
Final Exam Review

2

Chapter 6

Dynamic Programming

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

12

Knapsack Problem

Knapsack problem.
■  Given n objects and a "knapsack."
■  Item i weighs wi > 0 kilograms and has value vi > 0.
■  Knapsack has capacity of W kilograms.
■  Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35 ⇒ greedy not optimal.

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11

13

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

■  Case 1: OPT does not select item i.
–  OPT selects best of { 1, 2, …, i-1 } using weight limit w

■  Case 2: OPT selects item i.
–  new weight limit = w – wi
–  OPT selects best of { 1, 2, …, i–1 } using this new weight limit

€

OPT(i, w) =

0 if i = 0
OPT(i −1, w) if wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi){ } otherwise

$
%

&
%

14

Knapsack Algorithm

n + 1

1

Value

18

22

28

1
Weight

5

6

6 2

7

Item
1

3

4

5

2

φ

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11
OPT: { 4, 3 }
value = 22 + 18 = 40

17

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary
structure of the substring bibi+1…bj.

■  Case 1. If i ≥ j - 4.
–  OPT(i, j) = 0 by no-sharp turns condition.

■  Case 2. Base bj is not involved in a pair.
–  OPT(i, j) = OPT(i, j-1)

■  Case 3. Base bj pairs with bt for some i ≤ t < j - 4.
–  non-crossing constraint decouples resulting sub-problems
–  OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) }

Remark. Same core idea in CKY algorithm to parse context-free grammars.

take max over t such that i ≤ t < j-4 and
bt and bj are Watson-Crick complements

18

Dynamic Programming Summary

Recipe.
■  Characterize structure of problem.
■  Recursively define value of optimal solution.
■  Compute value of optimal solution.
■  Construct optimal solution from computed information.

Dynamic programming techniques.
■  Binary choice: weighted interval scheduling.
■  Multi-way choice: segmented least squares.
■  Adding a new variable: knapsack.
■  Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up: different people have different intuitions.

Viterbi algorithm for HMM also uses
DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy

CKY parsing algorithm for context-free
grammar has similar structure

20

String Similarity

How similar are two strings?
■  ocurrance

■  occurrence

o c u r r a n c e

c c u r r e n c e o

-

o c u r r n c e

c c u r r n c e o

- - a

e -

o c u r r a n c e

c c u r r e n c e o

-

5 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

21

Applications.
■  Basis for Unix diff.
■  Speech recognition.
■  Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

■  Gap penalty δ; mismatch penalty αpq.
■  Cost = sum of gap and mismatch penalties.

2δ + αCA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

- T

C

C

C

αTC + αGT + αAG+ 2αCA

-

Edit Distance

22

Goal: Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find
alignment of minimum cost.

Def. An alignment M is a set of ordered pairs xi-yj such that each item
occurs in at most one pair and no crossings.

Def. The pair xi-yj and xi'-yj' cross if i < i', but j > j'.

Ex: CTACCG vs. TACATG.
Sol: M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

Sequence Alignment

€

cost(M) = αxi y j
(xi, y j)∈ M
∑

mismatch

+ δ
i : xi unmatched

∑ + δ
j : y j unmatched

∑

gap

C T A C C -

T A C A T -

G

G
y1 y2 y3 y4 y5 y6

x2 x3 x4 x5 x1 x6

23

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.
■  Case 1: OPT matches xi-yj.

–  pay mismatch for xi-yj + min cost of aligning two strings
x1 x2 . . . xi-1 and y1 y2 . . . yj-1

■  Case 2a: OPT leaves xi unmatched.
–  pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

■  Case 2b: OPT leaves yj unmatched.
–  pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

€

OPT(i, j) =

"

$
$ $

%

$
$
$

jδ if i = 0

min

αxi y j
+ OPT(i −1, j −1)

δ + OPT(i −1, j)
δ + OPT(i, j −1)

"

$

%
$

otherwise

iδ if j = 0

24

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
■  Align xq and yn/2.

Conquer: recursively compute optimal alignment in each piece.

Sequence Alignment: Linear Space

i-j x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

q

n / 2

m-n

26

Shortest Paths

Shortest path problem. Given a directed graph G = (V, E), with edge
weights cvw, find shortest path from node s to node t.

Ex. Nodes represent agents in a financial setting and cvw is cost of
transaction in which we buy from agent v and sell immediately to w.

s

3

t

2

6

7

4
5

10

18
 -16

9

 6

15 -8

 30

 20

44

16

11

6

19

6

allow negative weights

27

Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs.

Re-weighting. Adding a constant to every edge weight can fail.

u

t

s v

2

 1

3

-6

s t

2

 3

2

-3

3

5 5

6 6

0

28

Shortest Paths: Dynamic Programming

Def. OPT(i, v) = length of shortest v-t path P using at most i edges.

■  Case 1: P uses at most i-1 edges.
–  OPT(i, v) = OPT(i-1, v)

■  Case 2: P uses exactly i edges.
–  if (v, w) is first edge, then OPT uses (v, w), and then selects best

w-t path using at most i-1 edges

Remark. By previous observation, if no negative cycles, then
OPT(n-1, v) = length of shortest v-t path.

€

OPT(i, v) =
 0 if i = 0

 min OPT(i −1, v) ,
(v, w)∈ E

min OPT(i −1, w)+ cvw{ }
$
%
&

'
(
)

otherwise

$

%
*

& *

29

Shortest Paths: Implementation

Analysis. Θ(mn) time, Θ(n2) space.

Finding the shortest paths. Maintain a "successor" for each table
entry.

Shortest-Path(G, t) {
 foreach node v ∈ V
 M[0, v] ← ∞
 M[0, t] ← 0

 for i = 1 to n-1
 foreach node v ∈ V
 M[i, v] ← M[i-1, v]
 foreach edge (v, w) ∈ E
 M[i, v] ← min { M[i, v], M[i-1, w] + cvw }
}

30

Chapter 7

Network Flow

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

31

Flow network.
■  Abstraction for material flowing through the edges.
■  G = (V, E) = directed graph, no parallel edges.
■  Two distinguished nodes: s = source, t = sink.
■  c(e) = capacity of edge e.

Minimum Cut Problem

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4
capacity

source sink

32

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

 Value = 10 - 4 + 8 - 0 + 10
 = 24

4

A

33

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have
v(f) ≤ cap(A, B).

Pf.

 ▪

Flows and Cuts

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≤ f (e)
e out of A
∑

≤ c(e)
e out of A
∑

= cap(A,B)
s

t

A B

 7

6

 8
4

34

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

 Value of flow = 28
Cut capacity = 28 ⇒ Flow value ≤ 28

10

9

9

14

4 10

4 8 9

1

0 0

0

14

s

2

3

4

5

6

7

t

 15

 5

 30

 15

 10

 8

 15

 9

 6 10

 10

 10 15 4

 4 0 A

35

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the
max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing the TFAE:
 (i) There exists a cut (A, B) such that v(f) = cap(A, B).
 (ii) Flow f is a max flow.
 (iii) There is no augmenting path relative to f.

(i) ⇒ (ii) This was the corollary to weak duality lemma.

(ii) ⇒ (iii) We show contrapositive.
■  Let f be a flow. If there exists an augmenting path, then we can

improve f by sending flow along path.

36

Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i)
■  Let f be a flow with no augmenting paths.
■  Let A be set of vertices reachable from s in residual graph.
■  By definition of A, s ∈ A.
■  By definition of f, t ∉ A.

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

= c(e)
e out of A
∑

= cap(A,B)

original network

s

t

A B

37

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacities cf (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) ≤ nC iterations.
Pf. Each augmentation increase value by at least 1. ▪

Corollary. If C = 1, Ford-Fulkerson runs in O(m) time.

Integrality theorem. If all capacities are integers, then there exists a
max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. ▪

38

Max flow formulation.
■  Create digraph G' = (L ∪ R ∪ {s, t}, E').
■  Direct all edges from L to R, and assign infinite (or unit) capacity.
■  Add source s, and unit capacity edges from s to each node in L.
■  Add sink t, and unit capacity edges from each node in R to t.

Bipartite Matching

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞

R L

G'

39

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.

s

2

3

4

Edge Disjoint Paths

5

6

7

t

40

Network connectivity. Given a digraph G = (V, E) and two nodes s and t,
find min number of edges whose removal disconnects t from s.

Def. A set of edges F ⊆ E disconnects t from s if all s-t paths uses at
least on edge in F.

Network Connectivity

s

2

3

4

5

6

7

t

41

Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is
equal to the min number of edges whose removal disconnects t from s.

Pf. ≥
■  Suppose max number of edge-disjoint paths is k.
■  Then max flow value is k.
■  Max-flow min-cut ⇒ cut (A, B) of capacity k.
■  Let F be set of edges going from A to B.
■  |F| = k and disconnects t from s. ▪

s

2

3

4

5

6

7

t s

2

3

4

5

6

7

t

A

42

Chapter 8

NP and Computational
Intractability

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

43

Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If X ≤ P Y and Y can be solved in polynomial-time,
then X can also be solved in polynomial time.

Establish intractability. If X ≤ P Y and X cannot be solved in
polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If X ≤ P Y and Y ≤ P X, we use notation X ≡ P Y.

up to cost of reduction

44

Vertex Cover and Independent Set

Claim. VERTEX-COVER ≡P INDEPENDENT-SET.
Pf. We show S is an independent set iff V - S is a vertex cover.

vertex cover

independent set

45

Vertex Cover and Independent Set

Claim. VERTEX-COVER ≡P INDEPENDENT-SET.
Pf. We show S is an independent set iff V - S is a vertex cover.

⇒
■  Let S be any independent set.
■  Consider an arbitrary edge (u, v).
■  S independent ⇒ u ∉ S or v ∉ S ⇒ u ∈ V - S or v ∈ V - S.
■  Thus, V - S covers (u, v).

⇐
■  Let V - S be any vertex cover.
■  Consider two nodes u ∈ S and v ∈ S.
■  Observe that (u, v) ∉ E since V - S is a vertex cover.
■  Thus, no two nodes in S are joined by an edge ⇒ S independent set. ▪

46

Set Cover

SET COVER: Given a set U of elements, a collection S1, S2, . . . , Sm of
subsets of U, and an integer k, does there exist a collection of ≤ k of
these sets whose union is equal to U?

Sample application.
■  m available pieces of software.
■  Set U of n capabilities that we would like our system to have.
■  The ith piece of software provides the set Si ⊆ U of capabilities.
■  Goal: achieve all n capabilities using fewest pieces of software.

Ex:

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
S1 = {3, 7} S4 = {2, 4}
S2 = {3, 4, 5, 6} S5 = {5}
S3 = {1} S6 = {1, 2, 6, 7}

47

SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

Vertex Cover Reduces to Set Cover

Claim. VERTEX-COVER ≤ P SET-COVER.
Pf. Given a VERTEX-COVER instance G = (V, E), k, we construct a set
cover instance whose size equals the size of the vertex cover instance.

Construction.
■  Create SET-COVER instance:

–  k = k, U = E, Sv = {e ∈ E : e incident to v }
■  Set-cover of size ≤ k iff vertex cover of size ≤ k. ▪

a

d

b

e

f c

VERTEX COVER

k = 2
e1

e2 e3

e5

e4

e6

e7

48

Ex:

Yes: x1 = true, x2 = true x3 = false.

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form: A propositional
formula Φ that is the conjunction of clauses.

SAT: Given CNF formula Φ, does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

Satisfiability

€

Cj = x1 ∨ x2 ∨ x3

€

xi or xi

€

Φ = C1 ∧C2 ∧ C3∧ C4

€

x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3()

each corresponds to a different variable

49

3 Satisfiability Reduces to Independent Set

Claim. 3-SAT ≤ P INDEPENDENT-SET.
Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of
INDEPENDENT-SET that has an independent set of size k iff Φ is
satisfiable.

Construction.
■  G contains 3 vertices for each clause, one for each literal.
■  Connect 3 literals in a clause in a triangle.
■  Connect literal to each of its negations.

€

x2

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

€

x3

€

x1

€

x1

€

x2

€

x4

€

x1

€

x2

€

x3

k = 3

G

51

Review

Basic reduction strategies.
■  Simple equivalence: INDEPENDENT-SET ≡ P VERTEX-COVER.
■  Special case to general case: VERTEX-COVER ≤ P SET-COVER.
■  Encoding with gadgets: 3-SAT ≤ P INDEPENDENT-SET.

Transitivity. If X ≤ P Y and Y ≤ P Z, then X ≤ P Z.
Pf idea. Compose the two algorithms.

Ex: 3-SAT ≤ P INDEPENDENT-SET ≤ P VERTEX-COVER ≤ P SET-COVER.

52

Decision Problems

Decision problem.
■  X is a set of strings.
■  Instance: string s.
■  Algorithm A solves problem X: A(s) = yes iff s ∈ X.

Polynomial time. Algorithm A runs in poly-time if for every string s,
A(s) terminates in at most p(|s|) "steps", where p(⋅) is some polynomial.

Def. Algorithm C(s, t) is a certifier for problem X if for every string s,
s ∈ X iff there exists a string t such that C(s, t) = yes.

NP. Decision problems for which there exists a poly-time certifier.

length of s

53

Certifiers and Certificates: 3-Satisfiability

SAT. Given a CNF formula Φ, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

Ex.

Conclusion. SAT is in NP.

€

x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4() ∧ x1 ∨ x3 ∨ x4()

€

x1 =1, x2 =1, x3 = 0, x4 =1

instance s

certificate t

54

P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.
EXP. Decision problems for which there is an exponential-time algorithm.
NP. Decision problems for which there is a poly-time certifier.

Claim. P ⊆ NP.
Pf. Consider any problem X in P.
■  By definition, there exists a poly-time algorithm A(s) that solves X.
■  Certificate: t = ε, certifier C(s, t) = A(s). ▪

Claim. NP ⊆ EXP.
Pf. Consider any problem X in NP.
■  By definition, there exists a poly-time certifier C(s, t) for X.
■  To solve input s, run C(s, t) on all strings t with |t| ≤ p(|s|).
■  Return yes, if C(s, t) returns yes for any of these. ▪

55

The Main Question: P Versus NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
■  Is the decision problem as easy as the certification problem?
■  Clay $1 million prize.

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, …

Consensus opinion on P = NP? Probably no.

EXP NP

P

If P ≠ NP If P = NP

EXP
P = NP

would break RSA cryptography
(and potentially collapse economy)

56

NP-Complete

NP-complete. A problem Y in NP with the property that for every
problem X in NP, X ≤ p Y.

Theorem. Suppose Y is an NP-complete problem. Then Y is solvable in
poly-time iff P = NP.
Pf. ⇐ If P = NP then Y can be solved in poly-time since Y is in NP.
Pf. ⇒ Suppose Y can be solved in poly-time.
■  Let X be any problem in NP. Since X ≤ p Y, we can solve X in

poly-time. This implies NP ⊆ P.
■  We already know P ⊆ NP. Thus P = NP. ▪

Fundamental question. Do there exist "natural" NP-complete problems?

57

∧

¬

∧ ∨

∧

∨

1 0 ? ? ?

output

inputs hard-coded inputs

yes: 1 0 1

Circuit Satisfiability

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT
gates, is there a way to set the circuit inputs so that the output is 1?

58

∧
¬

u-v

∨

1

independent set of size 2?

n inputs (nodes in independent set) hard-coded inputs (graph description)

∨

∨

∧

u-w

0

∧

v-w

1

∧

u
?

∧

v
?

∧

w
?

∧

∨

set of size 2?

both endpoints of some edge have been chosen?

independent set?

Example

Ex. Construction below creates a circuit K whose inputs can be set so
that K outputs true iff graph G has an independent set of size 2.

u

v w

€

n
2

"

$

%

&
'

G = (V, E), n = 3

59

Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem,
others fall like dominoes.

Recipe to establish NP-completeness of problem Y.
■  Step 1. Show that Y is in NP.
■  Step 2. Choose an NP-complete problem X.
■  Step 3. Prove that X ≤ p Y.

Justification. If X is an NP-complete problem, and Y is a problem in NP
with the property that X ≤ P Y then Y is NP-complete.

Pf. Let W be any problem in NP. Then W ≤ P X ≤ P Y.
■  By transitivity, W ≤ P Y.
■  Hence Y is NP-complete. ▪ by assumption by definition of

NP-complete

60

3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete.
Pf. Suffices to show that CIRCUIT-SAT ≤ P 3-SAT since 3-SAT is in NP.
■  Let K be any circuit.
■  Create a 3-SAT variable xi for each circuit element i.
■  Make circuit compute correct values at each node:

–  x2 = ¬ x3 ⇒ add 2 clauses:
–  x1 = x4 ∨ x5 ⇒ add 3 clauses:
–  x0 = x1 ∧ x2 ⇒ add 3 clauses:

■  Hard-coded input values and output value.

–  x5 = 0 ⇒ add 1 clause:
–  x0 = 1 ⇒ add 1 clause:

■  Final step: turn clauses of length < 3 into

clauses of length exactly 3. ▪
∨

∧

¬

0 ? ?

output

x0

x2 x1

€

x2 ∨ x3 , x2 ∨ x3

€

x1 ∨ x4 , x1 ∨ x5 , x1 ∨ x4 ∨ x5

€

x0 ∨ x1 , x0 ∨ x2 , x0 ∨ x1 ∨ x2

x3 x4 x5

€

x5

€

x0

61

Observation. All problems below are NP-complete and polynomial
reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLE INDEPENDENT SET

VERTEX COVER

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULING PLANAR 3-COLOR

SET COVER

NP-Completeness

by definition of NP-completeness

62

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a
simple cycle Γ that contains every node in V.

YES: vertices and faces of a dodecahedron.

63

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a
simple cycle Γ that contains every node in V.

1

3

5

1'

3'

2

4

2'

4'

NO: bipartite graph with odd number of nodes.

65

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is
there a tour of length ≤ D?

HAM-CYCLE: given a graph G = (V, E), does there exists a simple cycle
that contains every node in V?

Claim. HAM-CYCLE ≤ P TSP.
Pf.
■  Given instance G = (V, E) of HAM-CYCLE, create n cities with distance

function

■  TSP instance has tour of length ≤ n iff G is Hamiltonian. ▪

Remark. TSP instance in reduction satisfies Δ-inequality.

€

d(u, v) =
 1 if (u, v) ∈ E
 2 if (u, v) ∉ E
$
%
&

66

Coping With NP-Completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?
A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
■  Solve problem to optimality.
■  Solve problem in polynomial time.
■  Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems that
arise in practice.

68

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S ⊆ V such that |S| ≤ k, and for each edge (u, v)
either u ∈ S, or v ∈ S, or both.

3

6

10

7

1

5

8

2

4 9

k = 4
S = { 3, 6, 7, 10 }

69

Finding Small Vertex Covers

Q. What if k is small?

Brute force. O(k nk+1).
■  Try all C(n, k) = O(nk) subsets of size k.
■  Takes O(k n) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, e.g., to O(2k k n).

Ex. n = 1,000, k = 10.
Brute. k nk+1 = 1034 ⇒ infeasible.
Better. 2k k n = 107 ⇒ feasible.

Remark. If k is a constant, algorithm is poly-time; if k is a small
constant, then it's also practical.

71

Finding Small Vertex Covers: Algorithm

Claim. The following algorithm determines if G has a vertex cover of
size ≤ k in O(2k kn) time.

Pf.
■  Correctness follows previous two claims.
■  There are ≤ 2k+1 nodes in the recursion tree; each invocation takes

O(kn) time. ▪

boolean Vertex-Cover(G, k) {
 if (G contains no edges) return true
 if (G contains ≥ kn edges) return false

 let (u, v) be any edge of G
 a = Vertex-Cover(G - {u}, k-1)
 b = Vertex-Cover(G - {v}, k-1)
 return a or b
}

72

Finding Small Vertex Covers: Recursion Tree

k

k-1 k-1

k-2 k-2 k-2 k-2

0 0 0 0 0 0 0 0

k - i

nkcknT
kcknknT
kcn

knT k2),(
 1if)1,(2
 1if

),(≤⇒
#
$
%

>+−

=
≤

75

Independent Set on Trees: Greedy Algorithm

Theorem. The following greedy algorithm finds a maximum cardinality
independent set in forests (and hence trees).

Pf. Correctness follows from the previous key observation. ▪

Remark. Can implement in O(n) time by considering nodes in postorder.

Independent-Set-In-A-Forest(F) {
 S ← φ
 while (F has at least one edge) {
 Let e = (u, v) be an edge such that v is a leaf
 Add v to S
 Delete from F nodes u and v, and all edges
 incident to them.
 }
 return S
}

76

Weighted Independent Set on Trees

Weighted independent set on trees. Given a tree and node weights wv > 0,
find an independent set S that maximizes Σv∈S wv.

Observation. If (u, v) is an edge such that v is a leaf node, then either
OPT includes u, or it includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.
■  OPTin (u) = max weight independent set

rooted at u, containing u.
■  OPTout(u) = max weight independent set

rooted at u, not containing u.

r

u

v w

€

OPTin (u) = wu + OPTout (v)
v ∈ children(u)

∑

OPTout (u) = max OPTin (v), OPTout (v){ }
v ∈ children(u)

∑

x

children(u) = { v, w, x }

77

Independent Set on Trees: Greedy Algorithm

Theorem. The dynamic programming algorithm find a maximum
weighted independent set in trees in O(n) time.

Pf. Takes O(n) time since we visit nodes in postorder and examine each
edge exactly once. ▪

Weighted-Independent-Set-In-A-Tree(T) {
 Root the tree at a node r
 foreach (node u of T in postorder) {
 if (u is a leaf) {
 Min [u] = wu
 Mout[u] = 0
 }
 else {
 Min [u] = Σv∈children(u) Mout[v] + wv
 Mout[u] = Σv∈children(u) max(Mout[v], Min[v])
 }
 }
 return max(Min[r], Mout[r])
}

ensures a node is visited after
all its children

82

Load Balancing

Input. m identical machines; n jobs, job j has processing time tj.
■  Job j must run contiguously on one machine.
■  A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The
load of machine i is Li = Σj ∈ J(i) tj.

Def. The makespan is the maximum load on any machine L = maxi Li.

Load balancing. Assign each job to a machine to minimize makespan.

83

List-scheduling algorithm.
■  Consider n jobs in some fixed order.
■  Assign job j to machine whose load is smallest so far.

Implementation. O(n log n) using a priority queue.

Load Balancing: List Scheduling

List-Scheduling(m, n, t1,t2,…,tn) {
 for i = 1 to m {
 Li ← 0
 J(i) ← φ
 }

 for j = 1 to n {
 i = argmink Lk
 J(i) ← J(i) ∪ {j}
 Li ← Li + tj
 }
}

jobs assigned to machine i
load on machine i

machine i has smallest load
assign job j to machine i
update load of machine i

84

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
■  First worst-case analysis of an approximation algorithm.
■  Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan L* ≥ maxj tj.
Pf. Some machine must process the most time-consuming job. ▪

Lemma 2. The optimal makespan
Pf.
■  The total processing time is Σj tj .
■  One of m machines must do at least a 1/m fraction of total work.

Not very strong lower bound. What if one job is very big and others
are small jobs ? ▪

€

L * ≥ 1
m t jj∑ .

85

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load Li of bottleneck machine i.
■  Let j be last job scheduled on machine i.
■  When job j assigned to machine i, i had smallest load. Its load

before assignment is Li - tj ⇒ Li - tj ≤ Lk for all 1 ≤ k ≤ m.

j

0
L = Li Li - tj

machine i

blue jobs scheduled before j

86

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load Li of bottleneck machine i.
■  Let j be last job scheduled on machine i.
■  When job j assigned to machine i, i had smallest load. Its load

before assignment is Li - tj ⇒ Li - tj ≤ Lk for all 1 ≤ k ≤ m.
■  Sum inequalities over all k and divide by m:

■  Now ▪

■  The solution attained by the greedy algorithm is less 2 times the
optimal solution

Li − t j ≤ 1
m Lkk∑

= 1
m t jj∑

≤ L*

€

Li = (Li − t j)
≤ L*

+ t j

≤ L*

 ≤ 2L *.

Lemma 1

Lemma 2

87

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle
machine 3 idle
machine 4 idle
machine 5 idle
machine 6 idle
machine 7 idle
machine 8 idle
machine 9 idle
machine 10 idle

list scheduling makespan = 19

m = 10

88

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

m = 10

optimal makespan = 10

89

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of
processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t1,t2,…,tn) {
 Sort jobs so that t1 ≥ t2 ≥ … ≥ tn

 for i = 1 to m {
 Li ← 0
 J(i) ← φ
 }

 for j = 1 to n {
 i = argmink Lk
 J(i) ← J(i) ∪ {j}
 Li ← Li + tj
 }
}

jobs assigned to machine i
load on machine i

machine i has smallest load
assign job j to machine i

update load of machine i

90

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.
Pf. Each job put on its own machine. ▪

Lemma 3. If there are more than m jobs, L* ≥ 2 tm+1.
Pf.
■  Consider first m+1 jobs t1, …, tm+1.
■  Since the ti's are in descending order, each takes at least tm+1 time.
■  There are m+1 jobs and m machines, so by pigeonhole principle, at

least one machine gets two jobs. ▪

Theorem. LPT rule is a 3/2 approximation algorithm.
Pf. Same basic approach as for list scheduling.

 ▪

€

Li = (Li − t j)
≤ L*

+ t j

≤ 1
2 L*

 ≤ 3
2 L *.

Lemma 3
(by observation, can assume number of jobs > m)

91

Coping With NP-Hardness

Q. Suppose I need to solve an NP-hard problem. What should I do?
A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
■  Solve problem to optimality.
■  Solve problem in polynomial time.
■  Solve arbitrary instances of the problem.

