
9/13/18

1

Breadth-First Search
• “Explore” a graph, turning it into a tree

One vertex at a time
Expand frontier of explored vertices across the

breadth of the frontier
• Builds a tree over the graph

Pick a source vertex to be the root
Find (“discover”) its children, then their children, etc.

Breadth-First Search
• Again will associate vertex “colors” to guide the

algorithm
White vertices have not been discovered
All vertices start out white
Grey vertices are discovered but not fully explored
They may be adjacent to white vertices
Black vertices are discovered and fully explored
They are adjacent only to black and gray vertices

• Explore vertices by scanning adjacency list of grey
vertices

9/13/18

2

Breadth-First Search
BFS(G, s) {

initialize vertices;
Q = {s}; // Q is a queue (duh); initialize

to s
while (Q not empty) {

u = RemoveTop(Q);
for each v Î u->adj {

if (v->color == WHITE)
v->color = GREY;
v->d = u->d + 1;
v->p = u;
Enqueue(Q, v);

}
u->color = BLACK;

}
}

What does v->p represent?
What does v->d represent?

Breadth-First Search: Example

¥

¥

¥

¥

¥

¥

¥

¥

r s t u

v w x y

9/13/18

3

Breadth-First Search: Example

¥

¥

0

¥

¥

¥

¥

¥

r s t u

v w x y

sQ:

Breadth-First Search: Example

1

¥

0

1

¥

¥

¥

¥

r s t u

v w x y

wQ: r

9/13/18

4

Breadth-First Search: Example

1

¥

0

1

2

2

¥

¥

r s t u

v w x y

rQ: t x

Breadth-First Search: Example

1

2

0

1

2

2

¥

¥

r s t u

v w x y

Q: t x v

9/13/18

5

Breadth-First Search: Example

1

2

0

1

2

2

3

¥

r s t u

v w x y

Q: x v u

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: v u y

9/13/18

6

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: u y

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: y

9/13/18

7

Breadth-First Search: Example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: Ø

BFS: The Code Again
BFS(G, s) {

initialize vertices;
Q = {s};
while (Q not empty) {

u = RemoveTop(Q);
for each v Î u->adj {

if (v->color == WHITE)
v->color = GREY;
v->d = u->d + 1;
v->p = u;
Enqueue(Q, v);

}
u->color = BLACK;

}
} What will be the running time?

Touch every vertex: O(V)

u = every vertex, but only once
(Why?)

So v = every vertex
that appears in some

other vert’s adjacency
list

Total running time: O(V+E)

9/13/18

8

Depth-First Search
• Depth-first search is another strategy for exploring a

graph

• Explore “deeper” in the graph whenever possible

• Edges are explored out of the most recently discovered
vertex v that still has unexplored edges

• When all of v’s edges have been explored, backtrack to
the vertex from which v was discovered

Depth-First Search
• Vertices initially colored white
• Then colored gray when discovered
• Then black when finished

9/13/18

9

DFS Example
source
vertex

DFS Example
source
vertex

1 | | |

| | |

| |

d f

Green in figure -> gray in code

9/13/18

10

DFS Example

1 | | |

| | |

2 | |

source
vertex

d f

DFS Example
source
vertex

1 | | |

| | 3 |

2 | |

d f

9/13/18

11

DFS Example

1 | | |

| | 3 | 4

2 | |

source
vertex

d f

DFS Example

1 | | |

| 5 | 3 | 4

2 | |

source
vertex

d f

9/13/18

12

Depth-First Search: The Code
DFS(G)
{

for each vertex u Î G->V
{

u->color = WHITE;
}
time = 0;
for each vertex u Î G->V
{

if (u->color ==
WHITE)

DFS_Visit(u);
}

}

DFS_Visit(u)
{

u->color = GREY;
time = time+1;
u->d = time;
for each v Î u->Adj[]
{

if (v->color ==
WHITE)

DFS_Visit(v);
}
u->color = BLACK;
time = time+1;
u->f = time;

}

Depth-First Search: The Code
DFS(G)
{

for each vertex u Î G->V
{

u->color = WHITE;
}
time = 0;
for each vertex u Î G->V
{

if (u->color ==
WHITE)

DFS_Visit(u);
}

}

DFS_Visit(u)
{

u->color = GREY;
time = time+1;
u->d = time;
for each v Î u->Adj[]
{

if (v->color ==
WHITE)

DFS_Visit(v);
}
u->color = BLACK;
time = time+1;
u->f = time;

}

What does u->d represent?

9/13/18

13

Depth-First Search: The Code
DFS(G)
{

for each vertex u Î G->V
{

u->color = WHITE;
}
time = 0;
for each vertex u Î G->V
{

if (u->color ==
WHITE)

DFS_Visit(u);
}

}

DFS_Visit(u)
{

u->color = GREY;
time = time+1;
u->d = time;
for each v Î u->Adj[]
{

if (v->color ==
WHITE)

DFS_Visit(v);
}
u->color = BLACK;
time = time+1;
u->f = time;

}

What does u->f represent?

Depth-First Search: The Code
DFS(G)
{

for each vertex u Î G->V
{

u->color = WHITE;
}
time = 0;
for each vertex u Î G->V
{

if (u->color ==
WHITE)

DFS_Visit(u);
}

}

DFS_Visit(u)
{

u->color = GREY;
time = time+1;
u->d = time;
for each v Î u->Adj[]
{

if (v->color ==
WHITE)

DFS_Visit(v);
}
u->color = BLACK;
time = time+1;
u->f = time;

}

Will all vertices eventually be colored black?

9/13/18

14

Depth-First Search: The Code
DFS(G)
{

for each vertex u Î G->V
{

u->color = WHITE;
}
time = 0;
for each vertex u Î G->V
{

if (u->color ==
WHITE)

DFS_Visit(u);
}

}

DFS_Visit(u)
{

u->color = GREY;
time = time+1;
u->d = time;
for each v Î u->Adj[]
{

if (v->color ==
WHITE)

DFS_Visit(v);
}
u->color = BLACK;
time = time+1;
u->f = time;

}

What will be the running time?

Depth-First Search: The Code
DFS(G)
{

for each vertex u Î G->V
{

u->color = WHITE;
}
time = 0;
for each vertex u Î G->V
{

if (u->color ==
WHITE)

DFS_Visit(u);
}

}

DFS_Visit(u)
{

u->color = GREY;
time = time+1;
u->d = time;
for each v Î u->Adj[]
{

if (v->color ==
WHITE)

DFS_Visit(v);
}
u->color = BLACK;
time = time+1;
u->f = time;

}

Running time: O(n2) because call DFS_Visit on each vertex,
and the loop over Adj[] can run as many as |V| times

9/13/18

15

Depth-First Search: The Code
DFS(G)
{

for each vertex u Î G->V
{

u->color = WHITE;
}
time = 0;
for each vertex u Î G->V
{

if (u->color ==
WHITE)

DFS_Visit(u);
}

}

DFS_Visit(u)
{

u->color = GREY;
time = time+1;
u->d = time;
for each v Î u->Adj[]
{

if (v->color ==
WHITE)

DFS_Visit(v);
}
u->color = BLACK;
time = time+1;
u->f = time;

}

BUT, there is actually a tighter bound.
How many times will DFS_Visit() actually be called?

Depth-First Search: The Code
DFS(G)
{

for each vertex u Î G->V
{

u->color = WHITE;
}
time = 0;
for each vertex u Î G->V
{

if (u->color ==
WHITE)

DFS_Visit(u);
}

}

DFS_Visit(u)
{

u->color = GREY;
time = time+1;
u->d = time;
for each v Î u->Adj[]
{

if (v->color ==
WHITE)

DFS_Visit(v);
}
u->color = BLACK;
time = time+1;
u->f = time;

}

So, running time of DFS = O(V+E)

9/13/18

16

Depth-First Sort Analysis
• This running time argument is an informal example of

amortized analysis

• “Charge” the exploration of edge to the edge:
• Each loop in DFS_Visit can be attributed to an edge in the

graph
• Runs once/edge if directed graph, twice if undirected
• Thus loop will run in O(E) time, algorithm O(V+E)
• Considered linear for graph, b/c adj list requires O(V+E)

storage
• Important to be comfortable with this kind of reasoning and

analysis

DFS Example
source
vertex

9/13/18

17

DFS Example

1 | | |

| | |

| |

source
vertex

d f

DFS Example

1 | | |

| | |

2 | |

source
vertex

d f

9/13/18

18

DFS Example

1 | | |

| | 3 |

2 | |

source
vertex

d f

DFS Example

1 | | |

| | 3 | 4

2 | |

source
vertex

d f

9/13/18

19

DFS Example

1 | | |

| 5 | 3 | 4

2 | |

source
vertex

d f

DFS Example

1 | | |

| 5 | 63 | 4

2 | |

source
vertex

d f

9/13/18

20

DFS Example

1 | 8 | |

| 5 | 63 | 4

2 | 7 |

source
vertex

d f

DFS Example
source
vertex

1 | 8 | |

| 5 | 63 | 4

2 | 7 |

d f

9/13/18

21

DFS Example
source
vertex

1 | 8 | |

| 5 | 63 | 4

2 | 7 9 |

d f

What is the structure of the green vertices?
What do they represent?

DFS Example
source
vertex

1 | 8 | |

| 5 | 63 | 4

2 | 7 9 |10

d f

9/13/18

22

DFS Example

1 | 8 |11 |

| 5 | 63 | 4

2 | 7 9 |10

source
vertex

d f

DFS Example
source
vertex

1 |12 8 |11 |

| 5 | 63 | 4

2 | 7 9 |10

d f

9/13/18

23

DFS Example

1 |12 8 |11 13|

| 5 | 63 | 4

2 | 7 9 |10

source
vertex

d f

DFS Example
source
vertex

1 |12 8 |11 13|

14| 5 | 63 | 4

2 | 7 9 |10

d f

9/13/18

24

DFS Example

1 |12 8 |11 13|

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d f

DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d f

9/13/18

25

DFS: Kinds of edges
• DFS introduces an important distinction among edges

in the original graph:

• Tree edge: encounter new (white) vertex
• The tree edges form a spanning forest

• Can tree edges form cycles? Why or why not?

DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d f

Tree edges

9/13/18

26

DFS: Kinds of edges
• DFS introduces an important distinction among edges

in the original graph:

• Tree edge: encounter new (white) vertex
• Back edge: from descendent to ancestor

Encounter a grey vertex (grey to grey)

DFS Example

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d f

Tree edges Back edges

9/13/18

27

DFS: Kinds of edges
• DFS introduces an important distinction among edges

in the original graph:
Tree edge: encounter new (white) vertex
Back edge: from descendent to ancestor
Forward edge: from ancestor to descendent

Not a tree edge, though
From grey node to black node

DFS Example

Tree edges Back edges Forward edges

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

source
vertex

d f

9/13/18

28

DFS: Kinds of edges
• DFS introduces an important distinction among edges

in the original graph:
Tree edge: encounter new (white) vertex
Back edge: from descendent to ancestor
Forward edge: from ancestor to descendent
Cross edge: between a tree or subtrees

From a grey node to a black node

DFS Example
source
vertex

d f

Tree edges Back edges Forward edges

1 |12 8 |11 13|16

14|155 | 63 | 4

2 | 7 9 |10

Cross edges

9/13/18

29

DFS: Kinds of edges
• DFS introduces an important distinction among edges

in the original graph:
Tree edge: encounter new (white) vertex
Back edge: from descendent to ancestor
Forward edge: from ancestor to descendent
Cross edge: between a tree or subtrees

• Note: tree & back edges are important; most
algorithms don’t distinguish forward & cross

