Longest Common Subsequence

- Longest common subsequence (LCS) problem:
- Given two sequences $x[1 . . m]$ and $y[1 . . n]$, find the longest subsequence which occurs in both
- $\mathrm{Ex}: \mathrm{x}=\{\mathrm{A} \mathrm{B} \mathrm{C} \mathrm{B} \mathrm{D} \mathrm{A} \mathrm{B}\}, \mathrm{y}=\{\mathrm{B} \mathrm{D} \mathrm{C} \mathrm{A} \mathrm{B} \mathrm{A}\}$
$\{B C\}$ and $\{A A\}$ are both subsequences of both
What is the LCS?
- Brute-force algorithm: For every subsequence of x, check if it's a subsequence of y

How many subsequences of x are there?
What will be the running time of the brute-force alg?

LCS Algorithm

- Brute-force algorithm: 2^{m} subsequences of x to check against n elements of y : $\mathrm{O}\left(n 2^{m}\right)$
- We can do better: for now, let's only worry about the problem of finding the length of LCS
- When finished we will see how to backtrack from this solution back to the actual LCS
- Notice LCS problem has optimal substructure
- Subproblems: LCS of pairs of prefixes of x and y

LCS recursive solution

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}
$$

- We start with $i=j=0$ (empty substrings of x and y)
- Since X_{0} and Y_{0} are empty strings, their LCS is always empty (i.e. $c[0,0]=0$)
- LCS of empty string and any other string is empty, so for every i and $\mathrm{j}: c[0, j]=c[i, 0]=0$

			CS E	xa1	1			$\begin{aligned} & \mathrm{ABCB} \\ & \mathrm{BDCAB} \end{aligned}$
				2	3	4	5	
i		Yj	(B)	D	C	A	B	
0	Xi	0	0	0	0	0	0	
I	(A)	0						
2	B	0						
3	c	0						
	B	0						
	$\begin{aligned} & \text { if }\left(X_{i}==Y_{j}\right) \\ & \text { cli,j] }=c[i-I, j-I]+I \\ & \text { else } c[i, j]=\max (c[i-1, j], c[i, j-I]) \end{aligned}$							

LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array c[m,n]
- So what is the running time?
O (m.n)
since each c[i,j] is calculated in constant time, and there are m.n elements in the array

Finding LCS (2)

Optimal Substructure of LCS

$$
c[i, j]=\left\{\begin{array}{cl}
c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\
\max (c[i, j-1], c[i-1, j]) & \text { otherwise }
\end{array}\right.
$$

- Observation 1: Optimal substructure

A simple recursive algorithm will suffice
Draw sample recursion tree from c[3,4]
What will be the depth of the tree?

- Observation 2: Overlapping subproblems

Find some places where we solve the same subproblem more than once

