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Basic genres.
§ Packing problems:  SET-PACKING, INDEPENDENT SET.
§ Covering problems:  SET-COVER, VERTEX-COVER.
§ Constraint satisfaction problems:  SAT, 3-SAT.
§ Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
§ Partitioning problems: 3D-MATCHING, 3-COLOR.
§ Numerical problems:  SUBSET-SUM, KNAPSACK.

8.5  Sequencing Problems
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Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle G that contains every node in V.

YES:  vertices and faces of a dodecahedron.
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Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle G that contains every node in V.
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NO:  bipartite graph with odd number of nodes.
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-SAT £ P DIR-HAM-CYCLE.

Pf.   Given an instance F of 3-SAT, we construct an instance of DIR-
HAM-CYCLE that has a Hamiltonian cycle iff F is satisfiable.

Construction.  First, create graph that has 2n Hamiltonian cycles which 
correspond in a natural way to 2n possible truth assignments.
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance F with n variables xi and k clauses.
■ Construct G to have 2n Hamiltonian cycles.
■ Intuition:  traverse path i from left to right  Û set variable xi = 1.
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance F with n variables xi and k clauses.
■ For each clause:  add a node and 6 edges.
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Longest Path

SHORTEST-PATH.  Given a digraph G = (V, E), does there exists a simple 
path of length at most k edges?

LONGEST-PATH.  Given a digraph G = (V, E), does there exists a simple 
path of length at least k edges?

Claim.  3-SAT £ P LONGEST-PATH.

Pf 1.  Redo proof for  DIR-HAM-CYCLE, ignoring back-edge from t to s.
Pf 2. Show HAM-CYCLE £ P LONGEST-PATH.
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The Longest Path t

Lyrics.  Copyright © 1988 by Daniel J. Barrett.
Music.  Sung to the tune of The Longest Time by Billy Joel.

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree,
But it's elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done:
GPA 2.1
Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

t Recorded by Dan Barrett while a grad student at Johns Hopkins during a difficult algorithms final. 
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length £ D?

All 13,509 cities in US with a population of at least 500
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length £ D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length £ D?

11,849 holes to drill in a programmed logic array
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length £ D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length £ D?

HAM-CYCLE:  given a graph G = (V, E), does there exists a simple cycle 
that contains every node in V?

Claim.  HAM-CYCLE £ P TSP.
Pf.
■ Given instance G = (V, E) of HAM-CYCLE, create n cities with 

distance function

■ TSP instance has tour of length £ n iff G is Hamiltonian.  �

Remark.  TSP instance in reduction satisfies D-inequality.

€ 

d(u, v)  =  
 1 if (u, v) ∈  E
 2 if (u, v) ∉  E
$ 
% 
& 



Basic genres.
§ Packing problems:  SET-PACKING, INDEPENDENT SET.
§ Covering problems:  SET-COVER, VERTEX-COVER.
§ Constraint satisfaction problems:  SAT, 3-SAT.
§ Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
§ Partitioning problems:  3D-MATCHING, 3-COLOR.

§ Numerical problems:  SUBSET-SUM, KNAPSACK.

8.6  Partitioning Problems
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3-Dimensional Matching

3D-MATCHING. Given n instructors, n courses, and n times, and a list of 
the possible courses and times each instructor is willing to teach, is it 
possible to make an assignment so that all courses are taught at 
different times?

Instructor Course Time
Wayne COS 423 MW 11-12:20
Wayne COS 423 TTh 11-12:20
Wayne COS 226 TTh 11-12:20
Wayne COS 126 TTh 11-12:20
Tardos COS 523 TTh 3-4:20
Tardos COS 423 TTh 11-12:20
Tardos COS 423 TTh 3-4:20

Kleinberg COS 226 TTh 3-4:20
Kleinberg COS 226 MW 11-12:20
Kleinberg COS 423 MW 11-12:20
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3-Dimensional Matching

3D-MATCHING. Given disjoint sets X, Y, and Z, each of size n and a set 
T Í X ´ Y ´ Z of triples, does there exist a set of n triples in T such 
that each element of X È Y È Z is in exactly one of these triples?

Claim.  3-SAT £ P INDEPENDENT-COVER.
Pf.  Given an instance F of 3-SAT, we construct an instance of 3D-
matching that has a perfect matching iff F is satisfiable.



Basic genres.
§ Packing problems:  SET-PACKING, INDEPENDENT SET.
§ Covering problems:  SET-COVER, VERTEX-COVER.
§ Constraint satisfaction problems:  SAT, 3-SAT.
§ Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
§ Partitioning problems:  3D-MATCHING, 3-COLOR.
§ Numerical problems:  SUBSET-SUM, KNAPSACK.

8.7  Graph Coloring
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3-Colorability

3-COLOR:  Given an undirected graph G does there exists a way to 
color the nodes red, green, and blue so that no adjacent nodes have the 
same color?

yes instance
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Register Allocation

Register allocation.  Assign program variables to machine register so 
that no more than k registers are used and no two program variables 
that are needed at the same time are assigned to the same register.

Interference graph.  Nodes are program variables names, edge
between u and v if there exists an operation where both u and 
v are "live" at the same time.

Observation.  [Chaitin 1982] Can solve register allocation problem iff 
interference graph is k-colorable.

Fact.  3-COLOR £ P k-REGISTER-ALLOCATION for any constant k ³ 3.



Basic genres.
§ Packing problems:  SET-PACKING, INDEPENDENT SET.
§ Covering problems:  SET-COVER, VERTEX-COVER.
§ Constraint satisfaction problems:  SAT, 3-SAT.
§ Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
§ Partitioning problems:  3-COLOR, 3D-MATCHING.
§ Numerical problems: SUBSET-SUM, KNAPSACK.

8.8  Numerical Problems
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Subset Sum

SUBSET-SUM. Given natural numbers w1, …, wn and an integer W, is 
there a subset that adds up to exactly W?

Ex:  { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 },  W = 3754.
Yes.  1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.

Remark. With arithmetic problems, input integers are encoded in 
binary. Polynomial reduction must be polynomial in binary encoding.

Claim.  3-SAT £ P SUBSET-SUM.
Pf.  Given an instance F of 3-SAT, we construct an instance of SUBSET-
SUM that has solution iff F is satisfiable.



8.10  A Partial Taxonomy of Hard Problems
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Polynomial-Time Reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

Dick Karp (1972)
1985 Turing Award

3-SAT reduces to 

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

packing and covering sequencing partitioning numerical

constraint satisfaction



Extra Slides
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Planarity testing.  [Hopcroft-Tarjan 1974] O(n).

Remark.  Many intractable graph problems can be solved in poly-time if 
the graph is planar; many tractable graph problems can be solved 
faster if the graph is planar.

Planarity Testing

simple planar graph can have at most 3n edges
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Planar 3-Colorability

Claim.  3-COLOR £ P PLANAR-3-COLOR.
Proof sketch:  Given instance of 3-COLOR, draw graph in plane, letting 
edges cross if necessary.
■ Replace each edge crossing with the following planar gadget W.

– in any 3-coloring of W, opposite corners have the same color
– any assignment of colors to the corners in which opposite corners 

have the same color extends to a 3-coloring of W
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Planar k-Colorability

PLANAR-2-COLOR.  Solvable in linear time.

PLANAR-3-COLOR.  NP-complete.

PLANAR-4-COLOR.  Solvable in O(1) time.

Theorem.  [Appel-Haken, 1976]  Every planar map is 4-colorable.
■ Resolved century-old open problem.
■ Used 50 days of computer time to deal with many special cases.
■ First major theorem to be proved using computer.

False intuition.  If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR
and PLANAR-5-COLOR.


