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Coping With NP-Completeness

Q.  Suppose I need to solve an NP-complete problem. What should I do?
A.  Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
■ Solve problem to optimality.
■ Solve problem in polynomial time.
■ Solve arbitrary instances of the problem.

This lecture.  Solve some special cases of NP-complete problems that 
arise in practice.



10.1  Finding Small Vertex Covers
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Vertex Cover

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S Í V such that |S| £ k, and for each edge (u, v) 
either u Î S, or v Î S, or both.
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k = 4
S = { 3, 6, 7, 10 }
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Finding Small Vertex Covers

Q.  What if k is small?

Brute force.  O(k nk+1).
■ Try all C(n, k) = O(nk) subsets of size k.
■ Takes O(k n) time to check whether a subset is a vertex cover.

Goal.  Limit exponential dependency on k, e.g., to O(2k k n).

Ex.  n = 1,000, k = 10.
Brute. k nk+1  = 1034  Þ infeasible.
Better.  2k k n = 107    Þ feasible.

Remark.  If k is a constant, algorithm is poly-time; if k is a small 
constant, then it's also practical.
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Finding Small Vertex Covers

Claim.  Let u-v be an edge of G.  G has a vertex cover of size £ k iff
at least one of G - { u } and G - { v } has a vertex cover of size £ k-1.

Pf.  Þ
■ Suppose G has a vertex cover S of size £ k.
■ S contains either u or v (or both).  Assume it contains u.
■ S - { u } is a vertex cover of G - { u }.

Pf.  Ü
■ Suppose S is a vertex cover of G - { u } of size £ k-1.
■ Then S È { u } is a vertex cover of G.  �

Claim.  If G has a vertex cover of size k, it has £ k(n-1) edges.
Pf.  Each vertex covers at most n-1 edges.  �

delete v and all incident edges
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Finding Small Vertex Covers:  Algorithm

Claim. The following algorithm determines if G has a vertex cover of 
size £ k in O(2k kn) time.

Pf.
■ Correctness follows previous two claims.
■ There are £ 2k+1 nodes in the recursion tree; each invocation takes 

O(kn) time.  �

boolean Vertex-Cover(G, k) {
if (G contains no edges)   return true
if (G contains ³ kn edges) return false

let (u, v) be any edge of G
a = Vertex-Cover(G - {u}, k-1)
b = Vertex-Cover(G - {v}, k-1)
return a or b

}
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Finding Small Vertex Covers:  Recursion Tree
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10.2  Solving NP-Hard Problems on Trees
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Independent Set on Trees

Independent set on trees.  Given a tree, find a maximum cardinality 
subset of nodes such that no two share an edge.

Fact.  A tree on at least two nodes has
at least two leaf nodes.

Key observation.  If v is a leaf, there exists
a maximum size independent set containing v.

Pf.  (exchange argument)
■ Consider a max cardinality independent set S.
■ If v Î S, we're done.
■ If u Ï S and v Ï S, then S È { v } is independent Þ S not maximum.
■ IF u Î S and v Ï S, then S È { v } - { u } is independent.  �

v

u

degree = 1
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Independent Set on Trees:  Greedy Algorithm

Theorem.  The following greedy algorithm finds a maximum cardinality 
independent set in forests (and hence trees).

Pf.  Correctness follows from the previous key observation.  �

Remark.  Can implement in O(n) time by considering nodes in postorder.

Independent-Set-In-A-Forest(F) {
S ¬ f
while (F has at least one edge) {

Let e = (u, v) be an edge such that v is a leaf
Add v to S
Delete from F nodes u and v, and all edges

incident to them.
}
return S

}
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Weighted Independent Set on Trees

Weighted independent set on trees.  Given a tree and node weights wv > 0, 
find an independent set S that maximizes SvÎS wv. 

Observation.  If (u, v) is an edge such that v is a leaf node, then either 
OPT includes u, or it includes all leaf nodes incident to u.

Dynamic programming solution.  Root tree at some node, say r.
■ OPTin  (u) = max weight independent set

rooted at u, containing u.
■ OPTout(u) = max weight independent set

rooted at u, not containing u.

r

u

v w

  

€ 

OPTin (u) = wu +   OPTout (v)
v ∈ children(u)

∑

OPTout (u) = max OPTin (v), OPTout (v){ }
v ∈ children(u)

∑

x

children(u) = { v, w, x }
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Independent Set on Trees:  Greedy Algorithm

Theorem.  The dynamic programming algorithm find a maximum 
weighted independent set in trees in O(n) time.

Pf.  Takes O(n) time since we visit nodes in postorder and examine each 
edge exactly once.  �

Weighted-Independent-Set-In-A-Tree(T) {
Root the tree at a node r
foreach (node u of T in postorder) {

if (u is a leaf) {
Min [u] = wu
Mout[u] = 0

}
else {

Min [u] = SvÎchildren(u) Mout[v]  +  wv
Mout[u] = SvÎchildren(u) max(Mout[v], Min[v])

}
}
return max(Min[r], Mout[r])

}

ensures a node is visited after
all its children
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Context

Independent set on trees.  This structured special case is tractable 
because we can find a node that breaks the communication among the
subproblems in different subtrees.

Graphs of bounded tree width.  Elegant generalization of trees that:
■ Captures a rich class of graphs that arise in practice.
■ Enables decomposition into independent pieces.

u u

see Chapter 10.4, but proceed with caution
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Approximation Algorithms

Q.  Suppose I need to solve an NP-hard problem. What should I do?
A.  Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
■ Solve problem to optimality.
■ Solve problem in poly-time.
■ Solve arbitrary instances of the problem.

r-approximation algorithm.
■ Guaranteed to run in poly-time.
■ Guaranteed to solve arbitrary instance of the problem
■ Guaranteed to find solution within ratio r of true optimum.

Challenge.  Need to prove a solution's value is close to optimum, without 
even knowing what optimum value is!



11.1  Load Balancing
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Load Balancing

Input.  m identical machines; n jobs, job j has processing time tj.
■ Job j must run contiguously on one machine.
■ A machine can process at most one job at a time.

Def.  Let J(i) be the subset of jobs assigned to machine i.  The
load of machine i is Li = Sj Î J(i) tj. 

Def. The makespan is the maximum load on any machine L = maxi Li.

Load balancing.  Assign each job to a machine to minimize makespan.
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List-scheduling algorithm.
■ Consider n jobs in some fixed order.
■ Assign job j to machine whose load is smallest so far.

Implementation. O(n log n) using a priority queue.

Load Balancing:  List Scheduling

List-Scheduling(m, n, t1,t2,…,tn) {
for i = 1 to m {

Li ¬ 0
J(i) ¬ f

}

for j = 1 to n {
i = argmink Lk
J(i) ¬ J(i) È {j}
Li ¬ Li + tj

}
}

jobs assigned to machine i
load on machine i

machine i has smallest load
assign job j to machine i
update load of machine i



20

Load Balancing:  List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
■ First worst-case analysis of an approximation algorithm.
■ Need to compare resulting solution with optimal makespan L*.

Lemma 1.  The optimal makespan L* ³ maxj tj. 
Pf.  Some machine must process the most time-consuming job.  �

Lemma 2.  The optimal makespan 
Pf.  
■ The total processing time is  Sj tj .
■ One of m machines must do at least a 1/m fraction of total work.

Not very strong lower bound. What if one job is very big and others 
are small jobs ?  �

€ 

L * ≥ 1
m t jj∑ .
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Load Balancing:  List Scheduling Analysis

Theorem.  Greedy algorithm is a 2-approximation.
Pf.  Consider load Li of bottleneck machine i.
■ Let j be last job scheduled on machine i.
■ When job j assigned to machine i, i had smallest load.  Its load 

before assignment is Li - tj    Þ Li - tj   £ Lk   for all 1 £ k £ m.

j

0
L = LiLi - tj 

machine i

blue jobs scheduled before j
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Load Balancing:  List Scheduling Analysis

Theorem.  Greedy algorithm is a 2-approximation.
Pf.  Consider load Li of bottleneck machine i.
■ Let j be last job scheduled on machine i.
■ When job j assigned to machine i, i had smallest load.  Its load 

before assignment is Li - tj    Þ Li - tj   £ Lk   for all 1 £ k £ m.
■ Sum inequalities over all k and divide by m:

■ Now �

■ The solution attained by the greedy algorithm is less 2 times the 
optimal solution 

Li  − t j ≤ 1
m Lkk∑

= 1
m t jj∑

≤ L*

  

€ 

Li  =  (Li − t j )
≤ L*

     
+ t j

≤ L*


  ≤  2L *.

Lemma 1

Lemma 2
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Load Balancing:  List Scheduling Analysis

Q.  Is our analysis tight?
A.  Essentially yes.

Ex:  m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle
machine 3 idle
machine 4 idle
machine 5 idle
machine 6 idle
machine 7 idle
machine 8 idle
machine 9 idle
machine 10 idle

list scheduling makespan = 19

m = 10
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Load Balancing:  List Scheduling Analysis

Q.  Is our analysis tight?
A.  Essentially yes.

Ex:  m machines, m(m-1) jobs length 1 jobs, one job of length m

m = 10

optimal makespan = 10
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Load Balancing:  LPT Rule

Longest processing time (LPT).  Sort n jobs in descending order of 
processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t1,t2,…,tn) {
Sort jobs so that t1 ≥ t2 ≥ … ≥ tn

for i = 1 to m {
Li ¬ 0
J(i) ¬ f

}

for j = 1 to n {
i = argmink Lk
J(i) ¬ J(i) È {j}
Li ¬ Li + tj

}
}

jobs assigned to machine i
load on machine i

machine i has smallest load
assign job j to machine i

update load of machine i
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Load Balancing:  LPT Rule

Observation.  If at most m jobs, then list-scheduling is optimal.
Pf.  Each job put on its own machine.  �

Lemma 3.  If there are more than m jobs, L* ³ 2 tm+1.
Pf. 
■ Consider first m+1 jobs t1, …, tm+1.
■ Since the ti's are in descending order, each takes at least tm+1 time. 
■ There are m+1 jobs and m machines, so by pigeonhole principle, at 

least one machine gets two jobs.  �

Theorem.  LPT rule is a 3/2 approximation algorithm.
Pf.  Same basic approach as for list scheduling.

�

  

€ 

Li =  (Li − t j )
≤ L*

     
+ t j

≤ 1
2 L*


  ≤  3
2 L *.

Lemma 3
( by observation, can assume number of jobs > m )
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Coping With NP-Hardness

Q.  Suppose I need to solve an NP-hard problem. What should I do?
A.  Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
■ Solve problem to optimality.
■ Solve problem in polynomial time.
■ Solve arbitrary instances of the problem.



11.2  Center Selection
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center

r(C)

Center Selection Problem

Input.  Set of n sites s1, …, sn.

Center selection problem.  Select k centers C so that maximum 
distance from a site to nearest center is minimized.

site

k = 4
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Center Selection Problem

Input.  Set of n sites s1, …, sn.

Center selection problem.  Select k centers C so that maximum 
distance from a site to nearest center is minimized.

Notation.  
■ dist(x, y) = distance between x and y.
■ dist(si, C) = min c Î C dist(si, c)  = distance from si to closest center.
■ r(C) = maxi dist(si, C) = smallest covering radius.

Goal.  Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.
■ dist(x, x) = 0 (identity)
■ dist(x, y) = dist(y, x) (symmetry)
■ dist(x, y) £ dist(x, z) + dist(z, y) (triangle inequality)
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center
site

Center Selection Example

Ex:  each site is a point in the plane, a center can be any point in the 
plane, dist(x, y) = Euclidean distance.

Remark:  search can be infinite!

r(C)
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Greedy Algorithm:  A False Start

Greedy algorithm.  Put the first center at the best possible location 
for a single center, and then keep adding centers so as to reduce the 
covering radius each time by as much as possible. 

Remark:  arbitrarily bad!

greedy center 1

k = 2 centers site
center
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Center Selection:  Greedy Algorithm

Greedy algorithm.  Repeatedly choose the next center to be the site 
farthest from any existing center.

Observation. Upon termination all centers in C are pairwise at least r(C) 
apart.
Pf.  By construction of algorithm.

Greedy-Center-Selection(k, n, s1,s2,…,sn) {

C = f
repeat k times {

Select a site si with maximum dist(si, C)
Add si to C

}
return C

}

site farthest from any center
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Center Selection:  Analysis of Greedy Algorithm

Theorem.  Let C* be an optimal set of centers. Then r(C) £ 2r(C*).
Pf.  (by contradiction) Assume r(C*) < ½ r(C).
■ For each site ci in C, consider ball of radius ½ r(C) around it.
■ Exactly one ci* in each ball; let ci be the site paired with ci*.
■ Consider any site s and its closest center ci* in C*.
■ dist(s, C)  £ dist(s, ci)  £ dist(s, ci*) + dist(ci*, ci)  £ 2r(C*).
■ Thus r(C)  £ 2r(C*).   �

C*
sites

½ r(C)

ci

ci*s

£ r(C*) since ci* is closest center

½ r(C)

½ r(C)

D-inequality
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Center Selection

Theorem.  Let C* be an optimal set of centers. Then r(C) £ 2r(C*).

Theorem.  Greedy algorithm is a 2-approximation for center selection 
problem.

Remark.  Greedy algorithm always places centers at sites, but is still 
within a factor of 2 of best solution that is allowed to place centers 
anywhere.

Question.  Is there hope of a 3/2-approximation? 4/3? 

e.g., points in the plane

Theorem.  Unless P = NP, there no r-approximation for center-selection
problem for any r < 2.



12.1  Landscape of an Optimization Problem
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Local Search

Local search. Algorithm that explores the space of possible solutions in 
sequential fashion, moving from a current solution to a "nearby" one.

Neighbor relation. Let S ~ S' be a neighbor relation for the problem.

Gradient descent. Let S denote current solution. If there is a neighbor 
S' of S with strictly lower cost, replace S with the neighbor whose 
cost is as small as possible. Otherwise, terminate the algorithm.

A funnel A jagged funnel



44

Gradient Descent:  Vertex Cover

Local optimum.  No neighbor is strictly better.

optimum = center node only
local optimum = all other nodes

optimum = all nodes on left side
local optimum = all nodes on right side

optimum = even nodes
local optimum = omit every third node
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Gradient Descent:  Vertex Cover

VERTEX-COVER. Given a graph G = (V, E), find a subset of nodes S of 
minimal cardinality such that for each u-v in E, either u or v (or both) 
are in S.

Neighbor relation. S ~ S' if S' can be obtained from S by adding or 
deleting a single node. Each vertex cover S has at most n neighbors.

Gradient descent. Start with S = V.  If there is a neighbor S' that is a 
vertex cover and has lower cardinality, replace S with S'.

Remark. Algorithm terminates after at most n steps since each update 
decreases the size of the cover by one.



12.2  Metropolis Algorithm
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Metropolis Algorithm

Metropolis algorithm.  [Metropolis, Rosenbluth, Rosenbluth, Teller, Teller 1953]

■ Simulate behavior of a physical system according to principles of 
statistical mechanics.

■ Globally biased toward "downhill" steps, but occasionally makes 
"uphill" steps to break out of local minima.

Gibbs-Boltzmann function.  The probability of finding a physical system 
in a state with energy E is proportional to e -E / (kT), where T > 0 is 
temperature and k is a constant.
■ For any temperature T > 0, function is monotone decreasing function 

of energy E.
■ System more likely to be in a lower energy state than higher one.

– T large:  high and low energy states have roughly same probability
– T small:  low energy states are much more probable
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Metropolis Algorithm

Metropolis algorithm.
■ Given a fixed temperature T, maintain current state S.
■ Randomly perturb current state S to new state S' Î N(S).
■ If E(S') £ E(S), update current state to S'

Otherwise, update current state to S' with probability e - DE / (kT), 
where DE = E(S') - E(S) > 0.

Theorem.  Let fS(t) be fraction of first t steps in which simulation is in 
state S. Then, assuming some technical conditions, with probability 1:

Intuition.  Simulation spends roughly the right amount of time in each 
state, according to Gibbs-Boltzmann equation.

  

€ 

lim
t→∞

fS (t) =
1
Z

e−E(S ) /(kT ) ,

where  Z = e−E(S ) /(kT )

S∈ N (S )
∑ .
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Simulated Annealing

Simulated annealing.
■ T large   Þ probability of accepting an uphill move is large.
■ T small  Þ uphill moves are almost never accepted.
■ Idea:  turn knob to control T.
■ Cooling schedule:  T = T(i) at iteration i.

Physical analog.
■ Take solid and raise it to high temperature, we do not expect it to 

maintain a nice crystal structure.
■ Take a molten solid and freeze it very abruptly, we do not expect to 

get a perfect crystal either.
■ Annealing:  cool material gradually from high temperature, allowing 

it to reach equilibrium at succession of intermediate lower 
temperatures.



12.3  Hopfield Neural Networks
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Hopfield Neural Networks

Hopfield networks.  Simple model of an associative memory, in which a 
large collection of units are connected by an underlying network, and 
neighboring units try to correlate their states.

Input:  Graph G = (V, E) with integer edge weights w.

Configuration.  Node assignment su = � 1.

Intuition.  If wuv < 0, then u and v want to have the same state;
if wuv > 0 then u and v want different states.

Note.  In general, no configuration respects all constraints.

5

7

6

positive or negative
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Hopfield Neural Networks

Def.  With respect to a configuration S, edge e = (u, v) is good if
we su sv < 0. That is, if we < 0 then su = sv; if we > 0, su ¹ sv.

Def.  With respect to a configuration S, a node u is satisfied if the 
weight of incident good edges ³ weight of incident bad edges.

Def.  A configuration is stable if all nodes are satisfied.

Goal.  Find a stable configuration, if such a configuration exists.

-5

-10

4

-1

-1

bad edge

€ 

 we su sv
v: e=(u,v)∈ E

∑  ≤  0

satisfied node:  5 - 4 - 1 - 1 < 0
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Hopfield Neural Networks

Goal.  Find a stable configuration, if such a configuration exists.

State-flipping algorithm.  Repeated flip state of an unsatisfied node.

Hopfield-Flip(G, w) {
S ¬ arbitrary configuration

while (current configuration is not stable) {
u ¬ unsatisfied node
su = -su

}

return S
}
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State Flipping Algorithm

unsatisfied node
10 - 8  >  0

unsatisfied node
8 - 4 - 1 - 1  >  0

stable


