Midterm Review

Matching Residents to Hospitals

Goal. Given a set of preferences among hospitals and medical school students, design a self-reinforcing admissions process.

Unstable pair: applicant x and hospital y are unstable if:

- x prefers y to its assigned hospital.
- y prefers x to one of its admitted students.

Stable assignment. Assignment with no unstable pairs.

- Natural and desirable condition.
- Individual self-interest will prevent any applicant/hospital deal from being made.

Stable Matching Problem

Goal. Given n men and n women, find a "suitable" matching.

- Participants rate members of opposite sex.
- Each man lists women in order of preference from best to worst
- Each woman lists men in order of preference from best to worst.

Propose-And-Reject Algorithm

Propose-and-reject algorithm. [Gale-Shapley 1962] Intuitive method that guarantees to find a stable matching.

Initialize each person to be free.

while (some man is free and hasn't proposed to every woman) Choose such a man m
$\mathrm{w}=1^{\text {st }}$ woman on m 's list to whom m has not yet proposed if (w is free)
assign m and w to be engaged
else if (w prefers m to her fiancé m ')
assign m and w to be engaged, and m ' to be free
else
w rejects m
\}

Proof of Correctness: Stability

Claim. No unstable pairs.
Pf. (by contradiction)

- Suppose $A-Z$ is an unstable pair: each prefers each other to partner in Gale-Shapley matching S*. *.

Case 1. Z never proposed to $A \quad$ men propose in decreasing Case 1. Z never proposed to A. order of preference $\Rightarrow Z$ prefers his $G S$ partner to A.
$\Rightarrow A-Z$ is stable.

- Case 2: Z proposed to A.
\Rightarrow A rejected Z (right away or later)
\Rightarrow A prefers her GS partner to Z. \leftarrow women only trade up
$\Rightarrow A-Z$ is stable.
- In either case $A-Z$ is stable, a contradiction. .

Summary

Stable matching problem. Given n men and n women, and their preferences, find a stable matching if one exists.

Gale-Shapley algorithm. Guarantees to find a stable matching for any problem instance
Q. How to implement $G S$ algorithm efficiently?
Q. If there are multiple stable matchings, which one does GS find?

Efficient Implementation

Efficient implementation. We describe $O\left(n^{2}\right)$ time implementation.
Representing men and women.

- Assume men are named 1, ..., n.
- Assume women are named 1^{\prime}, ..., n^{\prime}.

Engagements.

- Maintain a list of free men, e.g., in a queue.
- Maintain two arrays wife [m], and husband [w].
- set entry to 0 if unmatched
- if m matched to w then wife $[m]=w$ and husband $[w]=m$

Men proposing.

- For each man, maintain a list of women, ordered by preference.
- Maintain an array count [m] that counts the number of proposals made by man m.

Efficient Implementation

Women rejecting/accepting.

- Does woman w prefer man m to man m'?
- For each woman, create inverse of preference list of men.
- Constant time access for each query after $O(n)$ preprocessing.
Amy

$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$	$8^{\text {th }}$

Pref	8	3	7	1

Amy

1	2	3	4	5	6	7	8
$4^{\text {th }}$	$8^{\text {th }}$	$2^{\text {nd }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$	$3^{\text {rd }}$	$1^{\text {st }}$

for $i=1$ to n
inverse[pref[i]] = i

Amy prefers man 3 to 6 Amy prefers man inverse [3] < inverse [6]

Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time of algorithm on input of a given size N.

- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.

- Hard (or impossible) to accurately model real instances by random distributions.
- Algorithm tuned for a certain distribution may perform poorly on other inputs.

RUNNING TIME ANALYSIS

Asymptotic Order of Growth

Upper bounds. $T(n)$ is $O(f(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have $T(n) \leq c \cdot f(n)$.

Lower bounds. $T(n)$ is $\Omega(f(n))$ if there exist constants $c>0$ and $n_{0} \geq 0$ such that for all $n \geq n_{0}$ we have $T(n) \geq c \cdot f(n)$.

Tight bounds. $T(n)$ is $\Theta(f(n))$ if $T(n)$ is both $O(f(n))$ and $\Omega(f(n))$.

Ex: $T(n)=32 n^{2}+17 n+32$.

- $T(n)$ is $O\left(n^{2}\right), O\left(n^{3}\right), \Omega\left(n^{2}\right), \Omega(n)$, and $\Theta\left(n^{2}\right)$.
- $T(n)$ is not $O(n), \Omega\left(n^{3}\right), \Theta(n)$, or $\Theta\left(n^{3}\right)$.

Notation

Slight abuse of notation. $T(n)=O(f(n))$.

- Asymmetric:
$-f(n)=5 n^{3} ; g(n)=3 n^{2}$
- $f(n)=O\left(n^{3}\right)=g(n)$
- but $f(n) \neq g(n)$
- Better notation: $T(n) \in O(f(n))$.

Meaningless statement. Any comparison-based sorting algorithm requires at least $O(n \log n)$ comparisons.

- Statement doesn't "type-check."
- Use Ω for lower bounds.

Properties

Transitivity.

- If $f=O(g)$ and $g=O(h)$ then $f=O(h)$
- If $f=\Omega(g)$ and $g=\Omega(h)$ then $f=\Omega(h)$.
- If $f=\Theta(g)$ and $g=\Theta(h)$ then $f=\Theta(h)$.

Additivity.

- If $f=O(h)$ and $g=O(h)$ then $f+g=O(h)$.
- If $f=\Omega(h)$ and $g=\Omega(h)$ then $f+g=\Omega(h)$.
- If $f=\Theta(h)$ and $g=O(h)$ then $f+g=\Theta(h)$.

Asymptotic Bounds for Some Common Functions

Polynomials. $a_{0}+a_{1} n+\ldots+a_{d} n^{d}$ is $\Theta\left(n^{d}\right)$ if $a_{d}>0$.
Polynomial time. Running time is $O\left(n^{d}\right)$ for some constant d independent of the input size n.

Logarithms. $O\left(\log _{a} n\right)=O\left(\log _{b} n\right)$ for any constants $a, b>0$.

$$
\begin{aligned}
& \text { can av av } \\
& \text { base }
\end{aligned}
$$

Logarithms. For every $x>0, \log n=O(n x)$
log grows slower than every polynomial

Exponentials. For every $r>1$ and every $d>0, n d=O(r n)$.
every exponential grows faster than every polynomial

Survey of common running times: See examples

Depth-First Search: The Code

Running time: There is a tighter bound $O(V+E)$ or $O(m+n)$ $n=|V|$ and $m=|E|$

DFS (G)
\{
for each vertex $u \in G->V$
\{
Mark v unexplored
\}
time $=0$;
for each vertex $u \in G->V$
\{
if (u is UNEXPLORED) DFS_Visit(u);
\}
\}

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in $O(m+n)$ time if the graph is given by its adjacency representation.

Pf.

- Easy to prove $O\left(n^{2}\right)$ running time:
- at most n lists L[i]
each node occurs on at most one list; for loop runs $\leq n$ times
- when we consider node u, there are $\leq n$ incident edges (u, v), and we spend $O(1)$ processing each edge
- Actually runs in $O(m+n)$ time
- when we consider node u, there are deg(u) incident edges (u, v)
- total time processing edges is $\Sigma_{u \in V} \operatorname{deg}(u)=2 m \quad$.
\uparrow
each edge (u, v) is counted exactly twice in sum: once in deg(u) and once in deg(v)

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node $1=\{1,2,3,4,5,6,7,8\}$.

Obstruction to Bipartiteness
Corollary. A graph G is bipartite iff it contains no odd length cycle.

bipartite
(2-colorable)

not bipartite (not 2-colorable)

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in $O(m+n)$ time. Pf.

- Pick any node s.
- Run BFS from s in G \qquad reverse orientation of every edge in G
- Run BFS from s in Gre
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma. .

Example 1 (yes)

strongly connected

Example 2 (no)

not strongly connected

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.
Ex. Precedence constraints: edge $\left(v_{i}, v_{j}\right)$ means v_{i} must precede v_{j}.
Def. A topological order of a directed graph $G=(V, E)$ is an ordering of its nodes as $v_{1}, v_{2}, \ldots, v_{n}$ so that for every edge $\left(v_{i}, v_{j}\right)$ we have $i<j$.

a DAG

a topological ordering

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in $O(m+n)$ time.
Pf.

- Maintain the following information:
- count [w] = remaining number of incoming edges
- S = set of remaining nodes with no incoming edges
- Initialization: $O(m+n)$ via single scan through graph.
- Update: to delete v
- remove v from S
- decrement count [w] for all edges from v to w, and add w to S if c count [w] hits 0
- this is $O(1)$ per edge .

Interval Scheduling

Interval scheduling.

- Job j starts at s_{j} and finishes at f_{j}.
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Analysis

Theorem. Greedy algorithm is optimal.
Pf. (by contradiction)

- Assume greedy is not optimal, and let's see what happens.
- Let $i_{1}, i_{2}, \ldots i_{k}$ denote set of jobs selected by greedy.
- Let $j_{1}, j_{2}, \ldots j_{m}$ denote set of jobs in the optimal solution with
$i_{1}=j_{1}, i_{2}=j_{2}, \ldots, i_{r}=j_{r}$ for the largest possible value of r.

Interval Partitioning

Interval partitioning.

- Lecture j starts at s_{j} and finishes at f_{j}.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3 .

Scheduling to Minimizing Lateness

Minimizing lateness problem.

- Single resource processes one job at a time.
- Job j requires t_{j} units of processing time and is due at time d_{j}.
- If j starts at time s_{j}, it finishes at time $f_{j}=s_{j}+\dagger_{j}$.
- Lateness: $\ell_{j}=\max \left\{0, f_{j}-d_{j}\right\}$.
- Goal: schedule all jobs to minimize maximum lateness $L=\max \ell_{j}$.

Ex:

1	2	3	4	5	6

Minimizing Lateness: Inversions
Def. An inversion in schedule S is a pair of jobs i and j such that:

Claim. Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the max lateness.

Pf. Let ℓ be the lateness before the swap, and let ℓ ' be it afterwards.

- $\ell^{\prime}{ }_{k}=\ell_{k}$ for all $k \neq i, j$
- $\ell^{\prime}{ }_{i} \leq \ell_{i}$
- If job j is late:

```
\ell}=\mp@subsup{f}{j}{\prime}-\mp@subsup{d}{j}{}\quad\mathrm{ (definition)
= fi}-\mp@subsup{d}{j}{}\quad(j\mathrm{ finishes at time }\mp@subsup{f}{i}{}
s fi
(definition)
```


Shortest Path Problem

Shortest path network.

- Directed graph $G=(V, E)$.
- Source s, destination \dagger
- Length $l_{e}=$ length of edge e.

Shortest path problem: find shortest directed path from s to t. \uparrow
cost of path $=$ sum of edge costs in path

Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined
the shortest path distance $\mathrm{d}(\mathrm{u})$ from s to u.
- Initialize $S=\{s\}, d(s)=0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v)=\min _{e=(u, v): u \in S} d(u)+\ell_{e}
$$

add v to S, and set $d(v)=\pi(v)$.
shortest path to some u in explored shortest path to some u in explored
part, followed by a single edge (u, v)

- Running time $O(m n)$ - simple implementation
- Can we do better ?

Minimum Spanning Tree

Minimum spanning tree. Given a connected graph $G=(V, E)$ with realvalued edge weights c_{e}, an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

$\mathrm{T}, \Sigma_{e \in T} C_{e}=50$

Cayley's Theorem. There are n^{n-2} spanning trees of K_{n}.

\uparrow

can't solve by brute force

Implementation: Prim's Algorithm

Implementation. Use a priority queue ala Dijkstra

- Maintain set of explored nodes S.
- For each unexplored node v, maintain attachment cost $a[v]=$ cost of cheapest edge v to a node in S.
- $O\left(n^{2}\right)$ with an array; $O(m \log n)$ with a binary heap.
$\operatorname{Prim}(G, c)$
foreach (v $\in \mathrm{V}$) $\mathrm{a}[\mathrm{v}] \leftarrow \infty$
Initialize an empty priority queue Q
foreach (v $\in \mathbb{V}$) insert v onto Q
Initialize set of explored nodes $\mathrm{S} \leftarrow \phi$
while (Q is not empty) \{
$\mathrm{u} \leftarrow$ delete min element from Q
$\mathrm{S} \leftarrow \mathrm{S} \cup\{\mathrm{u}\}$
foreach (edge $e=(u, v)$ incident to u)
if ($(v \notin S)$ and ($\left.c_{e}<a[v]\right)$) decrease priority $a[v]$ to c_{e}

Implementation: Kruskal's Algorithm

Implementation. Use the union-find data structure.

- Build set T of edges in the MST.
- Maintain set for each connected component.
- $O(m \log n)$ for sorting and $O(m \alpha(m, n))$ for union-find.

$$
M_{m \leq n^{2} \Rightarrow \log m \text { is } O(\log n)} \underbrace{}_{\text {essentially a constant }}
$$

Kruskal (G, c) \{
Sort edges weights so that $c_{1} \leq c_{2} \leq \ldots \leq c_{m}$.
$T \leftarrow \phi$
foreach ($u \in V$) make a set containing singleton u
for $i=1$ to m are u and v in different connected components? $(u, v)=e_{i}$
if (u and v are in different sets) $T \leftarrow T \cup\left\{e_{i}\right\}$
merge the sets containing u and v \}

```
return T
```

\}

Proof by Telescoping

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
assumes n is a power of 2

```
T}(n)={\begin{array}{ll}{\begin{array}{ll}{0}&{\mathrm{ if }n=1}\\{\mp@subsup{\underbrace}{\mathrm{ (orting both halves }}{2T(n/2)}+\mp@subsup{\underbrace}{\mathrm{ merging }}{n}}&{\mathrm{ otherwise }}\end{array}}
```

Pf. For $n>1$:

$$
\frac{T(n)}{n}=\frac{2 T(n / 2)}{n}+1
$$

$=\frac{T(n / 2)}{n / 2}+1$
$=\frac{T(n / 4)}{n / 4}+1+1$
$=\frac{T(n / n)}{n / n}+\underbrace{1+\cdots+1}_{\log _{2} n}$
$=\log _{2} n$

Proof by Induction

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
assumes n is a power of

```
N(n){ll}\begin{array}{ll}{0}&{\mathrm{ if }n=1}
T}(n)={\begin{array}{ll}{\mp@subsup{\underbrace}{\mathrm{ sorting both nalves}}{2T(n/2)}+\mp@subsup{\underbrace}{\mathrm{ nering }}{n}\mathrm{ otherwise}}
sorting both halves merging
```

Pf. (by induction on n)

- Base case: $n=1$.
- Inductive hypothesis: $T(n)=n \log _{2} n$.
- Goal: show that $T(2 n)=2 n \log _{2}(2 n)$.

```
T(2n)=2T(n)+2n
    = 2n log}2n+2
    =2n(\mp@subsup{\operatorname{log}}{2}{}(2n)-1)+2n
    = 2n log}2(2n
```

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.

Divide: $O(1)$.

Counting Inversions: Divide-and-Conquer
Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
$5-4,5-2,4-2,8-2,10-2 \quad 6-3,9-3,9-7,12-3,12-7,12-11,11-3,11-7$

Counting Inversions: Divide-and-Conquer
Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_{i} and a_{j} are in different halves, and return sum of three quantities.

1	5	4	8	10	2	6	9	12	11	3	7

Divide: $O(1)$.

\section*{| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 12 | 11 | 3 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions
$5-3,4-3,8-6,8-3,8-7,10-6,10-9,10-3,10-7$

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_{i} and a_{j} are in different halves.

Closest Pair Algorithm

Closest-Pair ($\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$)

Compute separation line L such that half the points are on one side and half on the other side.
$\delta_{1}=$ Closest-Pair(left half)
$\delta_{1}=$ Closest-Pair (rif half)
$\delta=\min \left(\delta_{1}, \delta_{2}\right)$
Delete all points further than δ from separation line L
Sort remaining points by y-coordinate
Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than δ, update δ.
return δ.
$T(n) \leq T(\lfloor n / 2\rfloor)+T([n / 2\rceil)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)$

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $i<j$ such that job i is compatible with j.

Ex: $p(8)=5, p(7)=3, p(2)=0$.

Dynamic Programming: Binary Choice

Notation. $\operatorname{OPT}(j)=$ value of optimal solution to the problem consisting of job requests $1,2, \ldots, j$

- Case 1: OPT selects job j
- can'† use incompatible jobs $\{p(j)+1, p(j)+2, \ldots, j-1\}$
- must include optimal solution to problem consisting of remaining compatible jobs $1,2, \ldots, p(j)$

- Case 2: OPT does not select job j
- must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

```
OPT(j)={}

Weighted Interval Scheduling: Brute Force
Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \(\Rightarrow\) exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

\(p(1)=0, p(j)=j-2\)


\section*{Segmented Least Squares}

\section*{Least squares.}
- Foundational problem in statistic and numerical analysis.
- Given \(n\) points in the plane: \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\)
- Find \(a\) line \(y=a x+b\) that minimizes the sum of the squared error:



Solution. Calculus \(\Rightarrow\) min error is achieved when
\[
t=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}}, \quad b=\frac{\sum_{i} y_{i}-a \sum_{i} x_{i}}{n}
\]

\section*{Segmented Least Squares}

Segmented least squares.
- Points lie roughly on a sequence of several line segments
- Given \(n\) points in the plane \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\) with
- \(x_{1}<x_{2}<\ldots<x_{n}\), find a sequence of lines that minimizes \(f(x)\).
Q. What's a reasonable choice for \(f(x)\) to balance accuracy and parsimony? \(\uparrow\)
number of lines


\section*{Segmented Least Squares}

Segmented least squares.
- Points lie roughly on a sequence of several line segments
- Given \(n\) points in the plane \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\) with
- \(x_{1}<x_{2}<\ldots<x_{n}\), find a sequence of lines that minimizes
- the sum of the sums of the squared errors \(E\) in each segment the number of lines \(L\)
- Tradeoff function: \(E+c L\), for some constant \(c>0\)


Dynamic Programming: Multiway Choice

\section*{Notation.}
- OPT \((\mathrm{j})=\) minimum cost for points \(\mathrm{p}_{1}, \mathrm{p}_{\mathrm{i}+1}, \ldots, \mathrm{p}_{\mathrm{j}}\).
- \(e(i, j)=\) minimum sum of squares for points \(p_{i}, p_{i+1}, \ldots, p_{j}\).

To compute OPT(j):
- Last segment uses points \(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}+1}, \ldots, \mathrm{p}_{\mathrm{j}}\) for some i .
- Cost \(=e(\mathrm{i}, \mathrm{j})+c+\) OPT \((\mathrm{i}-1)\).
```

OPT(j)={}
if j=0
{misi\leqi}{e(i,j)+c+OPT(i-1)} otherwis

```

\section*{Knapsack Problem}

Knapsack problem.
. Given n objects and a "knapsack."
- Item i weighs \(w_{i}>0\) kilograms and has value \(v_{i}>0\).
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: \(\{3,4\}\) has value 40
\begin{tabular}{|c|c|c|}
\hline Item & Value & Weight \\
\hline 1 & 1 & 1 \\
\hline 2 & 6 & 2 \\
\hline 3 & 18 & 5 \\
\hline 4 & 22 & 6 \\
\hline 5 & 28 & 7 \\
\hline
\end{tabular}

Greedy: repeatedly add item with maximum ratio \(v_{i} / w_{i}\). Ex: \(\{5,2,1\}\) achieves only value \(=35 \Rightarrow\) greedy not optimal.

Dynamic Programming: Adding a New Variable

Def. \(\operatorname{OPT}(i, w)=\max\) profit subset of items \(1, \ldots, i\) with weight limit \(w\).
- Case 1: OPT does not select item i.
- OPT selects best of \(\{1,2, \ldots, i-1\}\) using weight limit \(w\)
- Case 2: OPT selects item i.
- new weight limit \(=w-w_{i}\)
- OPT selects best of \(\{1,2, \ldots, i-1\}\) using this new weight limit
\(O P T(i, w)= \begin{cases}0 & \text { if } \mathrm{i}=0 \\ O P T(i-1, w) & \text { if } \mathrm{w}_{\mathrm{i}}>\mathrm{w} \\ \max \{O P T(i-1, w), & \left.v_{i}+O P T\left(i-1, w-w_{i}\right)\right\} \\ \text { otherwise }\end{cases}\)

```

