Final Exam Review

Chapter 6
 Dynamic Programming

Knapsack Problem

Knapsack problem.
. Given n objects and a "knapsack."

- Item i weighs $w_{i}>0$ kilograms and has value $v_{i}>0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: $\{3,4\}$ has value 40 .

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Greedy: repeatedly add item with maximum ratio v_{i} / w_{i}. Ex: $\{5,2,1\}$ achieves only value $=35 \Rightarrow$ greedy not optimal.

Dynamic Programming: Adding a New Variable

Def. $\operatorname{OPT}(i, w)=\max$ profit subset of items $1, \ldots, i$ with weight limit w.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$ using weight limit w
- Case 2: OPT selects item i.
- new weight limit $=w-w_{i}$
- OPT selects best of $\{1,2, \ldots, i-1\}$ using this new weight limit

$$
O P T(i, w)= \begin{cases}0 & \text { if } \mathrm{i}=0 \\ O P T(i-1, w) & \text { if } \mathrm{w}_{\mathrm{i}}>\mathrm{w} \\ \max \{O P T(i-1, w), & \left.v_{i}+O P T\left(i-1, w-w_{i}\right)\right\} \\ \text { otherwise }\end{cases}
$$

Knapsack Algorithm
\square

		0	1	2	3	4	5	6	7	8	9	10

$$
\begin{aligned}
& \text { OPT: }\{4,3\} \\
& \text { value }=22+18=40
\end{aligned}
$$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Dynamic Programming Over Intervals

Notation. OPT $(i, j)=$ maximum number of base pairs in a secondary structure of the substring $b_{i} b_{i+1} \ldots b_{j}$.

- Case 1. If $\mathrm{i} \geq \mathrm{j}-4$.
- OPT $(i, j)=0$ by no-sharp turns condition.
- Case 2. Base b_{j} is not involved in a pair.
- OPT $(i, j)=$ OPT $(i, j-1)$
- Case 3. Base b_{j} pairs with b_{t} for some $i \leq t<j-4$.
- non-crossing constraint decouples resulting sub-problems
- OPT $(i, j)=1+\max _{t}\{$ OPT $(i, t-1)+$ OPT $(\dagger+1, j-1)\}$
take max over t such that $i \leq t<j-4$ and
b_{+}and b_{j} are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse context-free grammars.

Dynamic Programming Summary

Recipe.

- Characterize structure of problem.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Dynamic programming techniques.

- Binary choice: weighted interval scheduling.
- Multi-way choice: segmented least squares. ■ DP to optimimize a maximum likelihood
- Adding a new variable: knapsack.
- Dynamic programming over intervals: RNA secondary structure.

CKY parsing algorithm for context-free grammar has similar structure

Top-down vs. bottom-up: different people have different intuitions.

String Similarity

How similar are two strings?

- ocurrance
- occurrence

5 mismatches, 1 gap

0	c	-	u	r	r		a	n	c		e
0	c	c	u	r	r		e	n	c		e

Edit Distance

Applications.

- Basis for Unix diff.
- Speech recognition.
- Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ; mismatch penalty $\alpha_{p q}$.
- Cost = sum of gap and mismatch penalties.

Sequence Alignment

Goal: Given two strings $X=x_{1} x_{2} \ldots x_{m}$ and $Y=y_{1} y_{2} \ldots y_{n}$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs $x_{i}-y_{j}$ such that each item occurs in at most one pair and no crossings.

Def. The pair $x_{i}-y_{j}$ and $x_{i^{\prime}}-y_{j^{\prime}}$ cross if $i\left\langle i^{\prime}\right.$, but $\left.j\right\rangle j^{\prime}$.

$$
\operatorname{cost}(M)=\underbrace{\sum_{\left(x_{i}, y_{j}\right) \in M} \alpha_{x_{i} y_{j}}}_{\text {mismatch }}+\underbrace{\sum_{i: x_{i} \text { unmatched } j: y_{j} \text { unmatched }} \delta+\sum_{j} \delta}_{\text {gap }}
$$

Ex: ctaccg vs. tacAtg.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	
x_{6}					
C	T	A	C	C	-

Sol: $M=x_{2}-y_{1}, x_{3}-y_{2}, x_{4}-y_{3}, x_{5}-y_{4}, x_{6}-y_{6}$.

Sequence Alignment: Problem Structure

Def. OPT $(i, j)=$ min cost of aligning strings $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.

- Case 1: OPT matches $x_{i}-y_{j}$.
- pay mismatch for $x_{i}-y_{j}+\min$ cost of aligning two strings

$$
x_{1} x_{2} \ldots x_{i-1} \text { and } y_{1} y_{2} \ldots y_{j-1}
$$

- Case 2a: OPT leaves x_{i} unmatched.
- pay gap for x_{i} and \min cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j}$
- Case 2b: OPT leaves y_{j} unmatched.
- pay gap for y_{j} and min cost of aligning $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j-1}$

$$
O P T(i, j)=\left\{\begin{array}{cc}
j \delta & \text { if } \mathrm{i}=0 \\
\min \left\{\begin{array}{l}
\alpha_{x_{i} y_{j}}+O P T(i-1, j-1) \\
\delta+O P T(i-1, j) \\
\delta+O P T(i, j-1)
\end{array}\right. & \text { otherwise } \\
i \delta & \text { if } \mathrm{j}=0
\end{array}\right.
$$

Sequence Alignment: Linear Space

Divide: find index q that minimizes $f(q, n / 2)+g(q, n / 2)$ using DP.

- Align x_{q} and $y_{n / 2}$.

Conquer: recursively compute optimal alignment in each piece.

Shortest Paths

Shortest path problem. Given a directed graph $G=(V, E)$, with edge weights $c_{v w}$, find shortest path from node s to node t.
allow negative weights

Ex. Nodes represent agents in a financial setting and $c_{v w}$ is cost of transaction in which we buy from agent v and sell immediately to w.

Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs.

Re-weighting. Adding a constant to every edge weight can fail.

Shortest Paths: Dynamic Programming

Def. OPT($\mathrm{i}, \mathrm{v})=$ length of shortest v - \dagger path P using at most i edges.

- Case 1: P uses at most i-1 edges.
- OPT(i, v) = OPT(i-1, v)
- Case 2: P uses exactly i edges.
- if (v, w) is first edge, then OPT uses (v, w), and then selects best $w-\dagger$ path using at most i-1 edges

```
OPT(i,v)={}{\begin{array}{ll}{0}&{\mathrm{ if }\textrm{i}=0}\\{\operatorname{min}{OPT(i-1,v), \mp@subsup{\operatorname{min}}{(v,w)\inE}{{}{OPT(i-1,w)+\mp@subsup{c}{vw}{}}}}}&{\mathrm{ otherwise}}
```

Remark. By previous observation, if no negative cycles, then OPT($n-1, v$) length of shortest v - \dagger path.

Shortest Paths: Implementation

```
Shortest-Path(G, t) {
    foreach node v \in V
        M[0, v] \leftarrow \infty
    M[0, t] }\leftarrow
    for i = 1 to n-1
        foreach node v \in V
            M[i, v] \leftarrow M[i-1, v]
        foreach edge (v, w) \in E
            M[i, v] \leftarrow min { M[i, v], M[i-1, w] + C Cvw }
}
```

Analysis. $\Theta(m n)$ time, $\Theta\left(n^{2}\right)$ space.

Finding the shortest paths. Maintain a "successor" for each table entry.

Network Flow

Slides by Kevin Wayne Copyright © 2005 Pearson-Addison Wesley All rights reserved.

Minimum Cut Problem

Flow network.

- Abstraction for material flowing through the edges.
- $G=(V, E)=$ directed graph, no parallel edges.
- Two distinguished nodes: $s=$ source, $\dagger=$ sink.
- $c(e)=$ capacity of edge e.

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$
\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to A }} f(e)=v(f)
$$

Flows and Cuts

Weak duality. Let f be any flow. Then, for any $s-t$ cut (A, B) we have $v(f) \leq \operatorname{cap}(A, B)$.

Pf.

$$
\begin{aligned}
v(f) & =\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } A} f(e) \\
& \leq \sum_{e \text { out of } A} f(e) \\
& \leq \sum_{e \text { out of } A} c(e) \\
& =\operatorname{cap}(A, B) \quad .
\end{aligned}
$$

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut. If $v(f)=\operatorname{cap}(A, B)$, then f is a max flow and (A, B) is a min cut.

```
Value of flow =28
Cut capacity =28 F Flow value }\leq2
```


Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing the TFAE:
(i) There exists a cut (A, B) such that $v(f)=\operatorname{cap}(A, B)$.
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.
(i) \Rightarrow (ii) This was the corollary to weak duality lemma.
(ii) \Rightarrow (iii) We show contrapositive.

- Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.

Proof of Max-Flow Min-Cut Theorem

(iii) \Rightarrow (i)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of $A, s \in A$.
- By definition of $f, \dagger \notin A$.

$$
\begin{aligned}
v(f) & =\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to A }} f(e) \\
& =\sum_{e \text { out of } A} c(e) \\
& =\operatorname{cap}(A, B)
\end{aligned}
$$

original network

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value $f(e)$ and every residual capacities $c_{f}(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v\left(f^{\star}\right) \leq n C$ iterations. Pf. Each augmentation increase value by at least 1. -

Corollary. If $C=1$, Ford-Fulkerson runs in $O(m)$ time.

Integrality theorem. If all capacities are integers, then there exists a max flow for which every flow value $f(e)$ is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. .

Bipartite Matching

Max flow formulation.

- Create digraph $G^{\prime}=\left(L \cup R \cup\{s, \dagger\}, E^{\prime}\right)$.
- Direct all edges from L to R, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t.

Edge Disjoint Paths

Disjoint path problem. Given a digraph $G=(V, E)$ and two nodes s and t, find the max number of edge-disjoint s - \dagger paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

Network Connectivity

Network connectivity. Given a digraph $G=(V, E)$ and two nodes s and t, find min number of edges whose removal disconnects \dagger from s.

Def. A set of edges $F \subseteq E$ disconnects \dagger from s if all s-t paths uses at least on edge in F.

Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s - \dagger paths is equal to the min number of edges whose removal disconnects \dagger from s.

Pf. \geq

- Suppose max number of edge-disjoint paths is k.
- Then max flow value is k.
- Max-flow min-cut \Rightarrow cut (A, B) of capacity k.
- Let F be set of edges going from A to B.
- $|F|=k$ and disconnects \dagger from s. .

NP and Computational Intractability

PEARSON
Addison
Wesley

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If $X \leq p Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.

Establish intractability. If $X \leq_{p} Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If $X \leq_{p} Y$ and $Y \leq_{p} X$, we use notation $X \equiv_{p} Y$.
up to cost of reduction

Vertex Cover and Independent Set

Claim. VERTEX-COVER \equiv_{p} INDEPENDENT-SET. Pf. We show S is an independent set iff $V-S$ is a vertex cover.
independent set
vertex cover

Vertex Cover and Independent Set

Claim. VERTEX-COVER \equiv_{p} INDEPENDENT-SET.
Pf. We show S is an independent set iff $V-S$ is a vertex cover.

- Let S be any independent set.
- Consider an arbitrary edge (u, v).
- S independent $\Rightarrow u \notin S$ or $v \notin S \Rightarrow u \in V-S$ or $v \in V$-S.
- Thus, V-S covers (u, v).
- Let V-S be any vertex cover.
- Consider two nodes $u \in S$ and $v \in S$.
- Observe that (u, v) $\notin E$ since V - S is a vertex cover.
- Thus, no two nodes in S are joined by an edge \Rightarrow S independent set. .

Set Cover

SET COVER: Given a set U of elements, a collection $S_{1}, S_{2}, \ldots, S_{m}$ of subsets of U, and an integer k, does there exist a collection of $\leq k$ of these sets whose union is equal to U ?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The ith piece of software provides the set $S_{i} \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

Ex:

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} \\
\mathrm{V}=2 & \\
\mathrm{~S}_{1}=\{3,7\} & \mathrm{S}_{4}=\{2,4\} \\
\mathrm{S}_{2}=\{3,4,5,6\} & \mathrm{S}_{5}=\{5\} \\
\mathrm{S}_{3}=\{1\} & \mathrm{S}_{6}=\{1,2,6,7\}
\end{array}
$$

Vertex Cover Reduces to Set Cover

Claim. VERTEX-COVER $\leq p$ SET-COVER.
Pf. Given a VERTEX-COVER instance $G=(V, E)$, k, we construct a set cover instance whose size equals the size of the vertex cover instance.

Construction.

- Create SET-COVER instance:
$-k=k, U=E, S_{v}=\{e \in E: e$ incident to $v\}$
- Set-cover of size $\leq k$ iff vertex cover of size $\leq k$. -

$$
\begin{align*}
& \text { SET COVER } \\
& \mathrm{U}=\{1,2,3,4,5,6,7\} \\
& \mathrm{k}=2 \\
& \mathrm{~S}_{a}=\{3,7\} \\
& \mathrm{S}_{\mathrm{c}}=\{3,4,5,6\} \tag{b}\\
& \mathrm{S}_{e}=\{1\}
\end{align*}
$$

Satisfiability

Literal: A Boolean variable or its negation. $\quad x_{i}$ or $\overline{x_{i}}$
Clause: A disjunction of literals.
$C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}$

Conjunctive normal form: A propositional $\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$ formula Φ that is the conjunction of clauses.

SAT: Given CNF formula Φ, does it have a satisfying truth assignment?
3-SAT: SAT where each clause contains exactly 3 literals.
each corresponds to a different variable

$$
\begin{aligned}
& \text { Ex: }\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \\
& \text { Yes: } x_{1}=\text { true, } \mathrm{x}_{2}=\text { true } \mathrm{x}_{3}=\text { false. }
\end{aligned}
$$

3 Satisfiability Reduces to Independent Set

Claim. 3-SAT $\leq p$ INDEPENDENT-SET.
Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.

- G contains 3 vertices for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

G

$k=3$
$\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\begin{array}{lllll}x_{1} & \vee & x_{2} & x_{3}\end{array}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)$

Review

Basic reduction strategies.

- Simple equivalence: INDEPENDENT-SET \equiv p VERTEX-COVER.
- Special case to general case: VERTEX-COVER $\leq p$ SET-COVER.
- Encoding with gadgets: $3-$ SAT $\leq p$ INDEPENDENT-SET.

Transitivity. If $X \leq_{p} Y$ and $Y \leq p Z$, then $X \leq p Z$.
Pf idea. Compose the two algorithms.
Ex: $3-$ SAT $\leq p$ INDEPENDENT-SET $\leq p$ VERTEX-COVER $\leq p$ SET-COVER.

Decision Problems

Decision problem.

- X is a set of strings.
- Instance: string s.
- Algorithm A solves problem $X: A(s)=$ yes iff $s \in X$.

Polynomial time. Algorithm A runs in poly-time if for every string s, $A(s)$ terminates in at most $p(|s|)$ "steps", where $p(\cdot)$ is some polynomial.

```
\
```

Def. Algorithm $C(s, t)$ is a certifier for problem X if for every string s, $s \in X$ iff there exists a string \dagger such that $C(s, t)=$ yes.

NP. Decision problems for which there exists a poly-time certifier.

Certifiers and Certificates: 3-Satisfiability

SAT. Given a CNF formula Φ, is there a satisfying assignment?
Certificate. An assignment of truth values to the n boolean variables.
Certifier. Check that each clause in Φ has at least one true literal.

Ex.

$$
\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee \overline{x_{4}}\right)
$$

$$
x_{1}=1, x_{2}=1, x_{3}=0, x_{4}=1
$$

certificate \dagger

Conclusion. SAT is in NP.

P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.

EXP. Decision problems for which there is an exponential-time algorithm.
NP. Decision problems for which there is a poly-time certifier.

Claim. $P \subseteq N P$.
Pf. Consider any problem X in P.

- By definition, there exists a poly-time algorithm $A(s)$ that solves X.
- Certificate: $\dagger=\varepsilon$, certifier $C(s, t)=A(s)$. .

Claim. NP \subseteq EXP.
Pf. Consider any problem X in NP.

- By definition, there exists a poly-time certifier $C(s, t)$ for X.
- To solve input s, run $C(s, t)$ on all strings \dagger with $|\dagger| \leq p(|s|)$.
- Return yes, if $C(s, t)$ returns yes for any of these. .

The Main Question: P Versus NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

- Is the decision problem as easy as the certification problem?
- Clay \$1 million prize.

would break RSA cryptography
(and potentially collapse economy)

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ... If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

Consensus opinion on $P=N P$? Probably no.

NP-Complete

NP-complete. A problem Y in NP with the property that for every problem X in $N P, X \leq_{p} Y$.

Theorem. Suppose Y is an NP -complete problem. Then Y is solvable in poly-time iff $P=N P$.
Pf. \Leftarrow If $P=N P$ then Y can be solved in poly-time since Y is in NP.
Pf. \Rightarrow Suppose Y can be solved in poly-time.

- Let X be any problem in NP. Since $X \leq_{p} Y$, we can solve X in poly-time. This implies NP $\subseteq P$.
- We already know $P \subseteq N P$. Thus $P=N P$. .

Fundamental question. Do there exist "natural" NP-complete problems?

Circuit Satisfiability

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1?
yes: 101

Example

Ex. Construction below creates a circuit K whose inputs can be set so

 that K outputs true iff graph G has an independent set of size 2.

Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

- Step 1. Show that Y is in NP.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_{p} Y$.

Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that $X s_{p} Y$ then Y is NP-complete.

Pf. Let W be any problem in NP. Then $W \leq p X \leq p$.

- By transitivity, W $\leq p$ V.
- Hence Y is NP-complete. .
by definition of by assumption NP-complete

3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete.
Pf. Suffices to show that CIRCUIT-SAT $\leq p 3-$ SAT since 3-SAT is in NP.

- Let K be any circuit.
- Create a 3-SAT variable x_{i} for each circuit element i.
- Make circuit compute correct values at each node:
$-\mathrm{x}_{2}=\neg \mathrm{x}_{3} \quad \Rightarrow$ add 2 clauses: $x_{2} \vee x_{3}, \overline{x_{2}} \vee \overline{x_{3}}$
$-\mathrm{x}_{1}=\mathrm{x}_{4} \vee \mathrm{x}_{5} \Rightarrow$ add 3 clauses: $x_{1} \vee \overline{x_{4}}, x_{1} \vee \overline{x_{5}}, \overline{x_{1}} \vee x_{4} \vee x_{5}$
$-\mathrm{x}_{0}=\mathrm{x}_{1} \wedge \mathrm{x}_{2} \Rightarrow$ add 3 clauses: $\overline{x_{0}} \vee x_{1}, \overline{x_{0}} \vee x_{2}, x_{0} \vee \overline{x_{1}} \vee \overline{x_{2}}$
- Hard-coded input values and output value.
- $x_{5}=0 \Rightarrow$ add 1 clause: $\overline{x_{5}}$
- $x_{0}=1 \Rightarrow$ add 1 clause: x_{0}
- Final step: turn clauses of length < 3 into clauses of length exactly 3. -

NP-Completeness

Observation. All problems below are NP-complete and polynomial reduce to one another!

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph $G=(V, E)$, does there exist a simple cycle Γ that contains every node in V.

YES: vertices and faces of a dodecahedron.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph $G=(V, E)$, does there exist a simple cycle Γ that contains every node in V.

NO: bipartite graph with odd number of nodes.

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

HAM-CYCLE: given a graph $G=(V, E)$, does there exists a simple cycle that contains every node in V ?

Claim. $\mathrm{HAM}-\mathrm{CYCLE} \leq p T S P$.
Pf.

- Given instance $G=(V, E)$ of HAM-CYCLE, create n cities with distance function

$$
d(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ 2 & \text { if }(u, v) \notin E\end{cases}
$$

- TSP instance has tour of length $\leq n$ iff G is Hamiltonian. .

Remark. TSP instance in reduction satisfies Δ-inequality.

Coping With NP-Completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?
A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality.
- Solve problem in polynomial time.
- Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems that arise in practice.

Vertex Cover

VERTEX COVER: Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge (u, v) either $u \in S$, or $v \in S$, or both.

$$
\begin{aligned}
& k=4 \\
& s=\{3,6,7,10\}
\end{aligned}
$$

Finding Small Vertex Covers

Q. What if k is small?

Brute force. $O\left(k n^{k+1}\right)$.

- Try all $C(n, k)=O\left(n^{k}\right)$ subsets of size k.
- Takes $O(k n)$ time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, e.g., to $O\left(2^{k} k n\right)$.
Ex. $n=1,000, k=10$.
Brute. $k n^{k+1}=10^{34} \Rightarrow$ infeasible.
Better. $2^{k} k n=10^{7} \Rightarrow$ feasible.

Remark. If k is a constant, algorithm is poly-time; if k is a small constant, then it's also practical.

Finding Small Vertex Covers: Algorithm

Claim. The following algorithm determines if G has a vertex cover of size $\leq k$ in $O\left(2^{k} k n\right)$ time.

```
boolean Vertex-Cover(G, k) {
    if (G contains no edges) return true
    if (G contains \geq kn edges) return false
    let (u, v) be any edge of G
    a = Vertex-Cover (G - {u}, k-1)
    b = Vertex-Cover(G - {v}, k-1)
    return a or b
}
```

Pf.

- Correctness follows previous two claims.
- There are $\leq 2^{k+1}$ nodes in the recursion tree; each invocation takes $O(k n)$ time. .

Finding Small Vertex Covers: Recursion Tree

$$
T(n, k) \leq\left\{\begin{array}{ll}
c n & \text { if } k=1 \\
2 T(n, k-1)+c k n & \text { if } k>1
\end{array} \Rightarrow T(n, k) \leq 2^{k} c k n\right.
$$

Independent Set on Trees: Greedy Algorithm

Theorem. The following greedy algorithm finds a maximum cardinality independent set in forests (and hence trees).

```
Independent-Set-In-A-Forest(F) {
    S}\leftarrow
    while (F has at least one edge) {
        Let e = (u, v) be an edge such that v is a leaf
        Add v to S
        Delete from F nodes }u\mathrm{ and v, and all edges
            incident to them.
    }
    return S
}
```

Pf. Correctness follows from the previous key observation. -

Remark. Can implement in $O(n)$ time by considering nodes in postorder.

Weighted Independent Set on Trees

Weighted independent set on trees. Given a tree and node weights $w_{v}>0$, find an independent set S that maximizes $\Sigma_{v \in S} w_{v}$.

Observation. If (u, v) is an edge such that v is a leaf node, then either OPT includes u, or it includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.

- $O P T_{\text {in }}(u)=$ max weight independent set rooted at u, containing u.
- $O P T_{\text {out }}(u)=$ max weight independent set rooted at u, not containing u.

$$
\begin{aligned}
& O P T_{\text {in }}(u)=w_{u}+\sum_{v \in \operatorname{children}(u)} O P T_{\text {out }}(v) \\
& O P T_{\text {out }}(u)=\sum_{v \in \operatorname{children}(u)} \max \left\{O P T_{\text {in }}(v), O P T_{\text {out }}(v)\right\}
\end{aligned}
$$

Independent Set on Trees: Greedy Algorithm

Theorem. The dynamic programming algorithm find a maximum weighted independent set in trees in $O(n)$ time.

```
Weighted-Independent-Set-In-A-Tree(T) {
    Root the tree at a node r
    foreach (node u of T in postorder) {
        if (u is a leaf) {
            M
            M Mut [u] = 0
        }
        else {
            Min
```



```
        }
    }
    return max (M}\mp@subsup{M}{\mathrm{ in }}{[r], M Mout [r])
}
```

Pf. Takes $O(n)$ time since we visit nodes in postorder and examine each edge exactly once. -

Load Balancing

Input. m identical machines; n jobs, $j o b j$ has processing time \dagger_{j}.

- Job j must run contiguously on one machine.
- A machine can process at most one job at a time.

Def. Let $J(i)$ be the subset of jobs assigned to machine i. The load of machine i is $L_{i}=\Sigma_{j \in J(i)} \dagger_{j}$.

Def. The makespan is the maximum load on any machine $L=\max _{i} L_{i}$.

Load balancing. Assign each job to a machine to minimize makespan.

Load Balancing: List Scheduling

List-scheduling algorithm.

- Consider n jobs in some fixed order.

- Assign job j to machine whose load is smallest so far.

```
List-Scheduling(m, n, tri, t2,\ldots, th) {
    for i = 1 to m {
        L
        J(i)}\leftarrow\phi\longleftarrow\mp@code{jobs assigned to machine i
    }
    for j = 1 to n {
        i = argmin}\mp@subsup{\mp@code{k}}{\textrm{k}}{}\mp@subsup{\textrm{L}}{\textrm{k}}{}\quad\longleftarrow\mathrm{ machine i has smallest load
        J(i)}\leftarrowJ(i)U{j} \leftarrowassign job j to machine i
        Li
    }
}
```

Implementation. $O(n \log n)$ using a priority queue.

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan $L^{*} \geq \max _{j} \dagger_{j}$.
Pf. Some machine must process the most time-consuming job. -

Lemma 2. The optimal makespan $L^{*} \geq \frac{1}{m} \sum_{j} t_{j}$.
Pf.

- The total processing time is $\Sigma_{j} \dagger_{j}$.
- One of m machines must do at least a $1 / \mathrm{m}$ fraction of total work.

Not very strong lower bound. What if one job is very big and others are small jobs? .

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L_{i} of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is $L_{i}-\dagger_{j} \Rightarrow L_{i}-\dagger_{j} \leq L_{k}$ for all $1 \leq k \leq m$.

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load L_{i} of bottleneck machine i.

- Let j be last job scheduled on machine i.
- When job j assigned to machine i, i had smallest load. Its load before assignment is $L_{i}-t_{j} \Rightarrow L_{i}-\dagger_{j} \leq L_{k}$ for all $1 \leq k \leq m$.
- Sum inequalities over all k and divide by m :

$$
\begin{aligned}
& L_{i}-t_{j} \leq \frac{1}{m} \sum_{k} L_{k} \\
&=\frac{1}{m} \sum_{j} t_{j} \\
& \text { Lemma } 2 \rightarrow \quad \leq L^{*}
\end{aligned}
$$

- Now $L_{i}=\underbrace{\left(L_{i}-t_{j}\right)}_{\leq L^{*}}+\underbrace{t_{j}}_{\leq L^{*}} \leq 2 L^{*}$.
- The solution attained by the greedy algorithm is less 2 times the optimal solution

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, $m(m-1)$ jobs length 1 jobs, one job of length m

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, $m(m-1)$ jobs length 1 jobs, one job of length m

optimal makespan $=10$

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of processing time, and then run list scheduling algorithm.

```
LPT-List-Scheduling(m, n, ti, th, .., tn) {
    Sort jobs so that }\mp@subsup{t}{1}{}\geq\mp@subsup{t}{2}{}\geq\ldots\geq\mp@subsup{t}{n}{
    for i = 1 to m {
        L
        J(i)}\leftarrow\phi\quad\leftarrow\mathrm{ jobs assigned to machine i
    }
    for j = 1 to n {
        i = argmin}\mp@subsup{n}{k}{}\mp@subsup{L}{k}{
        J(i)}\leftarrowJ(i)U{j} \leftarrow assign jobj to machine 
        Li
    }
}
```


Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal. Pf. Each job put on its own machine. -

Lemma 3. If there are more than m jobs, $L^{*} \geq 2 t_{m+1}$.
Pf.

- Consider first $m+1$ jobs t_{1}, \ldots, t_{m+1}.
- Since the t_{i} 's are in descending order, each takes at least t_{m+1} time.
- There are $m+1$ jobs and m machines, so by pigeonhole principle, at least one machine gets two jobs. .

Theorem. LPT rule is a $3 / 2$ approximation algorithm.
Pf. Same basic approach as for list scheduling.

$$
\begin{aligned}
L_{i}=\underbrace{\left(L_{i}-t_{j}\right)}_{\leq L^{*}}+ & \underbrace{t_{j}}_{\leq \frac{1}{2} L^{*}} \leq \frac{3}{2} L^{*} \\
& \uparrow \\
& \begin{array}{c}
\text { Lemma } 3 \\
\text { (by observation, can assume number of jobs }>m \text {) }
\end{array}
\end{aligned}
$$

Coping With NP-Hardness

Q. Suppose I need to solve an NP-hard problem. What should I do?
A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

- Solve problem to optimality.
- Solve problem in polynomial time.
- Solve arbitrary instances of the problem.

