
1

Chapter 10, 11,12

Extending the Limits
of Tractability

Slides by Kevin Wayne.
Copyright @ 2005 Pearson-Addison Wesley.
All rights reserved.

2

Coping With NP-Completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?
A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
■ Solve problem to optimality.
■ Solve problem in polynomial time.
■ Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems that
arise in practice.

10.1 Finding Small Vertex Covers

4

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S Í V such that |S| £ k, and for each edge (u, v)
either u Î S, or v Î S, or both.

3

6

10

7

1

5

8

2

4 9

k = 4
S = { 3, 6, 7, 10 }

5

Finding Small Vertex Covers

Q. What if k is small?

Brute force. O(k nk+1).
■ Try all C(n, k) = O(nk) subsets of size k.
■ Takes O(k n) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, e.g., to O(2k k n).

Ex. n = 1,000, k = 10.
Brute. k nk+1 = 1034 Þ infeasible.
Better. 2k k n = 107 Þ feasible.

Remark. If k is a constant, algorithm is poly-time; if k is a small
constant, then it's also practical.

6

Finding Small Vertex Covers

Claim. Let u-v be an edge of G. G has a vertex cover of size £ k iff
at least one of G - { u } and G - { v } has a vertex cover of size £ k-1.

Pf. Þ
■ Suppose G has a vertex cover S of size £ k.
■ S contains either u or v (or both). Assume it contains u.
■ S - { u } is a vertex cover of G - { u }.

Pf. Ü
■ Suppose S is a vertex cover of G - { u } of size £ k-1.
■ Then S È { u } is a vertex cover of G. �

Claim. If G has a vertex cover of size k, it has £ k(n-1) edges.
Pf. Each vertex covers at most n-1 edges. �

delete v and all incident edges

7

Finding Small Vertex Covers: Algorithm

Claim. The following algorithm determines if G has a vertex cover of
size £ k in O(2k kn) time.

Pf.
■ Correctness follows previous two claims.
■ There are £ 2k+1 nodes in the recursion tree; each invocation takes

O(kn) time. �

boolean Vertex-Cover(G, k) {
if (G contains no edges) return true
if (G contains ³ kn edges) return false

let (u, v) be any edge of G
a = Vertex-Cover(G - {u}, k-1)
b = Vertex-Cover(G - {v}, k-1)
return a or b

}

8

Finding Small Vertex Covers: Recursion Tree

k

k-1k-1

k-2k-2k-2 k-2

0 0 0 0 0 0 0 0

k - i

nkcknT
kcknknT
kcn

knT k2),(
 1if)1,(2
 1if

),(≤⇒
#
$
%

>+−

=
≤

10.2 Solving NP-Hard Problems on Trees

10

Independent Set on Trees

Independent set on trees. Given a tree, find a maximum cardinality
subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has
at least two leaf nodes.

Key observation. If v is a leaf, there exists
a maximum size independent set containing v.

Pf. (exchange argument)
■ Consider a max cardinality independent set S.
■ If v Î S, we're done.
■ If u Ï S and v Ï S, then S È { v } is independent Þ S not maximum.
■ IF u Î S and v Ï S, then S È { v } - { u } is independent. �

v

u

degree = 1

11

Independent Set on Trees: Greedy Algorithm

Theorem. The following greedy algorithm finds a maximum cardinality
independent set in forests (and hence trees).

Pf. Correctness follows from the previous key observation. �

Remark. Can implement in O(n) time by considering nodes in postorder.

Independent-Set-In-A-Forest(F) {
S ¬ f
while (F has at least one edge) {

Let e = (u, v) be an edge such that v is a leaf
Add v to S
Delete from F nodes u and v, and all edges

incident to them.
}
return S

}

12

Weighted Independent Set on Trees

Weighted independent set on trees. Given a tree and node weights wv > 0,
find an independent set S that maximizes SvÎS wv.

Observation. If (u, v) is an edge such that v is a leaf node, then either
OPT includes u, or it includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.
■ OPTin (u) = max weight independent set

rooted at u, containing u.
■ OPTout(u) = max weight independent set

rooted at u, not containing u.

r

u

v w

€

OPTin (u) = wu + OPTout (v)
v ∈ children(u)

∑

OPTout (u) = max OPTin (v), OPTout (v){ }
v ∈ children(u)

∑

x

children(u) = { v, w, x }

13

Independent Set on Trees: Greedy Algorithm

Theorem. The dynamic programming algorithm find a maximum
weighted independent set in trees in O(n) time.

Pf. Takes O(n) time since we visit nodes in postorder and examine each
edge exactly once. �

Weighted-Independent-Set-In-A-Tree(T) {
Root the tree at a node r
foreach (node u of T in postorder) {

if (u is a leaf) {
Min [u] = wu
Mout[u] = 0

}
else {

Min [u] = SvÎchildren(u) Mout[v] + wv
Mout[u] = SvÎchildren(u) max(Mout[v], Min[v])

}
}
return max(Min[r], Mout[r])

}

ensures a node is visited after
all its children

14

Context

Independent set on trees. This structured special case is tractable
because we can find a node that breaks the communication among the
subproblems in different subtrees.

Graphs of bounded tree width. Elegant generalization of trees that:
■ Captures a rich class of graphs that arise in practice.
■ Enables decomposition into independent pieces.

u u

see Chapter 10.4, but proceed with caution

Extra Slides

16

Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should I do?
A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
■ Solve problem to optimality.
■ Solve problem in poly-time.
■ Solve arbitrary instances of the problem.

r-approximation algorithm.
■ Guaranteed to run in poly-time.
■ Guaranteed to solve arbitrary instance of the problem
■ Guaranteed to find solution within ratio r of true optimum.

Challenge. Need to prove a solution's value is close to optimum, without
even knowing what optimum value is!

11.1 Load Balancing

18

Load Balancing

Input. m identical machines; n jobs, job j has processing time tj.
■ Job j must run contiguously on one machine.
■ A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to machine i. The
load of machine i is Li = Sj Î J(i) tj.

Def. The makespan is the maximum load on any machine L = maxi Li.

Load balancing. Assign each job to a machine to minimize makespan.

19

List-scheduling algorithm.
■ Consider n jobs in some fixed order.
■ Assign job j to machine whose load is smallest so far.

Implementation. O(n log n) using a priority queue.

Load Balancing: List Scheduling

List-Scheduling(m, n, t1,t2,…,tn) {
for i = 1 to m {

Li ¬ 0
J(i) ¬ f

}

for j = 1 to n {
i = argmink Lk
J(i) ¬ J(i) È {j}
Li ¬ Li + tj

}
}

jobs assigned to machine i
load on machine i

machine i has smallest load
assign job j to machine i
update load of machine i

20

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
■ First worst-case analysis of an approximation algorithm.
■ Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan L* ³ maxj tj.
Pf. Some machine must process the most time-consuming job. �

Lemma 2. The optimal makespan
Pf.
■ The total processing time is Sj tj .
■ One of m machines must do at least a 1/m fraction of total work.

Not very strong lower bound. What if one job is very big and others
are small jobs ? �

€

L * ≥ 1
m t jj∑ .

21

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load Li of bottleneck machine i.
■ Let j be last job scheduled on machine i.
■ When job j assigned to machine i, i had smallest load. Its load

before assignment is Li - tj Þ Li - tj £ Lk for all 1 £ k £ m.

j

0
L = LiLi - tj

machine i

blue jobs scheduled before j

22

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load Li of bottleneck machine i.
■ Let j be last job scheduled on machine i.
■ When job j assigned to machine i, i had smallest load. Its load

before assignment is Li - tj Þ Li - tj £ Lk for all 1 £ k £ m.
■ Sum inequalities over all k and divide by m:

■ Now �

■ The solution attained by the greedy algorithm is less 2 times the
optimal solution

Li − t j ≤ 1
m Lkk∑

= 1
m t jj∑

≤ L*

€

Li = (Li − t j)
≤ L*

    
+ t j

≤ L*


 ≤ 2L *.

Lemma 1

Lemma 2

23

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle
machine 3 idle
machine 4 idle
machine 5 idle
machine 6 idle
machine 7 idle
machine 8 idle
machine 9 idle
machine 10 idle

list scheduling makespan = 19

m = 10

24

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

m = 10

optimal makespan = 10

25

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of
processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t1,t2,…,tn) {
Sort jobs so that t1 ≥ t2 ≥ … ≥ tn

for i = 1 to m {
Li ¬ 0
J(i) ¬ f

}

for j = 1 to n {
i = argmink Lk
J(i) ¬ J(i) È {j}
Li ¬ Li + tj

}
}

jobs assigned to machine i
load on machine i

machine i has smallest load
assign job j to machine i

update load of machine i

26

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.
Pf. Each job put on its own machine. �

Lemma 3. If there are more than m jobs, L* ³ 2 tm+1.
Pf.
■ Consider first m+1 jobs t1, …, tm+1.
■ Since the ti's are in descending order, each takes at least tm+1 time.
■ There are m+1 jobs and m machines, so by pigeonhole principle, at

least one machine gets two jobs. �

Theorem. LPT rule is a 3/2 approximation algorithm.
Pf. Same basic approach as for list scheduling.

�

€

Li = (Li − t j)
≤ L*

    
+ t j

≤ 1
2 L*


 ≤ 3
2 L *.

Lemma 3
(by observation, can assume number of jobs > m)

27

Coping With NP-Hardness

Q. Suppose I need to solve an NP-hard problem. What should I do?
A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
■ Solve problem to optimality.
■ Solve problem in polynomial time.
■ Solve arbitrary instances of the problem.

11.2 Center Selection

29

center

r(C)

Center Selection Problem

Input. Set of n sites s1, …, sn.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

site

k = 4

30

Center Selection Problem

Input. Set of n sites s1, …, sn.

Center selection problem. Select k centers C so that maximum
distance from a site to nearest center is minimized.

Notation.
■ dist(x, y) = distance between x and y.
■ dist(si, C) = min c Î C dist(si, c) = distance from si to closest center.
■ r(C) = maxi dist(si, C) = smallest covering radius.

Goal. Find set of centers C that minimizes r(C), subject to |C| = k.

Distance function properties.
■ dist(x, x) = 0 (identity)
■ dist(x, y) = dist(y, x) (symmetry)
■ dist(x, y) £ dist(x, z) + dist(z, y) (triangle inequality)

31

center
site

Center Selection Example

Ex: each site is a point in the plane, a center can be any point in the
plane, dist(x, y) = Euclidean distance.

Remark: search can be infinite!

r(C)

32

Greedy Algorithm: A False Start

Greedy algorithm. Put the first center at the best possible location
for a single center, and then keep adding centers so as to reduce the
covering radius each time by as much as possible.

Remark: arbitrarily bad!

greedy center 1

k = 2 centers site
center

33

Center Selection: Greedy Algorithm

Greedy algorithm. Repeatedly choose the next center to be the site
farthest from any existing center.

Observation. Upon termination all centers in C are pairwise at least r(C)
apart.
Pf. By construction of algorithm.

Greedy-Center-Selection(k, n, s1,s2,…,sn) {

C = f
repeat k times {

Select a site si with maximum dist(si, C)
Add si to C

}
return C

}

site farthest from any center

34

Center Selection: Analysis of Greedy Algorithm

Theorem. Let C* be an optimal set of centers. Then r(C) £ 2r(C*).
Pf. (by contradiction) Assume r(C*) < ½ r(C).
■ For each site ci in C, consider ball of radius ½ r(C) around it.
■ Exactly one ci* in each ball; let ci be the site paired with ci*.
■ Consider any site s and its closest center ci* in C*.
■ dist(s, C) £ dist(s, ci) £ dist(s, ci*) + dist(ci*, ci) £ 2r(C*).
■ Thus r(C) £ 2r(C*). �

C*
sites

½ r(C)

ci

ci*s

£ r(C*) since ci* is closest center

½ r(C)

½ r(C)

D-inequality

35

Center Selection

Theorem. Let C* be an optimal set of centers. Then r(C) £ 2r(C*).

Theorem. Greedy algorithm is a 2-approximation for center selection
problem.

Remark. Greedy algorithm always places centers at sites, but is still
within a factor of 2 of best solution that is allowed to place centers
anywhere.

Question. Is there hope of a 3/2-approximation? 4/3?

e.g., points in the plane

Theorem. Unless P = NP, there no r-approximation for center-selection
problem for any r < 2.

12.1 Landscape of an Optimization Problem

43

Local Search

Local search. Algorithm that explores the space of possible solutions in
sequential fashion, moving from a current solution to a "nearby" one.

Neighbor relation. Let S ~ S' be a neighbor relation for the problem.

Gradient descent. Let S denote current solution. If there is a neighbor
S' of S with strictly lower cost, replace S with the neighbor whose
cost is as small as possible. Otherwise, terminate the algorithm.

A funnel A jagged funnel

44

Gradient Descent: Vertex Cover

Local optimum. No neighbor is strictly better.

optimum = center node only
local optimum = all other nodes

optimum = all nodes on left side
local optimum = all nodes on right side

optimum = even nodes
local optimum = omit every third node

45

Gradient Descent: Vertex Cover

VERTEX-COVER. Given a graph G = (V, E), find a subset of nodes S of
minimal cardinality such that for each u-v in E, either u or v (or both)
are in S.

Neighbor relation. S ~ S' if S' can be obtained from S by adding or
deleting a single node. Each vertex cover S has at most n neighbors.

Gradient descent. Start with S = V. If there is a neighbor S' that is a
vertex cover and has lower cardinality, replace S with S'.

Remark. Algorithm terminates after at most n steps since each update
decreases the size of the cover by one.

12.2 Metropolis Algorithm

47

Metropolis Algorithm

Metropolis algorithm. [Metropolis, Rosenbluth, Rosenbluth, Teller, Teller 1953]

■ Simulate behavior of a physical system according to principles of
statistical mechanics.

■ Globally biased toward "downhill" steps, but occasionally makes
"uphill" steps to break out of local minima.

Gibbs-Boltzmann function. The probability of finding a physical system
in a state with energy E is proportional to e -E / (kT), where T > 0 is
temperature and k is a constant.
■ For any temperature T > 0, function is monotone decreasing function

of energy E.
■ System more likely to be in a lower energy state than higher one.

– T large: high and low energy states have roughly same probability
– T small: low energy states are much more probable

48

Metropolis Algorithm

Metropolis algorithm.
■ Given a fixed temperature T, maintain current state S.
■ Randomly perturb current state S to new state S' Î N(S).
■ If E(S') £ E(S), update current state to S'

Otherwise, update current state to S' with probability e - DE / (kT),
where DE = E(S') - E(S) > 0.

Theorem. Let fS(t) be fraction of first t steps in which simulation is in
state S. Then, assuming some technical conditions, with probability 1:

Intuition. Simulation spends roughly the right amount of time in each
state, according to Gibbs-Boltzmann equation.

€

lim
t→∞

fS (t) =
1
Z

e−E(S) /(kT) ,

where Z = e−E(S) /(kT)

S∈ N (S)
∑ .

49

Simulated Annealing

Simulated annealing.
■ T large Þ probability of accepting an uphill move is large.
■ T small Þ uphill moves are almost never accepted.
■ Idea: turn knob to control T.
■ Cooling schedule: T = T(i) at iteration i.

Physical analog.
■ Take solid and raise it to high temperature, we do not expect it to

maintain a nice crystal structure.
■ Take a molten solid and freeze it very abruptly, we do not expect to

get a perfect crystal either.
■ Annealing: cool material gradually from high temperature, allowing

it to reach equilibrium at succession of intermediate lower
temperatures.

12.3 Hopfield Neural Networks

51

Hopfield Neural Networks

Hopfield networks. Simple model of an associative memory, in which a
large collection of units are connected by an underlying network, and
neighboring units try to correlate their states.

Input: Graph G = (V, E) with integer edge weights w.

Configuration. Node assignment su = � 1.

Intuition. If wuv < 0, then u and v want to have the same state;
if wuv > 0 then u and v want different states.

Note. In general, no configuration respects all constraints.

5

7

6

positive or negative

52

Hopfield Neural Networks

Def. With respect to a configuration S, edge e = (u, v) is good if
we su sv < 0. That is, if we < 0 then su = sv; if we > 0, su ¹ sv.

Def. With respect to a configuration S, a node u is satisfied if the
weight of incident good edges ³ weight of incident bad edges.

Def. A configuration is stable if all nodes are satisfied.

Goal. Find a stable configuration, if such a configuration exists.

-5

-10

4

-1

-1

bad edge

€

 we su sv
v: e=(u,v)∈ E

∑ ≤ 0

satisfied node: 5 - 4 - 1 - 1 < 0

53

Hopfield Neural Networks

Goal. Find a stable configuration, if such a configuration exists.

State-flipping algorithm. Repeated flip state of an unsatisfied node.

Hopfield-Flip(G, w) {
S ¬ arbitrary configuration

while (current configuration is not stable) {
u ¬ unsatisfied node
su = -su

}

return S
}

54

State Flipping Algorithm

unsatisfied node
10 - 8 > 0

unsatisfied node
8 - 4 - 1 - 1 > 0

stable

