
• A heap can be seen as a complete 
binary tree:

What makes a binary tree complete?  
Is the example above complete?
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Heaps
• In practice, heaps are usually 

implemented as arrays:
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Heaps
• To represent a complete binary tree as an array: 

- The root node is A[1]
- Node i is A[i]
- The parent of node i is A[i/2] (note: integer divide)
- The left child of node i is A[2i]
- The right child of node i is A[2i + 1]

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A = =



Referencing Heap Elements

• So…

Parent(i) { return ëi/2û; }

Left(i) { return 2*i; }

right(i) { return 2*i + 1; }

• An aside: How would you implement this 
most efficiently?



The Heap Property
• Heaps also satisfy the heap property:

A[Parent(i)] ³ A[i] for all nodes i > 1
- In other words, the value of a node is at 

most the value of its parent
- Where is the largest element in a heap 

stored?
• Definitions:
- The height of a node in the tree = the 

number of edges on the longest 
downward path to a leaf 
- The height of a tree = the height of its 

root



Heap Height

• What is the height of an n-element 
heap? Why? 

Number of node in full binary tree of height h
2" + 2$ + 2% + …+ 2' = 2')$ − 1

2, ≤ . ≤ 2,)$ −1
Taking log we get 

ℎ ≤ log . , log . + 1 ≤ ℎ + 1
log . + 1 − 1 ≤ ℎ ≤ log .

ℎ = 45667 log .



Heap Height

• What is the height of an n-element 
heap? Why?  Θ(log(&)

• This is nice: basic heap operations 
take at most time proportional to the 
height of the heap



Heap Height

• Heapify

• Build-heap

• Heapsort



Heap Operations: Heapify()
• Heapify(): maintain the heap property
- Given: a node i in the heap with children l and r
- Given: two subtrees rooted at l and r, assumed to be 

heaps
- Problem: The subtree rooted at i may violate the heap 

property (How?)
- Action: let the value of the parent node “float down”

so subtree at i satisfies the heap property 
‣ What do you suppose will be the basic operation 

between i, l, and r?



Heap Operations: Heapify()
Heapify(A, i)
{ 

l = Left(i); r = Right(i);
if (l <= heap_size(A) && A[l] > A[i]) 

largest = l;
else

largest = i;
if (r <= heap_size(A) && A[r] > A[largest])

largest = r;
if (largest != i) 

Swap(A, i, largest);
Heapify(A, largest);

}

How to maintain heap property. 
Suppose property is violated at A[i] 



Heapify(A,2) Example
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Assumes that prior to violation of heap property 
As node A[2] the array is indeed a heap.



Heapify(A,2) Example
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Heapify(A,2) Example
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Heapify(A,2) Example
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Heapify(A,4) Example
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Heapify(A,4) Example

16

14 10

8 7 9 3

2 4 1

16 14 10 8 7 9 3 2 4 1A =



Heapify(A,4) Example
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Heapify(A,9) Example
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Analyzing Heapify(): Informal

• Aside from the recursive call, what is the 
running time of Heapify()?

• How many times can Heapify()
recursively call itself?

• What is the worst-case running time of 
Heapify() on a heap of size n?


