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Knapsack Problem 

Knapsack problem. 
■  Given n objects and a "knapsack." 
■  Item i weighs wi  > 0 kilograms and has value vi > 0. 
■  Knapsack has capacity of W kilograms. 
■  Goal:  fill knapsack so as to maximize total value. 

Ex:  { 3, 4 } has value 40. 
 
 
 
 
 
 
Greedy:  repeatedly add item with maximum ratio vi / wi. 
Ex:  { 5, 2, 1 } achieves only value = 35  ⇒  greedy not optimal. 
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Dynamic Programming:  Adding a New Variable 

Def.  OPT(i, w) = max profit subset of items 1, …, i with weight limit w. 

■  Case 1:  OPT does not select item i. 
–  OPT selects best of { 1, 2, …, i-1 } using weight limit w  

■  Case 2:  OPT selects item i. 
–  new weight limit = w – wi 
–  OPT selects best of { 1, 2, …, i–1 } using this new weight limit 

  

€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi ){ } otherwise
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Knapsack Algorithm 

n + 1 
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Dynamic Programming Over Intervals 

Notation.  OPT(i, j) = maximum number of base pairs in a secondary 
structure of the substring  bibi+1…bj. 

■  Case 1.  If i ≥ j - 4. 
–  OPT(i, j) = 0 by no-sharp turns condition. 

■  Case 2.  Base bj is not involved in a pair. 
–  OPT(i, j) = OPT(i, j-1) 

■  Case 3.  Base bj pairs with bt for some i ≤ t < j - 4. 
–  non-crossing constraint decouples resulting sub-problems 
–  OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) } 

Remark.  Same core idea in CKY algorithm to parse context-free grammars. 

take max over t such that i ≤ t < j-4 and 
bt and bj are Watson-Crick complements 
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Dynamic Programming Summary 

Recipe. 
■  Characterize structure of problem. 
■  Recursively define value of optimal solution. 
■  Compute value of optimal solution. 
■  Construct optimal solution from computed information. 

 
Dynamic programming techniques. 
■  Binary choice:  weighted interval scheduling. 
■  Multi-way choice:  segmented least squares. 
■  Adding a new variable:  knapsack. 
■  Dynamic programming over intervals:  RNA secondary structure. 

Top-down vs. bottom-up:  different people have different intuitions. 

Viterbi algorithm for HMM also uses 
DP to optimize a maximum likelihood 
tradeoff between parsimony and accuracy 

CKY parsing algorithm for context-free 
grammar has similar structure 
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String Similarity 

How similar are two strings? 
■  ocurrance 

■  occurrence 

 

o c u r r a n c e 

c c u r r e n c e o 

- 

o c u r r n c e 

c c u r r n c e o 

- - a 

e - 

o c u r r a n c e 

c c u r r e n c e o 

- 

5 mismatches, 1 gap 

1 mismatch, 1 gap 

0 mismatches, 3 gaps 
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Applications. 
■  Basis for Unix diff. 
■  Speech recognition. 
■  Computational biology. 

 
Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970] 

■  Gap penalty δ; mismatch penalty αpq. 
■  Cost = sum of gap and mismatch penalties. 

2δ + αCA 
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Goal:  Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find 
alignment of minimum cost. 
 
Def.  An alignment M is a set of ordered pairs xi-yj such that each item 
occurs in at most one pair and no crossings. 

Def.  The pair xi-yj and xi'-yj' cross if i < i', but j > j'. 

Ex:  CTACCG vs. TACATG. 
Sol:  M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6. 

Sequence Alignment 

    

€ 

cost( M ) = αxi y j
(xi, y j )∈ M
∑

mismatch
     

+ δ
i : xi unmatched

∑ + δ
j : y j unmatched

∑

gap
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T A C A T - 

G 
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x2 x3 x4 x5 x1 x6 
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Sequence Alignment:  Problem Structure 

Def.  OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj. 
■  Case 1:  OPT matches xi-yj. 

–  pay mismatch for xi-yj  + min cost of aligning two strings 
x1 x2 . . . xi-1 and y1 y2 . . . yj-1  

■  Case 2a:  OPT leaves xi unmatched. 
–  pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj  

■  Case 2b:  OPT leaves yj unmatched. 
–  pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1  
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Divide:  find index q that minimizes f(q, n/2) + g(q, n/2) using DP. 
■  Align xq and yn/2. 

Conquer:  recursively compute optimal alignment in each piece. 

Sequence Alignment:  Linear Space 
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Shortest Paths 

Shortest path problem.  Given a directed graph G = (V, E), with edge 
weights cvw, find shortest path from node s to node t. 
 
 
 
Ex.  Nodes represent agents in a financial setting and cvw is cost of 
transaction in which we buy from agent v and sell immediately to w. 
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Shortest Paths:  Failed Attempts 

Dijkstra.  Can fail if negative edge costs. 
 
 
 
 
 
 
 
Re-weighting.  Adding a constant to every edge weight can fail. 
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Shortest Paths:  Dynamic Programming 

Def.  OPT(i, v) = length of shortest v-t path P using at most i edges. 

■  Case 1:  P uses at most i-1 edges. 
–  OPT(i, v) = OPT(i-1, v) 

■  Case 2:  P uses exactly i edges. 
–  if (v, w) is first edge, then OPT uses (v, w), and then selects best 

w-t path using at most i-1 edges 

Remark.  By previous observation, if no negative cycles, then 
OPT(n-1, v) = length of shortest v-t path. 
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OPT(i, v) =
 0 if  i = 0

  min OPT(i −1, v) ,
(v, w)∈ E

min OPT(i −1, w)+ cvw{ }
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Shortest Paths:  Implementation 

 
 
 
 
 
 
 
 
 
 
 
Analysis.  Θ(mn) time, Θ(n2) space. 
 
Finding the shortest paths.  Maintain a "successor" for each table 
entry. 

Shortest-Path(G, t) { 
   foreach node v ∈ V 
      M[0, v] ← ∞ 
   M[0, t] ← 0 
 
   for i = 1 to n-1 
      foreach node v ∈ V 
         M[i, v] ← M[i-1, v] 
      foreach edge (v, w) ∈ E 
         M[i, v] ← min { M[i, v], M[i-1, w] + cvw } 
} 
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Chapter 7 
 
Network Flow 

Slides by Kevin Wayne. 
Copyright © 2005 Pearson-Addison Wesley. 
All rights reserved. 
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Flow network. 
■  Abstraction for material flowing through the edges. 
■  G = (V, E) = directed graph, no parallel edges. 
■  Two distinguished nodes:  s = source, t = sink. 
■  c(e) = capacity of edge e. 

 

Minimum Cut Problem 
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal to the amount leaving s. 

Flows and Cuts 
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Weak duality.  Let f be any flow.  Then, for any s-t cut (A, B) we have 
v(f) ≤ cap(A, B). 
 
Pf. 

   ▪ 
 
 
 

Flows and Cuts 
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Certificate of Optimality 

Corollary.  Let f be any flow, and let (A, B) be any cut. 
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut. 

 Value of flow = 28 
Cut capacity  = 28   ⇒    Flow value ≤ 28 
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Max-Flow Min-Cut Theorem 

Augmenting path theorem.  Flow f is a max flow iff there are no 
augmenting paths.  
 
Max-flow min-cut theorem.  [Ford-Fulkerson 1956]  The value of the 
max flow is equal to the value of the min cut. 
 
Proof strategy.  We prove both simultaneously by showing the TFAE: 
    (i)  There exists a cut (A, B) such that v(f) = cap(A, B). 
   (ii)  Flow f is a max flow. 
  (iii)  There is no augmenting path relative to f. 
 

(i)  ⇒ (ii)  This was the corollary to weak duality lemma.  
 
(ii)  ⇒ (iii)  We show contrapositive. 
■  Let f be a flow. If there exists an augmenting path, then we can 

improve f by sending flow along path. 
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Proof of Max-Flow Min-Cut Theorem 

(iii)  ⇒ (i) 
■  Let f be a flow with no augmenting paths. 
■  Let A be set of vertices reachable from s in residual graph. 
■  By definition of A, s ∈ A. 
■  By definition of f, t ∉ A. 

€ 

v( f ) = f (e)
e out of A
∑ − f (e)

e in to A
∑

= c(e)
e out of A
∑

= cap(A,B)

original network 

s 

t 

A B 



37 

Running Time 

Assumption.  All capacities are integers between 1 and C. 
 
Invariant.  Every flow value f(e) and every residual capacities cf (e) 
remains an integer throughout the algorithm. 
 
Theorem.  The algorithm terminates in at most v(f*) ≤ nC iterations. 
Pf.  Each augmentation increase value by at least 1.   ▪ 
 
Corollary.  If C = 1, Ford-Fulkerson runs in O(m) time. 
 
Integrality theorem.  If all capacities are integers, then there exists a 
max flow f for which every flow value f(e) is an integer. 
Pf.  Since algorithm terminates, theorem follows from invariant.   ▪ 
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Max flow formulation. 
■  Create digraph G' = (L ∪ R ∪ {s, t},  E' ). 
■  Direct all edges from L to R, and assign infinite (or unit) capacity. 
■  Add source s, and unit capacity edges from s to each node in L. 
■  Add sink t, and unit capacity edges from each node in R to t. 

Bipartite Matching 
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Disjoint path problem.  Given a digraph G = (V, E) and two nodes s and t, 
find the max number of edge-disjoint s-t paths. 
 
Def.  Two paths are edge-disjoint if they have no edge in common. 

Ex:  communication networks. 
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Network connectivity.  Given a digraph G = (V, E) and two nodes s and t,  
find min number of edges whose removal disconnects t from s. 
 
Def.  A set of edges F ⊆ E disconnects t from s if all s-t paths uses at 
least on edge in F. 

Network Connectivity 
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Disjoint Paths and Network Connectivity 

Theorem.  [Menger 1927]  The max number of edge-disjoint s-t paths is 
equal to the min number of edges whose removal disconnects t from s. 
 
Pf.  ≥ 
■  Suppose max number of edge-disjoint paths is k. 
■  Then max flow value is k. 
■  Max-flow min-cut  ⇒  cut (A, B) of capacity k. 
■  Let F be set of edges going from A to B. 
■  |F| = k and disconnects t from s.   ▪ 
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Chapter 8 
 
NP and Computational 
Intractability 

Slides by Kevin Wayne. 
Copyright © 2005 Pearson-Addison Wesley. 
All rights reserved. 
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Polynomial-Time Reduction 

Purpose.  Classify problems according to relative difficulty. 
 
 
Design algorithms.  If X ≤ P Y and Y can be solved in polynomial-time,  
then X can also be solved in polynomial time. 
 
Establish intractability.  If X ≤ P Y and X cannot be solved in 
polynomial-time, then Y cannot be solved in polynomial time. 
 
Establish equivalence.  If X ≤ P Y and Y ≤ P X, we use notation X ≡ P Y. 
 

up to cost of reduction 
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Vertex Cover and Independent Set 

Claim.  VERTEX-COVER ≡P INDEPENDENT-SET. 
Pf.  We show S is an independent set iff V - S is a vertex cover. 

vertex cover 

independent set 
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Vertex Cover and Independent Set 

Claim.  VERTEX-COVER ≡P INDEPENDENT-SET. 
Pf.  We show S is an independent set iff V - S is a vertex cover. 
 
⇒ 
■  Let S be any independent set. 
■  Consider an arbitrary edge (u, v). 
■  S independent ⇒ u ∉ S or v ∉ S  ⇒  u ∈ V - S or v ∈ V - S. 
■  Thus, V - S covers (u, v). 

⇐  
■  Let V - S be any vertex cover. 
■  Consider two nodes u ∈ S and v ∈ S. 
■  Observe that (u, v) ∉ E since V - S is a vertex cover. 
■  Thus, no two nodes in S are joined by an edge  ⇒ S independent set. ▪ 
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Set Cover 

SET COVER:  Given a set U of elements, a collection S1, S2, . . . , Sm of 
subsets of U, and an integer k, does there exist a collection of ≤ k of 
these sets whose union is equal to U? 

Sample application. 
■  m available pieces of software. 
■  Set U of n capabilities that we would like our system to have. 
■  The ith piece of software provides the set Si ⊆ U of capabilities. 
■  Goal:  achieve all n capabilities using fewest pieces of software. 

 
Ex: 

U = { 1, 2, 3, 4, 5, 6, 7 } 
k = 2 
S1 = {3, 7}  S4 = {2, 4} 
S2 = {3, 4, 5, 6}  S5 = {5} 
S3 = {1}   S6 =  {1, 2, 6, 7} 
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SET COVER 
 
U = { 1, 2, 3, 4, 5, 6, 7 } 
k = 2 
Sa = {3, 7}   Sb = {2, 4} 
Sc = {3, 4, 5, 6}  Sd = {5} 
Se = {1}   Sf= {1, 2, 6, 7} 

Vertex Cover Reduces to Set Cover 

Claim.  VERTEX-COVER ≤ P SET-COVER. 
Pf.  Given a VERTEX-COVER instance G = (V, E), k, we construct a set 
cover instance whose size equals the size of the vertex cover instance. 
 
Construction.   
■  Create SET-COVER instance: 

–  k = k,  U = E,  Sv = {e ∈ E : e incident to v } 
■  Set-cover of size ≤ k iff vertex cover of size ≤ k.  ▪ 

a 

d 

b 

e 

f c 

VERTEX COVER 

k = 2 
e1  

e2  e3  

e5  

e4  

e6  

e7  
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Ex:  

Yes:  x1 = true, x2 = true x3 = false. 

Literal:  A Boolean variable or its negation. 
 
Clause:  A disjunction of literals. 
 
Conjunctive normal form:  A propositional 
formula Φ that is the conjunction of clauses. 
 
 
SAT:  Given CNF formula Φ, does it have a satisfying truth assignment? 
 
3-SAT:  SAT where each clause contains exactly 3 literals. 

Satisfiability 

  

€ 

Cj = x1 ∨ x2 ∨ x3

  

€ 

xi   or  xi

  

€ 

Φ =  C1 ∧C2 ∧ C3∧ C4

€ 

x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( )

each corresponds to a different variable 
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3 Satisfiability Reduces to Independent Set 

Claim.  3-SAT ≤ P INDEPENDENT-SET. 
Pf.  Given an instance Φ of 3-SAT, we construct an instance (G, k) of 
INDEPENDENT-SET that has an independent set of size k iff Φ is 
satisfiable. 
 
Construction. 
■  G contains 3 vertices for each clause, one for each literal. 
■  Connect 3 literals in a clause in a triangle. 
■  Connect literal to each of its negations. 
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€ 

Φ  =  x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )
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Review 

Basic reduction strategies. 
■  Simple equivalence:  INDEPENDENT-SET ≡ P VERTEX-COVER. 
■  Special case to general case:  VERTEX-COVER ≤ P SET-COVER. 
■  Encoding with gadgets:  3-SAT ≤ P INDEPENDENT-SET. 

Transitivity.  If X ≤ P Y and Y ≤ P Z, then X ≤ P Z. 
Pf idea.  Compose the two algorithms. 
 
Ex:  3-SAT ≤ P INDEPENDENT-SET ≤ P VERTEX-COVER ≤ P SET-COVER. 
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Decision Problems 

Decision problem. 
■  X is a set of strings. 
■  Instance:  string s. 
■  Algorithm A solves problem X:  A(s) = yes iff s ∈ X. 

Polynomial time.  Algorithm A runs in poly-time if for every string s, 
A(s) terminates in at most p(|s|) "steps", where p(⋅) is some polynomial.  

Def.  Algorithm C(s, t) is a certifier for problem X if for every string s,  
s ∈ X  iff there exists a string t such that C(s, t) = yes. 

NP.  Decision problems for which there exists a poly-time certifier. 
 
 
 
 

length of s 
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Certifiers and Certificates:  3-Satisfiability 

SAT.  Given a CNF formula Φ, is there a satisfying assignment? 
 
Certificate.  An assignment of truth values to the n boolean variables. 
 
Certifier.  Check that each clause in Φ has at least one true literal. 
 
 
Ex. 
 
 
 
 
 
 
Conclusion.  SAT is in NP. 

€ 

x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x4( )  ∧ x1  ∨ x3  ∨ x4( )

€ 

x1 =1, x2 =1, x3 = 0, x4 =1

instance s 

certificate t 
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P, NP, EXP 

P.  Decision problems for which there is a poly-time algorithm. 
EXP.  Decision problems for which there is an exponential-time algorithm. 
NP.  Decision problems for which there is a poly-time certifier. 

Claim.  P  ⊆  NP. 
Pf.  Consider any problem X in P. 
■  By definition, there exists a poly-time algorithm A(s) that solves X. 
■  Certificate: t = ε, certifier C(s, t) = A(s).   ▪ 

Claim.  NP  ⊆  EXP. 
Pf.  Consider any problem X in NP. 
■  By definition, there exists a poly-time certifier C(s, t) for X. 
■  To solve input s, run C(s, t) on all strings t with |t| ≤ p(|s|). 
■  Return yes, if C(s, t) returns yes for any of these.   ▪ 
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The Main Question:  P Versus NP 

Does P = NP?  [Cook 1971, Edmonds, Levin, Yablonski, Gödel] 
■  Is the decision problem as easy as the certification problem? 
■  Clay $1 million prize. 

 
 
 
 
 
 
 
 
 
If yes:  Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, … 
If no:  No efficient algorithms possible for 3-COLOR, TSP, SAT, … 

Consensus opinion on P = NP?  Probably no. 

EXP NP 

P 

If  P ≠ NP If  P = NP 

EXP 
P = NP 

would break RSA cryptography 
(and potentially collapse economy) 
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NP-Complete 

NP-complete.  A problem Y in NP with the property that for every 
problem X in NP, X ≤ p Y. 

Theorem.  Suppose Y is an NP-complete problem. Then Y is solvable in 
poly-time iff P = NP. 
Pf.  ⇐  If P = NP then Y can be solved in poly-time since Y is in NP. 
Pf.  ⇒  Suppose Y can be solved in poly-time. 
■  Let X be any problem in NP.  Since X ≤ p Y, we can solve X in 

poly-time. This implies NP  ⊆  P. 
■  We already know P  ⊆  NP. Thus P = NP.  ▪ 

Fundamental question.  Do there exist "natural" NP-complete problems? 
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∧ 

¬ 

∧ ∨ 

∧ 

∨ 

1 0 ? ? ? 

output 

inputs hard-coded inputs 

yes:  1 0 1 

Circuit Satisfiability 

CIRCUIT-SAT.  Given a combinational circuit built out of AND, OR, and NOT 
gates, is there a way to set the circuit inputs so that the output is 1? 
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∧ 
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Example 

Ex.  Construction below creates a circuit K whose inputs can be set so 
that K outputs true iff graph G has an independent set of size 2. 
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G = (V, E), n = 3 
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Establishing NP-Completeness 

Remark.  Once we establish first "natural" NP-complete problem, 
others fall like dominoes. 
 
Recipe to establish NP-completeness of problem Y. 
■  Step 1.  Show that Y is in NP. 
■  Step 2.  Choose an NP-complete problem X. 
■  Step 3.  Prove that X ≤ p Y.  

Justification.  If X is an NP-complete problem, and Y is a problem in NP 
with the property that X ≤ P Y then Y is NP-complete. 
 
Pf.  Let W be any problem in NP.  Then W  ≤ P   X   ≤ P   Y. 
■  By transitivity, W ≤ P  Y.  
■  Hence Y is NP-complete.  ▪ by assumption by definition of 

NP-complete 
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3-SAT is NP-Complete 

Theorem.  3-SAT is NP-complete. 
Pf.  Suffices to show that CIRCUIT-SAT ≤ P 3-SAT since 3-SAT is in NP. 
■  Let K be any circuit. 
■  Create a 3-SAT variable xi for each circuit element i. 
■  Make circuit compute correct values at each node: 

–  x2 = ¬ x3      ⇒  add 2 clauses: 
–  x1 = x4 ∨ x5   ⇒  add 3 clauses: 
–  x0 = x1 ∧ x2   ⇒  add 3 clauses: 

 
■  Hard-coded input values and output value. 

–  x5 = 0  ⇒  add 1 clause: 
–  x0 = 1  ⇒  add 1 clause: 

 
■  Final step:  turn clauses of length < 3 into 

clauses of length exactly 3.  ▪ 
∨ 

∧ 

¬ 

0 ? ? 

output 

x0 

x2 x1 

  

€ 

x2 ∨ x3  , x2 ∨ x3

€ 

x1 ∨ x4 , x1 ∨ x5  ,  x1 ∨ x4 ∨ x5

€ 

x0 ∨ x1 , x0 ∨ x2 , x0 ∨ x1 ∨ x2

x3 x4 x5 

  

€ 

x5
  

€ 

x0



61 

Observation.  All problems below are NP-complete and polynomial 
reduce to one another! 

CIRCUIT-SAT 

3-SAT 

DIR-HAM-CYCLE INDEPENDENT SET 

VERTEX COVER 

GRAPH 3-COLOR 

HAM-CYCLE 

TSP 

SUBSET-SUM 

SCHEDULING PLANAR 3-COLOR 

SET COVER 

NP-Completeness 

by definition of NP-completeness 
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Hamiltonian Cycle 

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle Γ that contains every node in V. 

YES:  vertices and faces of a dodecahedron. 
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Hamiltonian Cycle 

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle Γ that contains every node in V. 

1 

3 

5 

1' 

3' 

2 

4 

2' 

4' 

NO:  bipartite graph with odd number of nodes. 
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Traveling Salesperson Problem 

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length ≤ D? 
 
HAM-CYCLE:  given a graph G = (V, E), does there exists a simple cycle 
that contains every node in V? 
 
Claim.  HAM-CYCLE ≤ P TSP. 
Pf. 
■  Given instance G = (V, E) of HAM-CYCLE, create n cities with distance 

function 

■  TSP instance has tour of length ≤ n iff G is Hamiltonian.  ▪ 

Remark.  TSP instance in reduction satisfies Δ-inequality. 

€ 

d(u, v)  =  
 1 if (u, v) ∈  E
 2 if (u, v) ∉  E
$ 
% 
& 



66 

Coping With NP-Completeness 

Q.  Suppose I need to solve an NP-complete problem. What should I do? 
A.  Theory says you're unlikely to find poly-time algorithm. 

Must sacrifice one of three desired features. 
■  Solve problem to optimality. 
■  Solve problem in polynomial time. 
■  Solve arbitrary instances of the problem. 

This lecture.  Solve some special cases of NP-complete problems that 
arise in practice. 
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Vertex Cover 

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S ⊆ V such that |S| ≤ k, and for each edge (u, v) 
either u ∈ S, or v ∈ S, or both. 

3 

6 

10 

7 

1 

5 

8 

2 

4 9 

k = 4 
S = { 3, 6, 7, 10 } 
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Finding Small Vertex Covers 

Q.  What if k is small? 
 
Brute force.  O(k nk+1). 
■  Try all C(n, k) = O(nk) subsets of size k. 
■  Takes O(k n) time to check whether a subset is a vertex cover. 

Goal.  Limit exponential dependency on k, e.g., to O(2k k n).  
 
Ex.  n = 1,000, k = 10. 
Brute.    k nk+1  = 1034   ⇒  infeasible. 
Better.  2k k n = 107     ⇒  feasible. 
 
Remark.  If k is a constant, algorithm is poly-time; if k is a small 
constant, then it's also practical. 
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Finding Small Vertex Covers:  Algorithm 

Claim.  The following algorithm determines if G has a vertex cover of 
size ≤ k in O(2k kn) time. 
 
 
 
 
 
 
 
 
 
Pf. 
■  Correctness follows previous two claims. 
■  There are ≤ 2k+1 nodes in the recursion tree; each invocation takes 

O(kn) time.  ▪ 

boolean Vertex-Cover(G, k) { 
   if (G contains no edges)   return true 
   if (G contains ≥ kn edges) return false 
    
   let (u, v) be any edge of G 
   a = Vertex-Cover(G - {u}, k-1) 
   b = Vertex-Cover(G - {v}, k-1) 
   return a or b 
} 
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Finding Small Vertex Covers:  Recursion Tree 

k 

k-1 k-1 

k-2 k-2 k-2 k-2 

0 0 0 0 0 0 0 0 

k - i 

nkcknT
kcknknT
kcn

knT k2),(
 1if)1,(2
 1if

),( ≤⇒
#
$
%

>+−

=
≤
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Independent Set on Trees:  Greedy Algorithm 

Theorem.  The following greedy algorithm finds a maximum cardinality 
independent set in forests (and hence trees). 
 
 
 
 
 
 
 
 
 
 
 
Pf.  Correctness follows from the previous key observation.  ▪ 
 
Remark.  Can implement in O(n) time by considering nodes in postorder. 

Independent-Set-In-A-Forest(F) { 
   S ← φ 
   while (F has at least one edge) { 
      Let e = (u, v) be an edge such that v is a leaf 
      Add v to S 
      Delete from F nodes u and v, and all edges 
         incident to them. 
   } 
   return S 
} 
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Weighted Independent Set on Trees 

Weighted independent set on trees.  Given a tree and node weights wv > 0, 
find an independent set S that maximizes Σv∈S wv.  
 
Observation.  If (u, v) is an edge such that v is a leaf node, then either 
OPT includes u, or it includes all leaf nodes incident to u. 
 
Dynamic programming solution.  Root tree at some node, say r. 
■  OPTin  (u) = max weight independent set 

rooted at u, containing u. 
■  OPTout(u) = max weight independent set 

rooted at u, not containing u. 
 

r 

u 

v w 

  

€ 

OPTin (u) = wu +   OPTout (v)
v ∈ children(u)

∑

OPTout (u) = max OPTin (v), OPTout (v){ }
v ∈ children(u)

∑

x 

children(u) = { v, w, x } 
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Independent Set on Trees:  Greedy Algorithm 

Theorem.  The dynamic programming algorithm find a maximum 
weighted independent set in trees in O(n) time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pf.  Takes O(n) time since we visit nodes in postorder and examine each 
edge exactly once.  ▪ 

Weighted-Independent-Set-In-A-Tree(T) { 
   Root the tree at a node r 
   foreach (node u of T in postorder) { 
      if (u is a leaf) { 
         Min [u] = wu 
         Mout[u] = 0 
      } 
      else { 
         Min [u] = Σv∈children(u) Mout[v]  +  wv 
         Mout[u] = Σv∈children(u) max(Mout[v], Min[v]) 
      } 
   } 
   return max(Min[r], Mout[r]) 
} 

ensures a node is visited after 
all its children 
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Load Balancing 

Input.  m identical machines; n jobs, job j has processing time tj. 
■  Job j must run contiguously on one machine. 
■  A machine can process at most one job at a time. 

 
Def.  Let J(i) be the subset of jobs assigned to machine i.  The 
load of machine i is Li = Σj ∈ J(i) tj.  

Def. The makespan is the maximum load on any machine L = maxi Li. 

 
Load balancing.  Assign each job to a machine to minimize makespan. 
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List-scheduling algorithm. 
■  Consider n jobs in some fixed order. 
■  Assign job j to machine whose load is smallest so far. 

 
Implementation.  O(n log n) using a priority queue. 

Load Balancing:  List Scheduling 

List-Scheduling(m, n, t1,t2,…,tn) { 
   for i = 1 to m { 
      Li ← 0 
      J(i) ← φ 
   } 
 
   for j = 1 to n { 
      i = argmink Lk 
      J(i) ← J(i) ∪ {j} 
      Li ← Li + tj 
   } 
} 

jobs assigned to machine i 
load on machine i 

machine i has smallest load 
assign job j to machine i 
update load of machine i 
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Load Balancing:  List Scheduling Analysis 

Theorem. [Graham, 1966]  Greedy algorithm is a 2-approximation. 
■  First worst-case analysis of an approximation algorithm. 
■  Need to compare resulting solution with optimal makespan L*. 

 
 
Lemma 1.  The optimal makespan L* ≥ maxj tj.    
Pf.  Some machine must process the most time-consuming job.  ▪ 
 
Lemma 2.  The optimal makespan  
Pf.   
■  The total processing time is  Σj tj . 
■  One of m machines must do at least a 1/m fraction of total work. 
 
Not very strong lower bound. What if one job is very big and others 
are small jobs ?  ▪ 

€ 

L * ≥ 1
m t jj∑ .
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Load Balancing:  List Scheduling Analysis 

Theorem.  Greedy algorithm is a 2-approximation. 
Pf.  Consider load Li of bottleneck machine i. 
■  Let j be last job scheduled on machine i. 
■  When job j assigned to machine i, i had smallest load.  Its load 

before assignment is Li - tj    ⇒  Li - tj   ≤  Lk   for all 1 ≤ k ≤ m. 

j 

0 
L = Li Li - tj  

machine i 

blue jobs scheduled before j 
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Load Balancing:  List Scheduling Analysis 

Theorem.  Greedy algorithm is a 2-approximation. 
Pf.  Consider load Li of bottleneck machine i. 
■  Let j be last job scheduled on machine i. 
■  When job j assigned to machine i, i had smallest load.  Its load 

before assignment is Li - tj    ⇒  Li - tj   ≤  Lk   for all 1 ≤ k ≤ m. 
■  Sum inequalities over all k and divide by m: 

■  Now      ▪ 

■  The solution attained by the greedy algorithm is less 2 times the 
optimal solution  

Li  − t j ≤ 1
m Lkk∑

= 1
m t jj∑

≤ L*

  

€ 

Li  =  (Li − t j )
≤ L*

     
+ t j

≤ L*


  ≤  2L *.

Lemma 1 

Lemma 2 
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Load Balancing:  List Scheduling Analysis 

Q.  Is our analysis tight? 
A.  Essentially yes. 

Ex:  m machines, m(m-1) jobs length 1 jobs, one job of length m 

 
machine 2 idle 
machine 3 idle 
machine 4 idle 
machine 5 idle 
machine 6 idle 
machine 7 idle 
machine 8 idle 
machine 9 idle 
machine 10 idle 

list scheduling makespan = 19 

m = 10 
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Load Balancing:  List Scheduling Analysis 

Q.  Is our analysis tight? 
A.  Essentially yes. 

Ex:  m machines, m(m-1) jobs length 1 jobs, one job of length m 

 

m = 10 

optimal makespan = 10 



89 

Load Balancing:  LPT Rule 

Longest processing time (LPT).  Sort n jobs in descending order of 
processing time, and then run list scheduling algorithm. 

LPT-List-Scheduling(m, n, t1,t2,…,tn) { 
   Sort jobs so that t1 ≥ t2 ≥  … ≥ tn 
   
   for i = 1 to m { 
      Li ← 0 
      J(i) ← φ 
   } 
 
   for j = 1 to n { 
      i = argmink Lk 
      J(i) ← J(i) ∪ {j} 
      Li ← Li + tj 
   } 
} 

jobs assigned to machine i 
load on machine i 

machine i has smallest load 
assign job j to machine i 

update load of machine i 
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Load Balancing:  LPT Rule 

Observation.  If at most m jobs, then list-scheduling is optimal. 
Pf.  Each job put on its own machine.  ▪ 
 
Lemma 3.  If there are more than m jobs, L* ≥ 2 tm+1. 
Pf.  
■  Consider first m+1 jobs t1, …, tm+1. 
■  Since the ti's are in descending order, each takes at least tm+1 time.  
■  There are m+1 jobs and m machines, so by pigeonhole principle, at 

least one machine gets two jobs.  ▪ 

Theorem.  LPT rule is a 3/2 approximation algorithm. 
Pf.  Same basic approach as for list scheduling. 
 

               ▪ 
  

€ 

Li =  (Li − t j )
≤ L*

     
+ t j

≤ 1
2 L*


  ≤  3
2 L *.

Lemma 3 
( by observation, can assume number of jobs > m ) 
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Coping With NP-Hardness 

Q.  Suppose I need to solve an NP-hard problem. What should I do? 
A.  Theory says you're unlikely to find poly-time algorithm. 

Must sacrifice one of three desired features. 
■  Solve problem to optimality. 
■  Solve problem in polynomial time. 
■  Solve arbitrary instances of the problem. 


