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Matching Residents to Hospitals 

Goal.  Given a set of preferences among hospitals and medical school 
students, design a self-reinforcing admissions process. 
 
Unstable pair:  applicant x and hospital y are unstable if: 
  x prefers y to its assigned hospital. 
  y prefers x to one of its admitted students. 

Stable assignment.  Assignment with no unstable pairs. 
  Natural and desirable condition. 
  Individual self-interest will prevent any applicant/hospital deal from 

being made. 
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Stable Matching Problem 

Goal.  Given n men and n women, find a "suitable" matching. 
  Participants rate members of opposite sex. 
  Each man lists women in order of preference from best to worst. 
  Each woman lists men in order of preference from best to worst. 

Zeus Amy Clare Bertha 

Yancey Bertha Clare Amy 

Xavier Amy Clare Bertha 

1st 2nd 3rd 

Men’s Preference Profile 

favorite least favorite 

Clare Xavier Zeus Yancey 

Bertha Xavier Zeus Yancey 

Amy Yancey Zeus Xavier 

1st 2nd 3rd 

Women’s Preference Profile 

favorite least favorite 
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Propose-And-Reject Algorithm 

Propose-and-reject algorithm.  [Gale-Shapley 1962]  Intuitive method 
that guarantees to find a stable matching. 

Initialize each person to be free. 
while (some man is free and hasn't proposed to every woman) { 

    Choose such a man m 
    w = 1st woman on m's list to whom m has not yet proposed 
    if (w is free) 
        assign m and w to be engaged 
    else if (w prefers m to her fiancé m') 
        assign m and w to be engaged, and m' to be free 
    else 
        w rejects m 
} 
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Proof of Correctness:  Stability 

Claim.  No unstable pairs. 
Pf.  (by contradiction) 
  Suppose A-Z is an unstable pair:  each prefers each other to 

partner in Gale-Shapley matching S*. 

  Case 1:  Z never proposed to A. 
  ⇒  Z prefers his GS partner to A.  
  ⇒  A-Z is stable. 

  Case 2:  Z proposed to A. 
  ⇒  A rejected Z (right away or later) 
  ⇒  A prefers her GS partner to Z. 
  ⇒  A-Z is stable. 

  In either case A-Z is stable, a contradiction.  ▪ 

Bertha-Zeus 

Amy-Yancey 

S* 

. . . 

men propose in decreasing 
order of preference 

women only trade up 



6 

Summary 

Stable matching problem.  Given n men and n women, and their 
preferences, find a stable matching if one exists. 
 
Gale-Shapley algorithm.  Guarantees to find a stable matching for any 
problem instance. 
 
Q.   How to implement GS algorithm efficiently? 
 
Q.   If there are multiple stable matchings, which one does GS find? 
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Efficient Implementation 

Efficient implementation.  We describe O(n2) time implementation. 
 
Representing men and women. 
  Assume men are named 1, …, n. 
  Assume women are named 1', …, n'. 

 
Engagements. 
  Maintain a list of free men, e.g., in a queue. 
  Maintain two arrays wife[m], and husband[w]. 

–  set entry to 0 if unmatched 
–  if m matched to w then wife[m]=w and husband[w]=m 

 
Men proposing. 
  For each man, maintain a list of women, ordered by preference. 
  Maintain an array count[m] that counts the number of proposals 

made by man m. 
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Efficient Implementation 

Women rejecting/accepting. 
  Does woman w prefer man m to man m'? 
  For each woman, create inverse of preference list of men. 
  Constant time access for each query after O(n) preprocessing. 

for i = 1 to n 
   inverse[pref[i]] = i 

Pref 

1st 

8 

2nd 

7 

3rd 

3 

4th 

4 

5th 

1 5 2 6 

6th 7th 8th 

Inverse 4th 2nd 8th 6th 5th 7th 1st 3rd 

1 2 3 4 5 6 7 8 

Amy 

Amy 

Amy prefers man 3 to 6 
since inverse[3] < inverse[6] 

2 7 
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Worst-Case Analysis 

Worst case running time.  Obtain bound on largest possible running time 
of algorithm on input of a given size N. 
  Generally captures efficiency in practice. 
  Draconian view, but hard to find effective alternative.  

Average case running time.  Obtain bound on running time of algorithm 
on random input as a function of input size N. 
  Hard (or impossible) to accurately model real instances by random 

distributions. 
  Algorithm tuned for a certain distribution may perform poorly on 

other inputs. 
 



RUNNING TIME ANALYSIS 

10 
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Asymptotic Order of Growth 

Upper bounds.  T(n) is O(f(n)) if there exist constants c > 0 and n0 ≥ 0 
such that for all n ≥ n0 we have T(n) ≤ c · f(n). 
 
Lower bounds.  T(n) is Ω(f(n)) if there exist constants c > 0 and n0 ≥ 0 
such that for all n ≥ n0 we have T(n) ≥ c · f(n). 
 
Tight bounds.  T(n) is Θ(f(n)) if T(n) is both O(f(n)) and Ω(f(n)). 
 
Ex:   T(n) = 32n2 + 17n + 32. 
  T(n) is O(n2), O(n3), Ω(n2), Ω(n), and Θ(n2) . 
  T(n) is not O(n), Ω(n3), Θ(n), or Θ(n3). 
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Notation 

Slight abuse of notation.  T(n) = O(f(n)). 
  Asymmetric: 

–  f(n) = 5n3;  g(n) = 3n2 
–  f(n) = O(n3) = g(n) 
–  but f(n) ≠ g(n). 

  Better notation:  T(n) ∈ O(f(n)). 
 
Meaningless statement.  Any comparison-based sorting algorithm 
requires at least O(n log n) comparisons. 
  Statement doesn't "type-check." 
  Use Ω for lower bounds. 
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Properties 

Transitivity. 
  If f = O(g) and g = O(h) then f = O(h). 
  If f = Ω(g) and g = Ω(h) then f = Ω(h).  
  If f = Θ(g) and g = Θ(h) then f = Θ(h). 

 
 
Additivity. 
  If f = O(h) and g = O(h) then f + g = O(h).  
  If f = Ω(h) and g = Ω(h) then f + g = Ω(h). 
  If f = Θ(h) and g = O(h) then f + g = Θ(h). 
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Asymptotic Bounds for Some Common Functions 

Polynomials.  a0 + a1n + … + adnd  is Θ(nd) if ad > 0.  
 
Polynomial time.  Running time is O(nd) for some constant d independent 
of the input size n. 
 
 
Logarithms.  O(log a n) = O(log b n) for any constants a, b > 0. 
 
 
Logarithms.  For every x > 0,  log n = O(nx). 
 
 
 
Exponentials.  For every r > 1 and every d > 0,  nd = O(rn). 
 
 
Survey of common running times: See examples 

every exponential grows faster than every polynomial 

can avoid specifying the base 

log grows slower than every polynomial 



GRAPHS 
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Breadth First Search 

Property.  Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of 
G. Then the level of x and y differ by at most 1. 

L0 

L1 

L2 

L3 



Depth-First Search: The Code 

DFS(G) 

{ 

   for each vertex u ∈ G->V 

   { 

      Mark v unexplored ; 

   } 

   time = 0; 

   for each vertex u ∈ G->V 

   { 

      if (u is UNEXPLORED) 

         DFS_Visit(u); 

   } 

} 

DFS_Visit(u) 

{ 

   Mark u EXPLORED; 

   add u to R; 

   for each v ∈ u->Adj[] 
   { 
      if (v is 
NOT_EXPLORED) 
         DFS_Visit(v); 
   } 
} 
   

Running time: There is a tighter bound  O(V+E)  or O(m + n) 
n = |V| and m = |E| 
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Breadth First Search:  Analysis 

Theorem.  The above implementation of BFS runs in O(m + n) time if 
the graph is given by its adjacency representation. 
 
Pf. 
  Easy to prove O(n2) running time: 

–  at most n lists L[i] 
–  each node occurs on at most one list; for loop runs ≤ n times 
–  when we consider node u, there are ≤ n incident edges (u, v), 

and we spend O(1) processing each edge 

  Actually runs in O(m + n) time: 
–  when we consider node u, there are deg(u) incident edges (u, v) 
–  total time processing edges is Σu∈V deg(u) = 2m     ▪ 

each edge (u, v) is counted exactly twice 
in sum: once in deg(u) and once in deg(v) 
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Connected Component 

Connected component.  Find all nodes reachable from s. 
 
 
 
 
 
 
 
 
 
 
 
Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }. 
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Obstruction to Bipartiteness 

Corollary.  A graph G is bipartite iff it contains no odd length cycle. 
 

5-cycle C 

bipartite 
(2-colorable) 

not bipartite 
(not 2-colorable) 
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Strong Connectivity:  Algorithm 

Theorem.  Can determine if G is strongly connected in O(m + n) time. 
Pf. 
  Pick any node s. 
  Run BFS from s in G. 
  Run BFS from s in Grev. 
  Return true iff all nodes reached in both BFS executions. 
  Correctness follows immediately from previous lemma.   ▪ 

reverse orientation of every edge in G 

strongly connected not strongly connected 

Example 1 (yes) Example 2 (no) 
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Directed Acyclic Graphs 

Def.  An DAG is a directed graph that contains no directed cycles. 
 
Ex.  Precedence constraints:  edge (vi, vj) means vi must precede vj. 
 
Def.  A topological order of a directed graph G = (V, E) is an ordering 
of its nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j. 

a DAG a topological ordering 

v2 v3 

v6 v5 v4 

v7 v1 

v1 v2 v3 v4 v5 v6 v7 
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Topological Sorting Algorithm:  Running Time 

Theorem.  Algorithm finds a topological order in O(m + n) time. 
 
Pf.   
  Maintain the following information: 

–  count[w] = remaining number of incoming edges 
–  S = set of remaining nodes with no incoming edges 

  Initialization:  O(m + n) via single scan through graph. 
  Update:  to delete v 

–  remove v from S 
–  decrement count[w] for all edges from v to w, and add w to S if c 
count[w] hits 0 

–  this is O(1) per edge    ▪ 



GREEDY ALGS. 

24 
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Interval Scheduling 

Interval scheduling. 
  Job j starts at sj and finishes at fj. 
  Two jobs compatible if they don't overlap. 
  Goal: find maximum subset of mutually compatible jobs. 

Time 
0 1 2 3 4 5 6 7 8 9 10 11 

f 

g 

h 

e 

a 

b 

c 

d 
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Interval Scheduling:  Analysis 

Theorem.  Greedy algorithm is optimal. 
 
Pf.  (by contradiction) 
  Assume greedy is not optimal, and let's see what happens. 
  Let i1, i2, ... ik denote set of jobs selected by greedy. 
  Let j1, j2, ... jm  denote set of jobs in the optimal solution with 

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.  

j1 j2 jr 

i1 i1 ir ir+1 

. . . 

Greedy: 

OPT: jr+1 

why not replace job jr+1 
with job ir+1? 

job ir+1 finishes before jr+1 
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Interval Partitioning 

Interval partitioning. 
  Lecture j starts at sj and finishes at fj. 
  Goal:  find minimum number of classrooms to schedule all lectures so 

that no two occur at the same time in the same room. 

Ex:  This schedule uses only 3. 

Time 
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 

h 

c 

a e 

f 

g i 

j 

3 3:30 4 4:30 

d 

b 
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Scheduling to Minimizing Lateness 

Minimizing lateness problem. 
  Single resource processes one job at a time. 
  Job j requires tj units of processing time and is due at time dj. 
  If j starts at time sj, it finishes at time fj = sj + tj.  
  Lateness:  j = max { 0,  fj - dj }. 
  Goal:  schedule all jobs to minimize maximum lateness L = max j. 

Ex: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9 

lateness = 0 lateness = 2 

dj 6 

tj 3 

1 

8 

2 

2 

9 

1 

3 

9 

4 

4 

14 

3 

5 

15 

2 

6 

max lateness = 6 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

d5 = 14 d2 = 8 d6 = 15 d1 = 6 d4 = 9 d3 = 9 

max lateness = 1 

Sort n jobs by deadline so that d1 ≤ d2 ≤ … ≤ dn 
 
t ← 0 
for j = 1 to n 
   Assign job j to interval [t, t + tj] 
   sj ← t, fj ← t + tj 
   t ← t + tj 
output intervals [sj, fj] 

Minimizing Lateness:  Greedy Algorithm 

Greedy algorithm.  Earliest deadline first. 
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Minimizing Lateness: Inversions 

Def.  An inversion in schedule S is a pair of jobs i and j such that: 
i < j but j scheduled before i. 

 
 
 
 
Claim.  Swapping two adjacent, inverted jobs reduces the number of 
inversions by one and does not increase the max lateness. 

Pf.  Let   be the lateness before the swap, and let  ' be it afterwards. 
  'k = k for all k ≠ i, j 
  'i ≤ i  
  If job j is late: 

i j 

i j 

before swap 

after swap 

n)(definitio
)(

) time at finishes (
n)(definitio

i

ii

iji

jjj

jidf
fjdf

df





≤

<−≤

−=

−#=#

f'j 

fi 
inversion 
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Shortest Path Problem 

Shortest path network. 
  Directed graph G = (V, E). 
  Source s, destination t. 
  Length e = length of edge e. 

 
Shortest path problem:  find shortest directed path from s to t. 

 

Cost of path s-2-3-5-t 
     =  9 + 23 + 2 + 16 
     = 48. 

s 

3 

t 

2 

6 

7 

4 
5 

 23 

 18 
 2 

 9 

 14 

 15  5 

 30 

 20 

 44 

 16 

 11 

 6 

 19 

 6 

cost of path = sum of edge costs in path 
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Dijkstra's Algorithm 

Dijkstra's algorithm. 
  Maintain a set of explored nodes S for which we have determined 

the shortest path distance d(u) from s to u. 
  Initialize S = { s }, d(s) = 0. 
  Repeatedly choose unexplored node v which minimizes 

 
 
add v to S, and set d(v) = π(v). 

  Running time  O(mn)- simple implementation 
  Can we do better ? 

,)(min)(
:),( eSuvue

udv +=
∈=

π

s 

v 

u 
d(u) 

shortest path to some u in explored 
part, followed by a single edge (u, v) 

S 

e 
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Minimum Spanning Tree 

Minimum spanning tree.  Given a connected graph G = (V, E) with real-
valued edge weights ce, an MST is a subset of the edges T ⊆ E such 
that T is a spanning tree whose sum of edge weights is minimized. 
 
 
 
 
 
 
 
 
 

Cayley's Theorem.  There are nn-2 spanning trees of Kn. 

 5 

23 

10  
21 

 14 

24 

 16 

 6 

 4 

18 
9 

7 

11 
 8 

 5 

 6 

 4 

9 

7 

11 
 8 

G = (V, E) T,  Σe∈T ce = 50 

can't solve by brute force 
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Implementation:  Prim's Algorithm 

Prim(G, c) { 
   foreach (v ∈ V) a[v] ← ∞ 
   Initialize an empty priority queue Q 
   foreach (v ∈ V) insert v onto Q 
   Initialize set of explored nodes S ← φ 
 
   while (Q is not empty) { 
      u ← delete min element from Q 
      S ← S ∪ { u } 
      foreach (edge e = (u, v) incident to u) 
          if ((v ∉ S) and (ce < a[v])) 
             decrease priority a[v] to ce 
} 

Implementation.  Use a priority queue ala Dijkstra. 
  Maintain set of explored nodes S. 
  For each unexplored node v, maintain attachment cost a[v] = cost of 

cheapest edge v to a node in S. 
  O(n2) with an array; O(m log n) with a binary heap. 
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Implementation:  Kruskal's Algorithm 

Kruskal(G, c) { 
   Sort edges weights so that c1 ≤ c2 ≤ ... ≤ cm. 
   T ← φ 
 
   foreach (u ∈ V) make a set containing singleton u 
 
   for i = 1 to m 
      (u,v) = ei 
      if (u and v are in different sets) { 
         T ← T ∪ {ei} 
         merge the sets containing u and v 
      } 
   return T 
} 

Implementation.  Use the union-find data structure. 
  Build set T of edges in the MST. 
  Maintain set for each connected component. 
  O(m log n) for sorting and  O(m α (m, n)) for union-find. 

are u and v in different connected components? 

merge two components 

m ≤ n2 ⇒ log m is O(log n) essentially a constant 



DIVIDE AND CONQUER 
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Proof by Recursion Tree 

T(n) 

T(n/2) T(n/2) 

T(n/4) T(n/4) T(n/4) T(n/4) 

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) 

n 

T(n / 2k) 

2(n/2) 

4(n/4) 

2k (n / 2k) 

n/2 (2) 

. . . 

. . . 
log2n 

n log2n 

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
     + n

merging
 otherwise

" 

# 
$ 

% $ 
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Proof by Telescoping 

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n. 
 
 
 
 
 
 
Pf.  For n > 1: 

    

€ 

T(n)
n

=
2T(n /2)

n
+ 1

=
T(n /2)

n /2
+ 1

=
T(n / 4)

n / 4
+ 1 + 1



=
T(n /n)

n /n
+ 1 ++ 1

log2 n
     

= log2 n

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
     + n

merging
 otherwise

" 

# 
$ 

% $ 

assumes n is a power of 2 
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Proof by Induction 

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n. 
 
 
 
 
 
 
Pf.  (by induction on n) 
  Base case:  n = 1. 
  Inductive hypothesis:  T(n) =  n log2 n. 
  Goal:  show that T(2n) =  2n log2 (2n). 

  

€ 

T(2n) = 2T(n)  +  2n
= 2n log2 n  +  2n
= 2n log2(2n)−1( )  +  2n
= 2n log2(2n)

assumes n is a power of 2 

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
     + n

merging
 otherwise

" 

# 
$ 

% $ 
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Counting Inversions:  Divide-and-Conquer 

Divide-and-conquer. 
  Divide:  separate list into two pieces. 

4 8 10 2 1 5 12 11 3 7 6 9 

4 8 10 2 1 5 12 11 3 7 6 9 

Divide:  O(1). 
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Counting Inversions:  Divide-and-Conquer 

Divide-and-conquer. 
  Divide:  separate list into two pieces. 
  Conquer: recursively count inversions in each half. 

4 8 10 2 1 5 12 11 3 7 6 9 

4 8 10 2 1 5 12 11 3 7 6 9 

5 blue-blue inversions 8 green-green inversions 

Divide:  O(1). 

Conquer:  2T(n / 2) 

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7 
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Counting Inversions:  Divide-and-Conquer 

Divide-and-conquer. 
  Divide:  separate list into two pieces. 
  Conquer: recursively count inversions in each half. 
  Combine: count inversions where ai and aj are in different halves, 

and return sum of three quantities. 

4 8 10 2 1 5 12 11 3 7 6 9 

4 8 10 2 1 5 12 11 3 7 6 9 

5 blue-blue inversions 8 green-green inversions 

Divide:  O(1). 

Conquer:  2T(n / 2) 

Combine:  ??? 9 blue-green inversions 
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7 

Total = 5 + 8 + 9 = 22. 
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13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0  

Counting Inversions:  Combine 

Combine:  count blue-green inversions  
  Assume each half is sorted. 
  Count inversions where ai and aj are in different halves.  
  Merge two sorted halves into sorted whole. 

  

Count:  O(n) 

Merge:  O(n) 

10 14 18 19 3 7 16 17 23 25 2 11 

7 10 11 14 2 3 18 19 23 25 16 17 

  

€ 

T(n) ≤  T n /2# $( ) + T n /2% &( ) + O(n) ⇒ T(n) = O(n log n)

6 3 2 2 0 0 

to maintain sorted invariant 
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Closest Pair Algorithm 

Closest-Pair(p1, …, pn) { 
   Compute separation line L such that half the points 
   are on one side and half on the other side. 
 
   δ1 = Closest-Pair(left half) 
   δ2 = Closest-Pair(right half) 
   δ  = min(δ1, δ2) 
 
   Delete all points further than δ from separation line L 
 
   Sort remaining points by y-coordinate. 
 
   Scan points in y-order and compare distance between 
   each point and next 11 neighbors. If any of these 
   distances is less than δ, update δ. 
 
   return δ. 
} 

O(n log n) 

2T(n / 2) 

O(n) 

O(n log n) 

O(n) 
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Closest Pair of Points:  Analysis 

Running time. 
 
 
 
 
 
Q.  Can we achieve O(n log n)? 
 
A.  Yes. Don't sort points in strip from scratch each time. 
  Each recursive returns two lists: all points sorted by y coordinate, 

and all points sorted by x coordinate. 
  Sort by merging two pre-sorted lists. 

  

€ 

T(n) ≤ 2T n /2( ) + O(n) ⇒ T(n) = O(n logn)

  

€ 

T(n) ≤ 2T n /2( ) + O(n log n) ⇒ T(n)  =  O(n log2 n)



DYNAMIC PROGRAMMING 
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Weighted Interval Scheduling 

Notation.  Label jobs by finishing time:  f1  ≤  f2  ≤ . . . ≤ fn . 
Def.  p(j) = largest index i < j such that job i is compatible with j. 
 
Ex:  p(8) = 5, p(7) = 3, p(2) = 0. 

Time 
0 1 2 3 4 5 6 7 8 9 10 11 

6 

7 

8 

4 

3 

1 

2 

5 
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Dynamic Programming:  Binary Choice 

Notation.  OPT(j) = value of optimal solution to the problem consisting 
of job requests 1, 2, ..., j. 
 
  Case 1:  OPT selects job j. 

–  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 } 
–  must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j) 

  Case 2:  OPT does not select job j. 
–  must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1 

  

€ 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise
# 
$ 
% 

optimal substructure 
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Weighted Interval Scheduling:  Brute Force 

Observation.  Recursive algorithm fails spectacularly because of 
redundant sub-problems  ⇒  exponential algorithms.  
 
Ex.  Number of recursive calls for family of "layered" instances grows 
like Fibonacci sequence. 

3 
4 

5 

1 
2 

p(1) = 0, p(j) = j-2 

5 

4 3 

3 2 2 1 

2 1 

1 0 

1 0 1 0 
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Segmented Least Squares 

Least squares. 
  Foundational problem in statistic and numerical analysis. 
  Given n points in the plane:  (x1, y1), (x2, y2) , . . . , (xn, yn). 
  Find a line y = ax + b that minimizes the sum of the squared error:  

Solution.  Calculus  ⇒  min error is achieved when 

  

€ 

SSE = (yi − axi −b)2
i=1

n
∑

  

€ 

a =
n xi yi − ( xi )i∑ ( yi )i∑i∑

n xi
2 − ( xi )

2
i∑i∑

, b =
yi − a xii∑i∑

n

x 

y 
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Segmented Least Squares 

Segmented least squares. 
  Points lie roughly on a sequence of several line segments. 
  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with  
  x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x). 

Q.  What's a reasonable choice for f(x) to balance accuracy and 
parsimony? 

x 

y 

goodness of fit 

number of lines 
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Segmented Least Squares 

Segmented least squares. 
  Points lie roughly on a sequence of several line segments. 
  Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with  
  x1 < x2 < ... < xn, find a sequence of lines that minimizes: 

–  the sum of the sums of the squared errors E in each segment 
–  the number of lines L 

  Tradeoff function:  E + c L, for some constant c > 0. 

x 

y 
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Dynamic Programming:  Multiway Choice 

Notation. 
  OPT(j) = minimum cost for points p1, pi+1 , . . . , pj. 
  e(i, j)   = minimum sum of squares for points pi, pi+1 , . . . , pj. 

 
To compute OPT(j): 
  Last segment uses points pi, pi+1 , . . . , pj for some i. 
  Cost = e(i, j) + c + OPT(i-1). 

  

€ 

OPT( j) =
0 if  j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
$ 
% 
& 

' & 
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Knapsack Problem 

Knapsack problem. 
  Given n objects and a "knapsack." 
  Item i weighs wi  > 0 kilograms and has value vi > 0. 
  Knapsack has capacity of W kilograms. 
  Goal:  fill knapsack so as to maximize total value. 

Ex:  { 3, 4 } has value 40. 
 
 
 
 
 
 
Greedy:  repeatedly add item with maximum ratio vi / wi. 
Ex:  { 5, 2, 1 } achieves only value = 35  ⇒  greedy not optimal. 

1 

Value 

18 

22 

28 

1 

Weight 

5 

6 

6 2 

7 

Item 

1 

3 

4 

5 

2 
W = 11 
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Dynamic Programming:  Adding a New Variable 

Def.  OPT(i, w) = max profit subset of items 1, …, i with weight limit w. 

  Case 1:  OPT does not select item i. 
–  OPT selects best of { 1, 2, …, i-1 } using weight limit w  

  Case 2:  OPT selects item i. 
–  new weight limit = w – wi 
–  OPT selects best of { 1, 2, …, i–1 } using this new weight limit 

  

€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi ){ } otherwise

# 

$ 
% 

& 
% 
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Knapsack Algorithm 

n + 1 

1 

Value 

18 

22 

28 

1 
Weight 

5 

6 

6 2 

7 

Item 
1 

3 

4 

5 

2 

φ 

{ 1, 2 } 

{ 1, 2, 3 } 

{ 1, 2, 3, 4 } 

{ 1 } 

{ 1, 2, 3, 4, 5 } 

0 

0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

1 

1 

1 

2 

0 

6 

6 

6 

1 

6 

3 

0 

7 

7 

7 

1 

7 

4 

0 

7 

7 

7 

1 

7 

5 

0 

7 

18 

18 

1 

18 

6 

0 

7 

19 

22 

1 

22 

7 

0 

7 

24 

24 

1 

28 

8 

0 

7 

25 

28 

1 

29 

9 

0 

7 

25 

29 

1 

34 

10 

0 

7 

25 

29 

1 

34 

11 

0 

7 

25 

40 

1 

40 

W + 1 

W = 11 
OPT:  { 4, 3 } 
value = 22 + 18 = 40 


