
Asymptotic Notation
• Big

€

Θ

Asymptotic analysis

• Sometimes
asymptotically slower
algorithms work well
for small inputs

• Overall we are
interested in running
time as n gets large

Order of Growth

• Theoretical analysis focuses on ``order of
growth'' of an algorithm

• How the algorithm behaves as
• Some common order of growth

n�⇥

Asymptotic Notation

• Big
• upper, lower, tight bound (when input is

sufficiently large and remain true when
input is infinitely large)

• defines a set of similar functions

Big O

• g(n) is an upper bound

Big �

• g(n) is a tight bound

For a given function g(n)
There exist constant c and n0 such that:

f(n) grows at least as fast as g(n); g(n) is
asymptotically lower bound.

Example:

for all

Big �

�
n = �(log n); c = 1, n0 = 16

Asymptotic Notation

Useful conventions

• Set in a formula represents anonymous
function in the set

n2 + O(n) = O(n2)

f(n) = n3 + O(n2)

Function Comparison

• Verify the notation by compare the order of
growth

• useful tools for computing limits

Bounding Functions

• non-recursive algorithms
• set up a sum for the

number of times the basic
operation is executed
simplify the sum

• determine the order of
growth (using asymptotic
notation)

