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Midterm Review

2

Matching Residents to Hospitals

Goal.  Given a set of preferences among hospitals and medical school 
students, design a self-reinforcing admissions process.

Unstable pair:  applicant x and hospital y are unstable if:
■ x prefers y to its assigned hospital.
■ y prefers x to one of its admitted students.

Stable assignment.  Assignment with no unstable pairs.
■ Natural and desirable condition.
■ Individual self-interest will prevent any applicant/hospital deal from 

being made.
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Stable Matching Problem

Goal.  Given n men and n women, find a "suitable" matching.
■ Participants rate members of opposite sex.
■ Each man lists women in order of preference from best to worst.
■ Each woman lists men in order of preference from best to worst.

Zeus Amy ClareBertha

Yancey Bertha ClareAmy

Xavier Amy ClareBertha

1st 2nd 3rd

Men�s Preference Profile

favorite least favorite

Clare Xavier ZeusYancey

Bertha Xavier ZeusYancey

Amy Yancey ZeusXavier

1st 2nd 3rd

Women�s Preference Profile

favorite least favorite
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Propose-And-Reject Algorithm

Propose-and-reject algorithm.  [Gale-Shapley 1962] Intuitive method 
that guarantees to find a stable matching.

Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {

Choose such a man m
w = 1st woman on m's list to whom m has not yet proposed
if (w is free)

assign m and w to be engaged
else if (w prefers m to her fiancé m')

assign m and w to be engaged, and m' to be free
else

w rejects m
}
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Proof of Correctness:  Stability

Claim.  No unstable pairs.
Pf. (by contradiction)
■ Suppose A-Z is an unstable pair:  each prefers each other to 

partner in Gale-Shapley matching S*.

■ Case 1:  Z never proposed to A.
Þ Z prefers his GS partner to A. 
Þ A-Z is stable.

■ Case 2:  Z proposed to A.
Þ A rejected Z (right away or later)
Þ A prefers her GS partner to Z.
Þ A-Z is stable.

■ In either case A-Z is stable, a contradiction.  �

Bertha-Zeus

Amy-Yancey

S*

. . .

men propose in decreasing
order of preference

women only trade up

6

Summary

Stable matching problem.  Given n men and n women, and their 
preferences, find a stable matching if one exists.

Gale-Shapley algorithm.  Guarantees to find a stable matching for any
problem instance.

Q. How to implement GS algorithm efficiently?

Q. If there are multiple stable matchings, which one does GS find?
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Efficient Implementation

Efficient implementation.  We describe O(n2) time implementation.

Representing men and women.
■ Assume men are named 1, …, n.
■ Assume women are named 1', …, n'.

Engagements.
■ Maintain a list of free men, e.g., in a queue.
■ Maintain two arrays wife[m], and husband[w].

– set entry to 0 if unmatched
– if m matched to w then wife[m]=w and husband[w]=m

Men proposing.
■ For each man, maintain a list of women, ordered by preference.
■ Maintain an array count[m] that counts the number of proposals 

made by man m.

8

Efficient Implementation

Women rejecting/accepting.
■ Does woman w prefer man m to man m'?
■ For each woman, create inverse of preference list of men.
■ Constant time access for each query after O(n) preprocessing.

for i = 1 to n
inverse[pref[i]] = i

Pref

1st

8

2nd

7

3rd

3

4th

4

5th

1 5 26

6th 7th 8th

Inverse 4th 2nd8th 6th5th 7th 1st3rd

1 2 3 4 5 6 7 8

Amy

Amy

Amy prefers man 3 to 6
since inverse[3] < inverse[6]

2 7
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Worst-Case Analysis

Worst case running time.  Obtain bound on largest possible running time 
of algorithm on input of a given size N.
■ Generally captures efficiency in practice.
■ Draconian view, but hard to find effective alternative. 

Average case running time.  Obtain bound on running time of algorithm 
on random input as a function of input size N.
■ Hard (or impossible) to accurately model real instances by random 

distributions.
■ Algorithm tuned for a certain distribution may perform poorly on 

other inputs. RUNNING TIME ANALYSIS

10
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Asymptotic Order of Growth

Upper bounds.  T(n) is O(f(n)) if there exist constants c > 0 and n0 ³ 0 
such that for all n ³ n0 we have T(n) £ c · f(n).

Lower bounds.  T(n) is W(f(n)) if there exist constants c > 0 and n0 ³ 0 
such that for all n ³ n0 we have T(n) ³ c · f(n).

Tight bounds.  T(n) is Q(f(n)) if T(n) is both O(f(n)) and W(f(n)).

Ex:   T(n) = 32n2 + 17n + 32.
■ T(n) is O(n2), O(n3), W(n2), W(n), and Q(n2) .
■ T(n) is not O(n), W(n3), Q(n), or Q(n3).
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Notation

Slight abuse of notation.  T(n) = O(f(n)).
■ Asymmetric:

– f(n) = 5n3;  g(n) = 3n2

– f(n) = O(n3) = g(n)
– but f(n) ¹ g(n).

■ Better notation:  T(n) Î O(f(n)).

Meaningless statement.  Any comparison-based sorting algorithm 
requires at least O(n log n) comparisons.
■ Statement doesn't "type-check."
■ Use W for lower bounds.
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Properties

Transitivity.
■ If f = O(g) and g = O(h) then f = O(h).
■ If f = W(g) and g = W(h) then f = W(h). 
■ If f = Q(g) and g = Q(h) then f = Q(h).

Additivity.
■ If f = O(h) and g = O(h) then f + g = O(h). 
■ If f = W(h) and g = W(h) then f + g = W(h).
■ If f = Q(h) and g = O(h) then f + g = Q(h).

14

Asymptotic Bounds for Some Common Functions

Polynomials.  a0 + a1n + … + adnd is Q(nd) if ad > 0. 

Polynomial time.  Running time is O(nd) for some constant d independent 
of the input size n.

Logarithms.  O(log a n) = O(log b n) for any constants a, b > 0.

Logarithms.  For every x > 0,  log n = O(nx).

Exponentials.  For every r > 1 and every d > 0,  nd = O(rn).

Survey of common running times: See examples

every exponential grows faster than every polynomial

can avoid specifying the 
base

log grows slower than every polynomial
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Breadth First Search

Property.  Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of 
G. Then the level of x and y differ by at most 1.

L0

L1

L2

L3
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Depth-First Search: The Code

DFS(G)

{

for each vertex u Î G->V

{

Mark v unexplored ;

}

time = 0;

for each vertex u Î G->V

{

if (u is UNEXPLORED)

DFS_Visit(u);

}

}

DFS_Visit(u)

{

Mark u EXPLORED;

add u to R;

for each v Î u->Adj[]
{

if (v is 
NOT_EXPLORED)

DFS_Visit(v);
}

}

Running time: There is a tighter bound  O(V+E)  or O(m + n)
n = |V| and m = |E|

18

Breadth First Search:  Analysis

Theorem.  The above implementation of BFS runs in O(m + n) time if 
the graph is given by its adjacency representation.

Pf.
■ Easy to prove O(n2) running time:

– at most n lists L[i]
– each node occurs on at most one list; for loop runs £ n times
– when we consider node u, there are £ n incident edges (u, v),

and we spend O(1) processing each edge

■ Actually runs in O(m + n) time:
– when we consider node u, there are deg(u) incident edges (u, v)
– total time processing edges is SuÎV deg(u) = 2m     �

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)
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Connected Component

Connected component.  Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.

20

Obstruction to Bipartiteness

Corollary.  A graph G is bipartite iff it contains no odd length cycle.

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)
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Strong Connectivity:  Algorithm

Theorem.  Can determine if G is strongly connected in O(m + n) time.
Pf.
■ Pick any node s.
■ Run BFS from s in G.
■ Run BFS from s in Grev.
■ Return true iff all nodes reached in both BFS executions.
■ Correctness follows immediately from previous lemma.   �

reverse orientation of every edge in G

strongly connected not strongly connected

Example 1 (yes) Example 2 (no)

22

Directed Acyclic Graphs

Def.  An DAG is a directed graph that contains no directed cycles.

Ex.  Precedence constraints:  edge (vi, vj) means vi must precede vj.

Def.  A topological order of a directed graph G = (V, E) is an ordering 
of its nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j.

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7
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Topological Sorting Algorithm:  Running Time

Theorem.  Algorithm finds a topological order in O(m + n) time.

Pf.  
■ Maintain the following information:

– count[w] = remaining number of incoming edges
– S = set of remaining nodes with no incoming edges

■ Initialization:  O(m + n) via single scan through graph.
■ Update:  to delete v

– remove v from S
– decrement count[w] for all edges from v to w, and add w to S if c 
count[w] hits 0

– this is O(1) per edge    � GREEDY ALGS.

24
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Interval Scheduling

Interval scheduling.
■ Job j starts at sj and finishes at fj.
■ Two jobs compatible if they don't overlap.
■ Goal: find maximum subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

26

Interval Scheduling:  Analysis

Theorem.  Greedy algorithm is optimal.

Pf.  (by contradiction)
■ Assume greedy is not optimal, and let's see what happens.
■ Let i1, i2, ... ik denote set of jobs selected by greedy.
■ Let j1, j2, ... jm  denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r. 

j1 j2 jr

i1 i1 ir ir+1

. . .

Greedy:

OPT: jr+1

why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1
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Interval Partitioning

Interval partitioning.
■ Lecture j starts at sj and finishes at fj.
■ Goal:  find minimum number of classrooms to schedule all lectures so 

that no two occur at the same time in the same room.

Ex:  This schedule uses only 3.

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

28

Scheduling to Minimizing Lateness

Minimizing lateness problem.
■ Single resource processes one job at a time.
■ Job j requires tj units of processing time and is due at time dj.
■ If j starts at time sj, it finishes at time fj = sj + tj. 
■ Lateness:  !j = max { 0,  fj - dj }.
■ Goal:  schedule all jobs to minimize maximum lateness L = max !j.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1 £ d2 £ … £ dn

t ¬ 0
for j = 1 to n

Assign job j to interval [t, t + tj]
sj ¬ t, fj ¬ t + tj
t ¬ t + tj

output intervals [sj, fj]

Minimizing Lateness:  Greedy Algorithm

Greedy algorithm.  Earliest deadline first.

30

Minimizing Lateness: Inversions

Def.  An inversion in schedule S is a pair of jobs i and j such that:
i < j but j scheduled before i.

Claim.  Swapping two adjacent, inverted jobs reduces the number of 
inversions by one and does not increase the max lateness.

Pf.  Let ! be the lateness before the swap, and let ! ' be it afterwards.
■ !'k = !k for all k ¹ i, j
■ !'i £ !i
■ If job j is late:

ij

i j

before swap

after swap

n)(definitio
)(

) time at finishes (
n)(definitio

i

ii

iji

jjj

jidf
fjdf

df





≤

<−≤

−=

−#=#

f'j

fi

inversion
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Shortest Path Problem

Shortest path network.
■ Directed graph G = (V, E).
■ Source s, destination t.
■ Length !e = length of edge e.

Shortest path problem:  find shortest directed path from s to t.

Cost of path s-2-3-5-t
=  9 + 23 + 2 + 16
= 48.

s

3

t

2

6

7

4
5

23

18

2

9

14

15 5

30

20

44

16

11

6

19

6

cost of path = sum of edge costs in path

32

Dijkstra's Algorithm

Dijkstra's algorithm.
■ Maintain a set of explored nodes S for which we have determined 

the shortest path distance d(u) from s to u.
■ Initialize S = { s }, d(s) = 0.
■ Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = p(v).
■ Running time  O(mn)- simple implementation
■ Can we do better ?

,)(min)(
:),( eSuvue

udv +=
∈=

π

s

v

u
d(u)

shortest path to some u in explored 
part, followed by a single edge (u, v)

S

!e
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Minimum Spanning Tree

Minimum spanning tree.  Given a connected graph G = (V, E) with real-
valued edge weights ce, an MST is a subset of the edges T Í E such 
that T is a spanning tree whose sum of edge weights is minimized.

Cayley's Theorem.  There are nn-2 spanning trees of Kn.

5

23

10 
21

14

24

16

6

4

18
9

7

11
8

5

6

4

9

7

11
8

G = (V, E) T,  SeÎT ce = 50

can't solve by brute force

34

Implementation:  Prim's Algorithm

Prim(G, c) {
foreach (v Î V) a[v] ¬ ¥
Initialize an empty priority queue Q
foreach (v Î V) insert v onto Q
Initialize set of explored nodes S ¬ f

while (Q is not empty) {
u ¬ delete min element from Q
S ¬ S È { u }
foreach (edge e = (u, v) incident to u)

if ((v Ï S) and (ce < a[v]))
decrease priority a[v] to ce

}

Implementation.  Use a priority queue ala Dijkstra.
■ Maintain set of explored nodes S.
■ For each unexplored node v, maintain attachment cost a[v] = cost of 

cheapest edge v to a node in S.
■ O(n2) with an array; O(m log n) with a binary heap.
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Implementation:  Kruskal's Algorithm

Kruskal(G, c) {
Sort edges weights so that c1 £ c2 £ ... £ cm.
T ¬ f

foreach (u Î V) make a set containing singleton u

for i = 1 to m
(u,v) = ei
if (u and v are in different sets) {

T ¬ T È {ei}
merge the sets containing u and v

}
return T

}

Implementation.  Use the union-find data structure.
■ Build set T of edges in the MST.
■ Maintain set for each connected component.
■ O(m log n) for sorting and  O(m a (m, n)) for union-find.

are u and v in different connected components?

merge two components

m £ n2 Þ log m is O(log n) essentially a constant

DIVIDE AND CONQUER

36
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Proof by Recursion Tree

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
     + n

merging
 otherwise

" 

# 
$ 

% $ 
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Proof by Telescoping

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  For n > 1:

    

€ 

T(n)
n

=
2T(n /2)

n
+ 1

=
T(n /2)

n /2
+ 1

=
T(n / 4)

n / 4
+ 1 + 1



=
T(n /n)

n /n
+ 1 ++ 1

log2 n
     

= log2 n

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
     + n

merging
 otherwise

" 

# 
$ 

% $ 

assumes n is a power of 2
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Proof by Induction

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  (by induction on n)
■ Base case:  n = 1.
■ Inductive hypothesis:  T(n) =  n log2 n.
■ Goal:  show that T(2n) =  2n log2 (2n).

  

€ 

T(2n) = 2T(n)  +  2n
= 2n log2 n  +  2n
= 2n log2(2n)−1( )  +  2n
= 2n log2(2n)

assumes n is a power of 2

    

€ 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
     + n

merging
 otherwise

" 

# 
$ 

% $ 
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
■ Divide:  separate list into two pieces.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide:  O(1).
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
■ Divide:  separate list into two pieces.
■ Conquer: recursively count inversions in each half.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

42

Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
■ Divide:  separate list into two pieces.
■ Conquer: recursively count inversions in each half.
■ Combine: count inversions where ai and aj are in different halves, 

and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

Combine:  ???9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.
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13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0 

Counting Inversions:  Combine

Combine:  count blue-green inversions
■ Assume each half is sorted.
■ Count inversions where ai and aj are in different halves. 
■ Merge two sorted halves into sorted whole.

Count:  O(n)

Merge:  O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

  

€ 

T(n) ≤  T n /2# $( ) + T n /2% &( ) + O(n) ⇒ T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant

44

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
Compute separation line L such that half the points
are on one side and half on the other side.

d1 = Closest-Pair(left half)
d2 = Closest-Pair(right half)
d = min(d1, d2)

Delete all points further than d from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than d, update d.

return d.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)
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Closest Pair of Points:  Analysis

Running time.

Q.  Can we achieve O(n log n)?

A.  Yes. Don't sort points in strip from scratch each time.
■ Each recursive returns two lists: all points sorted by y coordinate, 

and all points sorted by x coordinate.
■ Sort by merging two pre-sorted lists.

  

€ 

T(n) ≤ 2T n /2( ) + O(n) ⇒ T(n) = O(n logn)

  

€ 

T(n) ≤ 2T n /2( ) + O(n log n) ⇒ T(n)  =  O(n log2 n)

DYNAMIC PROGRAMMING

46
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Weighted Interval Scheduling

Notation.  Label jobs by finishing time:  f1  £ f2  £ . . . £ fn .
Def.  p(j) = largest index i < j such that job i is compatible with j.

Ex:  p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

48

Dynamic Programming:  Binary Choice

Notation.  OPT(j) = value of optimal solution to the problem consisting 
of job requests 1, 2, ..., j.

■ Case 1:  OPT selects job j.
– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j)

■ Case 2:  OPT does not select job j.
– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1

  

€ 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise
# 
$ 
% 

optimal substructure
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Weighted Interval Scheduling:  Brute Force

Observation.  Recursive algorithm fails spectacularly because of 
redundant sub-problems  Þ exponential algorithms.

Ex.  Number of recursive calls for family of "layered" instances grows 
like Fibonacci sequence.

3

4

5

1
2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

50

Segmented Least Squares

Least squares.
■ Foundational problem in statistic and numerical analysis.
■ Given n points in the plane:  (x1, y1), (x2, y2) , . . . , (xn, yn).
■ Find a line y = ax + b that minimizes the sum of the squared error: 

Solution.  Calculus  Þ min error is achieved when

  

€ 

SSE = (yi − axi −b)2
i=1

n
∑

  

€ 

a =
n xi yi − ( xi )i∑ ( yi )i∑i∑

n xi
2 − ( xi )

2
i∑i∑

, b =
yi − a xii∑i∑

n

x

y
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Segmented Least Squares

Segmented least squares.
■ Points lie roughly on a sequence of several line segments.
■ Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 
■ x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q.  What's a reasonable choice for f(x) to balance accuracy and 
parsimony?

x

y

goodness of fit

number of lines

52

Segmented Least Squares

Segmented least squares.
■ Points lie roughly on a sequence of several line segments.
■ Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 
■ x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment
– the number of lines L

■ Tradeoff function:  E + c L, for some constant c > 0.

x

y
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Dynamic Programming:  Multiway Choice

Notation.
■ OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.
■ e(i, j)   = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):
■ Last segment uses points pi, pi+1 , . . . , pj for some i.
■ Cost = e(i, j) + c + OPT(i-1).

  

€ 

OPT( j) =
0 if  j = 0

min
1≤ i ≤ j

e(i, j) + c + OPT(i −1){ } otherwise
$ 
% 
& 

' & 
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Knapsack Problem

Knapsack problem.
■ Given n objects and a "knapsack."
■ Item i weighs wi  > 0 kilograms and has value vi > 0.
■ Knapsack has capacity of W kilograms.
■ Goal:  fill knapsack so as to maximize total value.

Ex:  { 3, 4 } has value 40.

Greedy:  repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35  Þ greedy not optimal.

1

Value

18
22
28

1

Weight

5
6

6 2

7

Item

1

3
4
5

2W = 11



10/18/18

28
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Dynamic Programming:  Adding a New Variable

Def.  OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

■ Case 1:  OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 } using weight limit w 

■ Case 2:  OPT selects item i.
– new weight limit = w – wi

– OPT selects best of { 1, 2, …, i–1 } using this new weight limit

  

€ 

OPT(i, w) =

0 if  i = 0
OPT(i −1, w) if  wi > w
max OPT(i −1, w), vi + OPT(i −1, w−wi ){ } otherwise

# 

$ 
% 

& 
% 
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Knapsack Algorithm

n + 1

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT:  { 4, 3 }
value = 22 + 18 = 40
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Also included:

Sequence alignment
Shortest Path with negative weights and cycles
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