Midterm Review

Matching Residents to Hospitals

Goal. Given a set of preferences among hospitals and medical school students, design a self-reinforcing admissions process.

Unstable pair: applicant x and hospital y are unstable if:

- x prefers y to its assigned hospital.
- y prefers x to one of its admitted students.

Stable assignment. Assignment with no unstable pairs.

- Natural and desirable condition.
- Individual self-interest will prevent any applicant/hospital deal from being made.

Stable Matching Problem

Goal. Given n men and n women, find a "suitable" matching.

- Participants rate members of opposite sex.
- Each man lists women in order of preference from best to worst.
- Each woman lists men in order of preference from best to worst.

Efficient Implementation

Efficient implementation. We describe $O(n^2)$ time implementation.

Representing men and women.

- Assume men are named 1, ..., n.
- Assume women are named 1', ..., n'.

Engagements.

- Maintain a list of free men, e.g., in a queue.
- Maintain two arrays wife[m], and husband[w].
 - set entry to \circ if unmatched
 - if m matched to w then wife[m]=w and husband[w]=m

Men proposing.

- For each man, maintain a list of women, ordered by preference.
- Maintain an array ${\tt count\,[m]}$ that counts the number of proposals made by man m.

Efficient Implementation

Women rejecting/accepting.

- Does woman w prefer man m to man m'?
- For each woman, create inverse of preference list of men.
- Constant time access for each query after O(n) preprocessing.

Amy	1st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	
Pref	8	3	7	1	4	5	6	2	
Amy	1	2	3	4	5	6	7	8	
Inverse	4 th	8 th	2 nd	5^{th}	6 th	7 th	3 rd	1st	
									Amy prefers man 3 to 6 since inverse[3] < inverse[6
	fo	or i inv			E[i]]	= i			2 7

Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time of algorithm on input of a given size N.

- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm on random input as a function of input size N.

- Hard (or impossible) to accurately model real instances by random distributions.
- Algorithm tuned for a certain distribution may perform poorly on other inputs.

RUNNING TIME ANALYSIS

Asymptotic Order of Growth

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have $T(n) \le c \cdot f(n)$.

Lower bounds. T(n) is $\Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ such that for all $n \ge n_0$ we have T(n) $\ge c \cdot f(n)$.

Tight bounds. T(n) is $\Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$.

Ex: T(n) = 32n² + 17n + 32.

- T(n) is $O(n^2)$, $O(n^3)$, $\Omega(n^2)$, $\Omega(n)$, and $\Theta(n^2)$.
- T(n) is not O(n), $\Omega(n^3)$, $\Theta(n)$, or $\Theta(n^3)$.

Notation

Slight abuse of notation. T(n) = O(f(n)).

- Asymmetric:
 - f(n) = 5n³; g(n) = 3n²
 - f(n) = O(n³) = g(n)
 - but f(n) ≠ g(n).
- Better notation: $T(n) \in O(f(n))$.

Meaningless statement. Any comparison-based sorting algorithm requires at least O(n log n) comparisons.

- Statement doesn't "type-check."
- ${\scriptstyle \bullet }$ Use Ω for lower bounds.

Properties

Transitivity.

- If f = O(g) and g = O(h) then f = O(h).
- If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$.
- If $f = \Theta(g)$ and $g = \Theta(h)$ then $f = \Theta(h)$.

Additivity.

- If f = O(h) and g = O(h) then f + g = O(h).
- If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$.
- If $f = \Theta(h)$ and g = O(h) then $f + g = \Theta(h)$.

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time. Pf.

- Pick any node s.
- Run BFS from s in G.
- Run BFS from s in G^{rev}.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma. •

Example 1 (yes)

Example 2 (no)

strongly connected

not strongly connected

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.

- Maintain the following information:
 - count[w] = remaining number of incoming edges
 - S = set of remaining nodes with no incoming edges
- Initialization: O(m + n) via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement $\tt count[w]$ for all edges from v to w, and add w to S if c $\tt count[w]$ hits 0
 - this is O(1) per edge 🛛

GREEDY ALGS.

3

Interval Partitioning

Interval partitioning.

- Lecture j starts at s_j and finishes at f_j.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Scheduling to Minimizing Lateness

Minimizing lateness problem.

- Single resource processes one job at a time.
- Job j requires t_j units of processing time and is due at time d_j.
- If j starts at time s_j , it finishes at time $f_j = s_j + t_j$.
- Lateness: $\ell_j = \max \{ 0, f_j d_j \}$.
- Goal: schedule all jobs to minimize maximum lateness L = max ℓ_j .

• Maintain a set of explored nodes S for which we have determined the shortest path distance d(u) from s to u. • Repeatedly choose unexplored node v which minimizes $\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$

shortest path to some u in explored part, followed by a single edge (u, v)

Implementation. Use a priority queue ala Dijkstra.

- Maintain set of explored nodes S.
- For each unexplored node v, maintain attachment cost a[v] = cost of cheapest edge v to a node in S.
- O(n²) with an array; O(m log n) with a binary heap.

```
Prim(G, c) {
foreach (v \in V) a[v] \leftarrow \infty
Initialize an empty priority queue Q
foreach (v \in V) insert v onto Q
Initialize set of explored nodes S \leftarrow \phi
while (Q is not empty) {
    u \leftarrow delete min element from Q
    S \leftarrow S \cup \{u\}
    foreach (edge e = (u, v) incident to u)
         if ((v \notin S) \text{ and } (c_e < a[v]))
             decrease priority a[v] to c<sub>e</sub>
                                                                      34
```


Proof by Recursion Tree if n = 10 $\underbrace{2T(n/2)}_{\text{sorting both halves}} + \underbrace{n}_{\text{merging}}$ T(n) =otherwise T(n) n T(n/2) 2(n/2) T(n/2) 4(n/4) T(n/4) T(n/4) T(n/4) T(n/4) ∎ log₂n . . . 2^k (n / 2^k) T(n / 2^k) . . . T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) n/2(2) n log₂n 37

Proof by Telescoping									
Claim. If T(n)	satisfies this recurrence, then T(n) = n log₂ n.								
	assumes n is a power of 2 $T(n) = \begin{cases} 0 & \text{if } n = 1 \\ \underbrace{2T(n/2)}_{\text{sorting both halves merging}} & \text{otherwise} \end{cases}$								
Pf. For n > 1:	$\frac{T(n)}{n} = \frac{2T(n/2)}{n} + 1$								
	$= \frac{T(n/2)}{n/2} + 1$ $= \frac{T(n/4)}{n/4} + 1 + 1$								
	$= \frac{T(n/n)}{n/n} + \underbrace{1 + \dots + 1}_{\log_2 n}$ $= \log_2 n$								

10/18/18

Closest Pair Algorithm	
Closest-Pair(p ₁ ,, p _n) { <u>Compute</u> separation line L such that half the points are on one side and half on the other side.	O(n log n)
$\begin{split} \delta_1 &= \text{Closest-Pair(left half)} \\ \delta_2 &= \text{Closest-Pair(right half)} \\ \delta &= \min(\delta_1, \delta_2) \end{split}$	2T(n / 2)
Delete all points further than δ from separation line L	O(n)
Sort remaining points by y-coordinate.	O(n log n)
Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than δ , update $\delta.$	O(n)
return δ .	
	44

Segmented Least Squares

Least squares.

- Foundational problem in statistic and numerical analysis.
- Given n points in the plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.
- Find a line y = ax + b that minimizes the sum of the squared error:

Segmented Least Squares Points lie roughly on a sequence of several line segments. Given n points in the plane (x1, y1), (x2, y2), ..., (xn, yn) with x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x). What's a reasonable choice for f(x) to balance accuracy and parsimony? products of fit

2000 A

х

Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with
- x1 < x2 < ... < xn, find a sequence of lines that minimizes:
 - the sum of the sums of the squared errors E in each segment - the number of lines L
- Tradeoff function: E + c L, for some constant c > 0.

Dynamic Programming: Multiway Choice

Notation.

- OPT(j) = minimum cost for points $p_1, p_{i+1}, \ldots, p_j$.
- e(i, j) = minimum sum of squares for points $p_i, p_{i+1}, \ldots, p_j$.

To compute OPT(j):

- Last segment uses points $p_i, p_{i+1}, \ldots, p_j$ for some i.
- Cost = e(i, j) + c + OPT(i-1).

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \min_{1 \le i \le j} \left\{ e(i,j) + c + OPT(i-1) \right\} & \text{otherwise} \end{cases}$$

Also included:

Sequence alignment Shortest Path with negative weights and cycles