Asymptotic Notation
* Big ©

e Definition: f(n) is in ©(g(n)) if f(n) is bounded above and below by
g(n) (within constant multiple)

— there exist positive constant ¢; and ¢ and non-negative integer ng
such that c1g9(n) < f(n) < ceog(n) for every n > ng

e Examples:
— Zn(n — 1) € ©(n?)
x why?
— 2n — 51 € O(n)
x why?



Asymptotic analysis

« Sometimes
asymptotically slower
algorithms work well
for small inputs

* QOverall we are
interested in running
time as n gets large

1(n)

N L



Order of Growth

* Theoretical analysis focuses on order of
growth" of an algorithm

 How the algorithm behavesas n — o

« Some common order of growth

n,n?,n3,n? logn,log*n,loglogn, nlogn,n!, 2", 3™ n", /n



Asymptotic Notation

Big O, (2.0

upper, lower, tight bound (when input is
sufficiently large and remain true when
input is infinitely large)

defines a set of similar functions



Big O

e Definition: f(n) is in O(g(n)) if “order of growth of f(n)” < “order of
growth of g(n)” (within constant multiple)

— there exist positive constant ¢ and non-negative integer ng such that
f(n) < cg(n) for every n > ng

e Examples:
— 10n € O(n?)
x why?
— 5n+20 € O(n)
x why?
— 2n+6 ¢ O(logn)
x why?

* g(n) is an upper bound



Big ©

e Definition: f(n) is in ©(g(n)) if f(n) is bounded above and below by
g(n) (within constant multiple)

— there exist positive constant ¢; and ¢ and non-negative integer ng
such that c1g(n) < f(n) < ceg(n) for every n > ng

e Examples:
— zn(n — 1) € O(n?)
x why?
— 2n — 51 € O(n)
x why?

* g(n) is a tight bound



Big ()

For a given function g(n) 2(g(n)) = f(n)
There exist constant ¢ and n, such that:

0 <cg(n) < f(n)foral n > ng

f(n) grows at least as fast as g(n); g(n) is
asymptotically lower bound.

Example:
vn =Q(logn);c=1,n9 = 16



Asymptotic Notation

e Asymptotic notation has been developed to provide a tool for studying
order of growth

— O(g(n)): a set of functions with the same or smaller order of growth as g(n)
x 2n2 —5n+1 € O(n?)
x 27 4+ nl00 —2 c O(n!)
x 2n+ 6 ¢ O(logn)
— Q(g(n)): a set of functions with the same or larger order of growth as g(n)
* 2n? —bn+1 € Q(n?)
x 2" +nl00 2 Q(n!)
* 2n+ 6 € Q(logn)
— ©(g(n)): a set of functions with the same order of growth as g(n)
x 2n2 —5n+1 € O(n?)
x 27 +nl00 — 2 ¢ O(n!)
x 2n+ 6 ¢ ©(logn)



Useful conventions

« Set in a formula represents anonymous
function in the set

n® +O0(n) = O(n?)

f(n) = n’ 4 O(n?)



Function Comparison

« Verify the notation by compare the order of

growth
f(n) (0 t(n) has a smaller order of growth than g(n)
lim ——= =< ¢>0 t(n)has the same order of growth as g(n)
n—oo g(n) | o0 t(n) has a larger order of growth than g(n)

« useful tools for computing limits

e L’Hopital’s rule
f(n)

. I ()
nlggo g(—'n,) o nh—{réo g’(fn,)

e Stirling’s formula

n! ~ \/277?,(2)”

€



Bounding Functions

non-recursive algorithms
set up a sum for the
number of times the basic
operation is executed
simplify the sum
determine the order of
growth (using asymptotic
notation)

1.

&
[
ﬁ.
—_
+
[\
+

&

NE
I
(o)}
2

l1=14+1+---+1=n¢c6(n)

NE

—
Il
P

n(n+1)
2

..._|_n:

=
Il
p—

1+4+.__+n2:n(n—|—1)(2n+1) n®
3

=

3

[




