
10/18/18

1

Longest Common Subsequence
• Longest common subsequence (LCS) problem:

• Given two sequences x[1..m] and y[1..n], find the longest
subsequence which occurs in both
• Ex: x = {A B C B D A B }, y = {B D C A B A}

{B C} and {A A} are both subsequences of both
What is the LCS?
• Brute-force algorithm: For every subsequence of x, check if

it’s a subsequence of y

How many subsequences of x are there?
What will be the running time of the brute-force alg?

LCS Algorithm

• Brute-force algorithm: 2m subsequences of x to check against
n elements of y: O(n 2m)
• We can do better: for now, let’s only worry about the

problem of finding the length of LCS
• When finished we will see how to backtrack from this

solution back to the actual LCS
• Notice LCS problem has optimal substructure
• Subproblems: LCS of pairs of prefixes of x and y

10/18/18

2

LCS recursive solution

• We start with i = j = 0 (empty substrings of x and y)
• Since X0 and Y0 are empty strings, their LCS is always

empty (i.e. c[0,0] = 0)
• LCS of empty string and any other string is empty, so for

every i and j: c[0, j] = c[i,0] = 0

î
í
ì

--
=+--

=
otherwise]),1[],1,[max(

],[][if1]1,1[
],[

jicjic
jyixjic

jic

LCS Example (2)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

0

ABCB
BDCAB

10/18/18

3

LCS Example (15)
j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

B

Yj BB ACD

0

0

00000

0

0

0

if (Xi == Yj)
c[i,j] = c[i-1,j-1] + 1

else c[i,j] = max(c[i-1,j], c[i,j-1])

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3

ABCB
BDCAB

LCS Algorithm Running Time
• LCS algorithm calculates the values of each entry of the

array c[m,n]
• So what is the running time?

O(m.n)
since each c[i,j] is calculated in constant time, and
there are m.n elements in the array

10/18/18

4

Finding LCS (2)

j 0 1 2 3 4 5

0

1

2

3

4

i

Xi

A

B

C

Yj BB ACD

0

0

00000

0

0

0

1000 1

1 21 1

1 1 2

1

22

1 1 2 2 3B

B C BLCS (reversed order):

LCS (straight order):

Optimal Substructure of LCS

• Observation 1: Optimal substructure
A simple recursive algorithm will suffice
Draw sample recursion tree from c[3,4]
What will be the depth of the tree?

• Observation 2: Overlapping subproblems

Find some places where we solve the same subproblem more
than once

î
í
ì

--
=+--

=
otherwise]),1[],1,[max(

],[][if1]1,1[
],[

jicjic
jyixjic

jic

