Longest Common Subsequence

* Longest common subsequence (LCS) problem:

* Given two sequences x[1..m] and y[1.n], find the longest
subsequence which occurs in both

*Ex:x={ABCBDAB},y={BDCABA}
{B C} and {A A} are both subsequences of both

What is the LCS?

* Brute-force algorithm: For every subsequence of x, check if
it's a subsequence of y

How many subsequences of x are there?
What will be the running time of the brute-force alg?

LCS Algorithm

* Brute-force algorithm: 2™ subsequences of x to check against
n elements of y: O(n 2™)

* We can do better: for now, let’s only worry about the
problem of finding the length of LCS

* When finished we will see how to backtrack from this
solution back to the actual LCS

* Notice LCS problem has optimal substructure

 Subproblems: LCS of pairs of prefixes of x and y

10/18/18

LCS recursive solution

c oo i1 =111 if x[i]= y[j],
dr.71= max(c[i, j—1],c[i—1, j]) otherwise

» We start with i = j = 0 (empty substrings of x and y)

* Since X, and Y, are empty strings, their LCS is always
empty (i.e. ¢/0,0] = 0)

* LCS of empty string and any other string is empty, so for
every iand j: ¢/0, j] =c[i,0] =0

ABCB
LCS Example (2) BDCAB
j 0 | 2 3 4 5

J
i vy (B b € A B

0 Xil o 0 0 0 0 0

_>¢
o ®]et

2 B 0
3 C 0
4 B 0
if (X ==Yi)

c[ij] = cfi-1,j-11 + 1
else c[i,j] = max(c[i-1,j], c[i,j-1])

10/18/18

ABCB

LCS Example (15) BDCAB
i 0 | 2 3 4 5

i YY B D C A B

0 X“lolo|lo | o | o] o

| Alo| o o ()} | I

2 B lo | | I | 2

3 Clo | | 2 2 2

4 o | 1 | 1 2 | 2 3
if (X, ==Y,)

cijjl = cli-1,j-17 + |
else c[i,j] = max(c[i-1,j], c[i,j-1])

LCS Algorithm Running Time

* LCS algorithm calculates the values of each entry of the
array c[m,n]
* So what is the running time?

O(m.n)

since each ¢[1,j] is calculated in constant time, and
there are m.n elements in the array

10/18/18

Finding LCS (2)

A pur
2 Oo |<--|\| I 2

3 Clo I I 2 « 2 2
- \
4 “ o | 1 |1 | 2|2 [7°
LCS (reversed order): B C B

LCS (straight order):

Optimal Substructure of LCS

(i, /] cdi-1,j-1]+1 if x{i]= y[jl,
L, jl= .
7Y max(di, j=1].c[i—1,/]) otherwise
* Observation 1: Optimal substructure
A simple recursive algorithm will suffice

Draw sample recursion tree from c[3,4]
What will be the depth of the tree?

* Observation 2: Overlapping subproblems

Find some places where we solve the same subproblem more
than once

10/18/18

