Heaps

* A heap can be seen as a complete

binary tree:
() ()
O O O O
O © G

What makes a binary tree complete?

Is the example above complete?

Heaps

* A heap can be seen as a complete binary

tree:
© ©
(. O (. (2

Heaps

» In practice, heaps are usually
implemented as arrays:

IA=[16]14|10[8]|7[9]|3]|2|4]1I |7]

Heaps

« To represent a complete binary tree as an array:
= The root node is A[1]
= Node /is A[/]
= The parent of node /is A[//2] (note: integer divide)
= The left child of node /is A[2/]
= The right child of node /is A[2/+ 1]

A =[1e[141o[87931241 [H

Referencing Heap Elements

So...

Parent(i) { return Li/2]; }
Left(i) { return 2%i; }
right(i) { return 2*i + 1; }

An aside: How would you implement this
most efficiently?

The Heap Property

* Heaps also satisfy the heap property.
Al[Parent(n] = Al /] for all nodes 7> 1

- In other words, the value of a node is at
most the value of its parent

- Where is the largest element in a heap
stored?
* Definitions:
- The height of a node in the tree = the

number of edges on the longest
downward path to a leaf

= The height of a tree = the height of its
root

Heap Height

o What is the height of an n-element
heap? Why?

Number of node in full binary tree of height h
20 + 21 422+ 420 =20+1 1
2" <n < 2" -1

Taking log we get

h<log(n),logln+1)<h+1
log(n+1) —1 < h <log(n)
h = floor (log(n))

Heap Height

o What is the height of an n-element
heap? Why? 0(log(n)

 This is nice: basic heap operations
take at most time proportional to the
height of the heap

Heap Height

* Heapify
* Build-heap

* Heapsort

Heap Operations: Heapify()

* Heapify () : maintain the heap property

= Given: a node /in the heap with children /and r

- Given: two subtrees rooted at /and r, assumed to be
heaps

= Problem: The subtree rooted at /may violate the heap
property (How?)

= Action: let the value of the parent node “float down”
so subtree at /satisfies the heap property

» What do you suppose will be the basic operation
between i, |, and r?

Heap Operations: Heapify()

Heapify (A, 1)
{
1l = Left(i); r = Right(i);
if (1 <= heap size(A) && A[l] > A[i])
largest = 1;
else
largest = 1i;
if (r <= heap size(A) && A[r] > A[largest])
largest = r;
if (largest !'= 1i)
Swap (A, i1, largest);
Heapify (A, largest);
}

How to maintain heap property.
Suppose property is violated at A[i]

Heapity(A.,2) Example

Assumes that prior to violation of heap property
As node A[2] the array is indeed a heap.

IA=[16]4]10[14|7[9]3|2]|8]I]

Heapity(A.,2) Example

[@& ©

14 O O 3
2 ©® @

¥\
IA=[16]4]10[14|7[9]3|2]|8]I]

Heapity(A.,2) Example

14 ©
(4) O ©O 3

2 ©® @

A =|16]14|10{4|7|9]3|2]|8]|I]

Heapity(A.,2) Example

14 ©
(4) O ©O 3

2 ©® @

A =|16]14|10{4|7|9]3|2]|8]I]

Heapity(A .4) Example

14 ©
(4) O ©O 3

2 ©® @

el B
A =|16]14|10{4|7|9]3|2]|8]I]

Heapity(A .4) Example

14 ©
(8, O ©O 3

2 @ @

A =[16]14[10{8|7|9]3|2]|4]|1I]

Heapity(A .4) Example

14 ©
(8, O ©O 3

2 @ @

A =[16]14[10{8|7|9]3|2]|4]|1I]

Heapity(A,9) Example

14 ©
(8, O ©O 3

2 @ @

A =[16]14[10{8|7|9]3|2]|4]|1I]

Analyzing Heapify(): Informal

* Aside from the recursive call, what 1s the
running time of Heapify ()

* How many times can Heapify ()
recursively call itself?

* What 1s the worst-case running time of
Heapify () on a heap of size n?

