
4.1 Interval Scheduling

Interval Scheduling

Interval scheduling.

- Job j starts at s_{j} and finishes at f_{j}.
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- [Earliest start time] Consider jobs in ascending order of start time s_{j}.
- [Earliest finish time] Consider jobs in ascending order of finish time f_{j}.
- [Shortest interval] Consider jobs in ascending order of interval length $f_{j}-s_{j}$.
- [Fewest conflicts] For each job, count the number of conflicting jobs c_{j}. Schedule in ascending order of conflicts c_{j}.

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

```
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{
jobs selected
A}\leftarrow
for j = 1 to n {
    if (job j compatible with A)
}
return A
```

Implementation. $O(n \log n$)

- Remember job j^{\star} that was added last to A.
- Job j is compatible with A if $s_{j} \geq f_{j *}$.

4.1 Interval Partitioning

Interval Partitioning

Interval partitioning.

- Lecture j starts at s_{j} and finishes at f_{j}.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Interval Partitioning

Interval partitioning

- Lecture j starts at s_{j} and finishes at f_{j}.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Interval Partitioning: Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed \geq depth.
Ex: Depth of schedule below $=3 \Rightarrow$ schedule below is optimal.
a, b, call contain 9:30
Q. Does there always exist a schedule equal to depth of intervals?

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time assign lecture to any compatible classroom.

```
Sort intervals by starting time so that s}\mp@subsup{\mathbf{s}}{1}{}\leq\mp@subsup{\mathbf{s}}{2}{}\leq\ldots\leq\mp@subsup{\mathbf{s}}{n}{
d}\leftarrow0< number of allocated classrooms
for j = 1 to n {
    if (lecture j is compatible with some classroom k)
        schedule lecture j in classroom k
    else
        allocate a new classroom d + 1
        lol}\begin{array}{l}{\mathrm{ allocate a new classroom d + 1 }}\\{\mathrm{ schedule lecture j in classroom d + 1 }}\\{d\leftarrowd+1}
}
```


Interval Partitioning: Greedy Analysis

Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem. Greedy algorithm is optimal.
Pf.

- Let $d=$ number of classrooms that the greedy algorithm allocates.
- Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all d-1 other classrooms.
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_{j}.
- Thus, we have d lectures overlapping at time $s_{j}+\varepsilon$
- Key observation \Rightarrow all schedules use \geq d classrooms.

Implementation. $O(n \log n)$.

- For each classroom k, maintain the finish time of the last job added.
- Keep the classrooms in a priority queue

4.2 Scheduling to Minimize Lateness

Scheduling to Minimizing Lateness

Minimizing lateness problem.

- Single resource processes one job at a time.
- Job j requires t_{j} units of processing time and is due at time d_{j}.
- If j starts at time s_{j}, it finishes at time $f_{j}=s_{j}+\dagger_{j}$.
- Lateness: $\ell_{\mathrm{j}}=\max \left\{0, \mathrm{f}_{\mathrm{j}}-\mathrm{d}_{\mathrm{j}}\right\}$.
- Goal: schedule all jobs to minimize maximum lateness $L=\max \ell_{j}$.

Ex:

Minimizing Lateness: Greedy Algorithms
Greedy template. Consider jobs in some order.

- [Shortest processing time first] Consider jobs in ascending order
of processing time \dagger_{j}.
- [Earliest deadline first] Consider jobs in ascending order of
deadline d_{j}.
- [Smallest slack] Consider jobs in ascending order of slack $d_{j}-\dagger_{j}$.

Minimizing Lateness: Greedy Algorithms
Greedy template. Consider jobs in some order.

- [Shortest processing time first] Consider jobs in ascending order of processing time ${ }_{j}{ }_{j}$

- [Smallest slack] Consider jobs in ascending order of slack $\mathrm{d}_{\mathrm{j}}-\mathrm{t}_{\mathrm{j}}$.

Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
$i<j$ but j scheduled before i .

Observation. Greedy schedule has no inversions.
Observation. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.
Pf. Define S^{*} to be an optimal schedule that has the fewest number of
inversions, and let's see what happens.

- Can assume S^{\star} has no idle time.
- If S^{*} has no inversions, then $S=S^{*}$.
- If S^{*} has an inversion, let i-j be an adjacent inversion
- swapping i and j does not increase the maximum lateness and
strictly decreases the number of inversions
- this contradicts definition of S^{\star}.

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
$i<j$ but j scheduled before i.

Claim. Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the max lateness.

Pf. Let ℓ be the lateness before the swap, and let ℓ ' be it afterwards.

- $\ell_{k}^{\prime}=\ell_{k}$ for all $k \neq i, j$
- $\ell_{i}{ }_{i} \leq \ell_{i}$
- If job j is late:

```
l}=\mp@subsup{f}{j}{\prime}-\mp@subsup{d}{j}{}\quad\mathrm{ (definition)
    fi-d
    \mp@subsup{f}{i}{}-\mp@subsup{d}{j}{}
    f fi-di }\quad(i<j
(definition)
```


Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.

Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.

Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

4.3 Optimal Caching

Optimal Offline Caching

Caching.

- Cache with capacity to store k items
- Sequence of m item requests $d_{1}, d_{2}, \ldots, d_{m}$.
- Cache hit: item already in cache when requested.
- Cache miss: item not already in cache when requested: must bring requested item into cache, and evict some existing item, if full.

Goal. Eviction schedule that minimizes number of cache misses.
Ex: $k=2$, initial cache $=a b$
requests: a, b, c, b, c, a, a, b
Optimal eviction schedule: 2 cache misses

a	a	b
b	a	b
c	c	b
b	c	b
c	c	b
a	a	b
a	a	b
b	a	b

Reduced Eviction Schedules

Def. A reduced schedule is a schedule that only inserts an item into the cache in a step in which that item is requested.

Intuition. Can transform an unreduced schedule into a reduced one with no more cache misses.

```
future queries: \(g a b c e d a b b a c d e a f a d e f g h .\).
    cache miss eject this one
```

Theorem. [Bellady, 1960s] FF is optimal eviction schedule.
Pf. Algorithm and theorem are intuitive; proof is subtle.

4.4 Shortest Paths in a Graph

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S=\{s\}, \mathrm{d}(\mathrm{s})=0$.
- Repeatedly choose unexplored node v which minimizes

$$
\begin{aligned}
& \pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e}, \\
& \text { add } v \text { to } S \text {, and set } \mathrm{d}(\mathrm{v})=\pi(\mathrm{v}) .
\end{aligned} \quad \begin{aligned}
& \text { shortest path to some } u \text { in explored } \\
& \text { part, followed by a single edge }(u, v)
\end{aligned}
$$

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined
the shortest path distance $d(u)$ from s to u.
- Initialize S = \{s \}, d(s) = 0 .
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e}
$$

add v to S, and set $d(v)=\pi(v)$. $\quad \begin{aligned} & \text { shortest path to some } u \text { in explored } \\ & \text { part, followed by a single edge (} u, v \text {) }\end{aligned}$

Dijkstra's Algorithm: Proof of Correctness

Invariant. For each node $u \in S, d(u)$ is the length of the shortest s - u path. Pf. (by induction on $|S|$)
Base case: $|S|=1$ is trivial
Inductive hypothesis: Assume true for $|S|=k \geq 1$.

- Let v be next node added to S, and let $u-v$ be the chosen edge.
- The shortest s-u path plus (u, v) is an $s-v$ path of length $\pi(v)$.
- Consider any $s-v$ path P. We'll see that it's no shorter than $\pi(v)$.
- Let $x-y$ be the first edge in P that leaves S,
and let P^{\prime} be the subpath to x.
- P is already too long as soon as it leaves S

$$
\begin{array}{ccc}
\ell(P) \geq \ell\left(P^{\prime}\right)+\ell(x, y) \geq d(x)+\ell(x, y) \geq \pi(y) \geq \pi(v) \\
1 & 1 & 1 \\
l_{\text {nonnegative }}^{\text {weights }} \begin{array}{ccc}
\text { inductive } & \text { hypothesis } & \text { defn of } \pi(y)
\end{array} & \begin{array}{l}
\text { Dijkstra chose } \\
\text { instead of } y
\end{array}
\end{array}
$$

For each unexplored node, explicitly maintain $\pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e}$
Extra Slides

- Next node to explore = node with minimum $\pi(v)$.
- When exploring v, for each incident edge $e=(v, w)$, update $\pi(w)=\min \{\pi(w), \pi(v)+\ell\}$.

Efficient implementation. Maintain a priority queue of unexplored nodes, prioritized by $\pi(v)$.

PQ Operation	Dijkstra	Array	Binary heap	d-way Heap	Fib heap \dagger
Insert	n	n	$\log n$	$d \log _{d} n$	1
ExtractMin	n	n	$\log ^{n}$	$d \log _{d} n$	$\log n$
ChangeKey	m	1	$\log n$	$\log _{d} n$	1
IsEmpty	n	1	1	1	1
Total		n^{2}	$m \log n$	$m \log _{m / n} n$	$m+n \log n$

Coin Changing

Goal. Given currency denominations: $1,5,10,25,100$, devise a method to pay amount to customer using fewest number of coins.

Ex: 344.

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

Ex: $\$ 2.89$.

Coin-Changing: Greedy Algorithm

Coin-Changing: Analysis of Greedy Algorithm

Theorem. Greed is optimal for U.S. coinage: $1,5,10,25,100$
Pf. (by induction on x)

- Consider optimal way to change $c_{k} \leq x<c_{k+1}$: greedy takes coin k.
- We claim that any optimal solution must also take coin k.
- if not, it needs enough coins of type c_{1}, \ldots, c_{k-1} to add up to x
- table below indicates no optimal solution can do this
- Problem reduces to coin-changing $x-c_{k}$ cents, which, by induction, is optimally solved by greedy algorithm. .

k	c_{k}	All optimal solutions must satisfy	Max value of coins $1,2, \ldots, k-1$ in any OPT
1	1	$P \leq 4$	-
2	5	$\mathrm{~N} \leq 1$	4
3	10	$\mathrm{~N}+\mathrm{D} \leq 2$	$4+5=9$
4	25	$\mathrm{Q} \leq 3$	$20+4=24$
5	100	no limit	$75+24=99$

Q. Is cashier's algorithm optimal?

