segment uses points \(p_{i}, p_{i+1}, \ldots, p_{j}\) for some \(i\).
- Cost \(=e(i, j)+c+\) OPT(i-1).
\[
O P T(j)= \begin{cases}0 & \text { if } \mathrm{j}=0 \\ \min _{1 \leq i \leq j}\{e(i, j)+c+O P T(i-1)\} & \text { otherwise }\end{cases}
\]

\section*{Knapsack Problem}

Knapsack problem.
. Given \(n\) objects and a "knapsack."
- Item i weighs \(w_{i}>0\) kilograms and has value \(v_{i}>0\).
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: \(\{3,4\}\) has value 40 .
\begin{tabular}{|c|c|c|}
\hline Item & Value & Weight \\
\hline 1 & 1 & 1 \\
\hline 2 & 6 & 2 \\
\hline 3 & 18 & 5 \\
\hline 4 & 22 & 6 \\
\hline 5 & 28 & 7 \\
\hline
\end{tabular}

Greedy: repeatedly add item with maximum ratio \(v_{i} / w_{i}\). Ex: \(\{5,2,1\}\) achieves only value \(=35 \Rightarrow\) greedy not optimal.

\section*{Dynamic Programming: Adding a New Variable}

Def. \(\operatorname{OPT}(i, w)=\max\) profit subset of items \(1, \ldots, i\) with weight limit \(w\).
- Case 1: OPT does not select item i.
- OPT selects best of \(\{1,2, \ldots, i-1\}\) using weight limit \(w\)
- Case 2: OPT selects item i.
- new weight limit \(=w-w_{i}\)
- OPT selects best of \(\{1,2, \ldots, i-1\}\) using this new weight limit
\[
O P T(i, w)= \begin{cases}0 & \text { if } \mathrm{i}=0 \\ O P T(i-1, w) & \text { if } \mathrm{w}_{\mathrm{i}}>\mathrm{w} \\ \max \{O P T(i-1, w), & \left.v_{i}+O P T\left(i-1, w-w_{i}\right)\right\} \\ \text { otherwise }\end{cases}
\]

\section*{Knapsack Algorithm}
\(\qquad\) \(W+1\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline & \(\phi\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & \{1\} & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \(n+1\) & \{1, 2 \} & 0 & 1 & 6 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline & \{1, 2, 3\} & 0 & 1 & 6 & 7 & 7 & 18 & 19 & 24 & 25 & 25 & 25 & 25 \\
\hline & \(\{1,2,3,4\}\) & 0 & 1 & 6 & 7 & 7 & 18 & 22 & 24 & 28 & 29 & 29 & 40 \\
\hline \(\downarrow\) & \(\{1,2,3,4,5\}\) & 0 & 1 & 6 & 7 & 7 & 18 & 22 & 28 & 29 & 34 & 34 & 40 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { OPT: }\{4,3\} \\
& \text { value }=22+18=40
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline Item & Value & Weight \\
\hline 1 & 1 & 1 \\
\hline 2 & 6 & 2 \\
\hline 3 & 18 & 5 \\
\hline 4 & 22 & 6 \\
\hline 5 & 28 & 7 \\
\hline
\end{tabular}```

