
• A heap can be seen as a complete
binary tree:

What makes a binary tree complete?
Is the example above complete?

Heaps

16

14 10

8 7 9 3

2 4 1

• A heap can be seen as a complete binary
tree:

Heaps

16

14 10

8 7 9 3

2 4 1 1 1 111

Heaps
• In practice, heaps are usually

implemented as arrays:

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A = =

Heaps
• To represent a complete binary tree as an array:

- The root node is A[1]
- Node i is A[i]
- The parent of node i is A[i/2] (note: integer divide)
- The left child of node i is A[2i]
- The right child of node i is A[2i + 1]

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A = =

Referencing Heap Elements

• So…

Parent(i) { return ëi/2û; }

Left(i) { return 2*i; }

right(i) { return 2*i + 1; }

• An aside: How would you implement this
most efficiently?

The Heap Property
• Heaps also satisfy the heap property:

A[Parent(i)] ³ A[i] for all nodes i > 1
- In other words, the value of a node is at

most the value of its parent
- Where is the largest element in a heap

stored?
• Definitions:
- The height of a node in the tree = the

number of edges on the longest
downward path to a leaf
- The height of a tree = the height of its

root

Heap Height

• What is the height of an n-element
heap? Why?

Number of node in full binary tree of height h
2" + 2$ + 2% + …+ 2' = 2')$ − 1

2, ≤ . ≤ 2,)$ −1
Taking log we get

ℎ ≤ log . , log . + 1 ≤ ℎ + 1
log . + 1 − 1 ≤ ℎ ≤ log .

ℎ = 45667 log .

Heap Height

• What is the height of an n-element
heap? Why? Θ(log(&)

• This is nice: basic heap operations
take at most time proportional to the
height of the heap

Heap Height

• Heapify

• Build-heap

• Heapsort

Heap Operations: Heapify()
• Heapify(): maintain the heap property
- Given: a node i in the heap with children l and r
- Given: two subtrees rooted at l and r, assumed to be

heaps
- Problem: The subtree rooted at i may violate the heap

property (How?)
- Action: let the value of the parent node “float down”

so subtree at i satisfies the heap property
‣ What do you suppose will be the basic operation

between i, l, and r?

Heap Operations: Heapify()
Heapify(A, i)
{

l = Left(i); r = Right(i);
if (l <= heap_size(A) && A[l] > A[i])

largest = l;
else

largest = i;
if (r <= heap_size(A) && A[r] > A[largest])

largest = r;
if (largest != i)

Swap(A, i, largest);
Heapify(A, largest);

}

How to maintain heap property.
Suppose property is violated at A[i]

Heapify(A,2) Example

16

4 10

14 7 9 3

2 8 1

16 10 14 7 9 3 2 8 1A = 4

Assumes that prior to violation of heap property
As node A[2] the array is indeed a heap.

Heapify(A,2) Example

16

4 10

14 7 9 3

2 8 1

16 10 7 9 3 2 8 1A = 4 14

Heapify(A,2) Example

16

14 10

4 7 9 3

2 8 1

16 14 10 4 7 9 3 2 8 1A =

Heapify(A,2) Example

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 8 1A = 4

Heapify(A,4) Example

16

14 10

4 7 9 3

2 8 1

16 14 10 7 9 3 2 1A = 4 8

Heapify(A,4) Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

Heapify(A,4) Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 1A = 4

Heapify(A,9) Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =

Analyzing Heapify(): Informal

• Aside from the recursive call, what is the
running time of Heapify()?

• How many times can Heapify()
recursively call itself?

• What is the worst-case running time of
Heapify() on a heap of size n?

