CS583 Lecture 01

Jana Kosecka

some materials here are based on Profs. E. Demaine, D. Luebke A.Shehu, J-M. Lien and Prof. Wang's past lecture notes

Course Info

- · course webpage:
 - from the syllabus on http://cs.gmu.edu/ or
 - http://cs.gmu.edu/~kosecka/cs583/
- http://mymason.gmu.edu//
- · Information you will find

 - course syllabus, time table office hours .pdf copies of the lectures handouts, practice problems

Prerequisite

- Data structures and algorithms (CS 310)
- Formal methods and models (CS 330)
- Calculus (MATH 113, 114, 213)
- Discrete math (MATH 125)
- Ability to program in a high-level language that supports recursion

Textbook

Introduction to Algorithms by T.
 H. Cormen, C. E. Leiserson, R. L.
 Rivest, and C. Stein, The McGraw-Hill Companies, 2nd Edition (2001)

- I also recommend you read the following book: Algorithms, by S. Dasgupta, C. Papadimitriou, and U. Vazirani, McGraw-Hill, 2006
- http://mitpress.mit.edu/algorithms/

Grades

- Short Quizes every 2 weeks (30%)
- Practice Problems
- Midterm Exam 30%
- Final Exam 40%
- Make-up tests will NOT be given for missed examinations

Other Important Info

Email

- make sure your gmu mail is activated
- send only from your gmu account; mails might be filtered if you send from other accounts
- when you send emails, put [CS583] in your subject header

Goal of the Course

- Design efficient algorithms and analyze their complexity
- Analysis: what are the computational resources needed?
- time, storage, #processors, programs, communications
- · What is an algorithm: Recipe to solve a problem
- Clear specification of the problem
- What is the input? What is the output?
- How long does it take, under particular circumstances ? (time)
- What are the memory requirements ? (space)

Examples of algorithms

- examples of algorithms
- sorting algorithms everywhere
- routing, graph theoretic algorithms
- number theoretic algorithms, cryptography
- · web search
- triangulation- graphics, optimization problems
- string matching (computational biology), cryptography - security

Shortest Paths

- Given a graph, find the shortest path in the graph connecting the start and goal vertices.
- What is a graph?
- · How do you represent the graph?
- · How do you formalize the problem?
- How do you solve the problem?

Shortest Paths

- What is the most naive way to solve the shortest path problem?
 - EX: a graph with only 4 nodes
 - How much time does your method take?
 - Can we do better?
 - How do we know our method is optimal? (i.e., no other methods can be more efficient.)

Shortest Paths

- Given a graph, find the shortest path in the graph that visits each vertex exactly once.
 - How do you formalize the problem?
 - How do you solve the problem?
 - How much time does your method take?
 - Can we do better?

Hard Problems

- We are able to solve many problems, but there are many other problems that we cannot solve efficiently
 - we can solve the shortest path between two vertices efficiently
 - but we cannot efficiently solve the shortest path problem that requires that path to visit each vertex exactly once

Course Topics

- Week 1: Algorithm Analysis (growth of functions)
- · Week 2: Sorting & Order Statistics
- Week 3: Dynamic Programming
- · Week 4: Greedy Algorithms
- Week 5: Graph Algorithms (basic graph search)
- Week 6: Minimum Spanning Tree
- Week 7: Single-Source Shortest Paths
- · Week 8: All-Pairs Shortest Paths
- · Week 9: Maximum Flow
- Week 10: Linear Programming
- Week 11: NP completeness
- See updates on the course webpage

Warning & Suggestions

- Please don't take this class if you
 - You do not have the mathematics and/or CS prerequisites
 - You are not able to make arrangements to come to GMU to take the exams on-site
 - You are working full-time and taking another graduate level computer science class
 - You are not able to spend a minimum of 9~12 hours a week outside of class reading the material and doing practice problem sets

Sorting

- Problem: Sort real numbers in nondecreasing order
- Input: A sequence of n numbers $\langle a_1, \ldots, a_n \rangle$ Output:

A permutation $\langle a_1', \dots, a_n' \rangle$ s.t. $a_1' \leq a_2' \leq \dots \leq a_n'$

· Why do we need to sort?

Sorting

Sorting is important, so there are **many** sorting algorithms

- Selection sort
- Insertion sort
- Library sort
- Shell sort
- Gnome sort
- Bubble sort
- Comb sort
- Binary tree sort
- Topological sort

Sorting

- Algorithms in general
- · We will be concerned with efficiency
- · Memory requirements
- · Independent of the computer speed
- · How to design algorithms
- What is the easiest (or most naive) way to do sorting?
 - **EX**: sort 3,1,2,4
 - how efficient is your method?
 - We will look at two sorting algoritms

Insertion Sort

If you ever sorted a deck of cards, you have done insertion sort

- If you don't remember, this is how you sort the cards:
- you sort the card one by one
- assuming the first i cards are sorted, now "sort" the (i+1)-th card
- **EX**: 4, 6, 1, 3, 7, 9, 2

Insertion Sort

```
1: for j \leftarrow 2 to n do
      Temp \leftarrow A[j]
2:
      i \leftarrow j-1
3:
      while i > 0 and A[i] > \text{Temp do}
4:
         A[i+1] \leftarrow A[i]
5:
         i \leftarrow i - 1
6:
      end while
7:
      A[i+1] \leftarrow \text{Temp}
8:
9: end for
```

• **EX**: 4, 6, 1, 3, 7, 9, 2

Analyze Insertion Sort

- · Is it correct?
- How efficient/slow is insertion sort?
- Characterize running time as a function of input size
- · Compute running time of each statement
- Sum up the running times

Insertion Sort

Cost times

```
1: for j \leftarrow 2 to n do

2: Temp \leftarrow A[j]

3: i \leftarrow j - 1

4: while i > 0 and A[i] > Temp do

5: A[i+1] \leftarrow A[i]

6: i \leftarrow i - 1

7: end while

8: A[i+1] \leftarrow Temp

9: end for
```

• **EX**: 4, 6, 1, 3, 7, 9, 2

Insertion Sort

Analysis

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 n$$

Best case

$$T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4(n-1) + c_7(n-1)$$

Worst case – input in the reverse order

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} j + c_5 \sum_{j=2}^{n} (j-1) + c_6 \sum_{j=2}^{n} (j-1) + c_7 n$$
$$T(n) = an^2 + bn + c$$

Algorithm analysis

- Running time
- depends on the size of the input (10 vs 100000)
- On the type of the input (sorted, partially sorted)
- · Independent Speed of the computer
- · Kinds of analysis:
- Worst Case analysis max time on any input
- Average Case T(n) = average time over all inputs
- of size n assuming some distribution
- Best Case T(n) = minimum time on some input
- can have bad algorithm which works only sometime it correct?

Algorithm analysis

- Use pseudocode
- description in the language independent way
- use proper indentation
- Analysis of the running time of the algorithm:
- · How much time does it take?
- (Cost per operation * number of operations)
- Choosing the basic operations and how long they take
- Too detailed, constant factors do not matter

Machine independent time

- We would like to ignore machine dependent constants
- characterize the running time T(n) as $n \to \infty$
- Asymptotic analysis we introduce Big Theta ⊕ notation

Asymptotic Notation

- Big Θ
- **Definition**: f(n) is in $\Theta(g(n))$ if f(n) is bounded above and below by g(n) (within constant multiple)
 - there exist positive constant c_1 and c_2 and non-negative integer n_0 such that $c_1g(n) \leq f(n) \leq c_2g(n)$ for every $n \geq n_0$
- Examples:
 - $\frac{1}{2}n(n-1) \in \Theta(n^2)$
 - * why?
 - $-2n-51 \in \Theta(n)$
 - * why?

Asymptotic analysis

- Sometimes
 asymptotically slower
 algorithms work well
 for small inputs
- Overall we are interested in running time as n gets large

Algorithm analysis

- Example $3n^3 + 90n^2 + 5 = \Theta(n^3)$
- We learn some design principles
- Every problem is different so it is hard to come up with the general theory of design (but there few hints this course can offer)
- E.g. Some problems can be described recursively their Solution can be devised by solving smaller subproblems
- Divide and Conquer: design methodology
- Yields the description of running time in terms or recurrences

Recurrences

- Reminder: recurrence system of equations that describes
- The function in terms of it's values on smaller inputs
- e.g. factorial

```
for k = 1 Fact(k) = 1
else Fact(k) = kFact(k-1) else
```

- Merge Sort (divide and conquer approach)
- DIVIDE the original sequence to two sequences of n/2
- CONQUER sort the two sequences recursively
- COMBINE combine the two sequences
- Example: 7328 6154 2378 1456 => 123....

Merge Sort

Mergesort(A, p, r) Sorts elements in subarray p ...r

1: if p < r then

2: $q \leftarrow (p+r)/2$

3: Mergesort(A, p, q)

4: Mergesort(A, q + 1, r)

5: Merge(A, p, q, r)

6: end if

Key is the merge procedure (textbook for pseudocode)

Merge

• Example 2 3 6 7 I 4 5 8

Analyze Merge Sort

- How efficient/slow is merge sort?
 - 1: if p < r then
 - 2: $q \leftarrow (p+r)/2$
 - 3: Mergesort(A, p, q)
 - 4: Mergesort(A, q + 1, r)
 - 5: Merge(A, p, q, r)
 - 6: end if

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

- Which algorithm would you prefer Insertion or Merge Sort and why?
- Which one is faster? by how much?
- Which one requires more space? by how much?

Analyze Merge Sort

Running time for Merge Sort – solution to the recurrence equation

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

- Expand the recurrence
- Works correct for any n, analysis is simpler for $n=2^k$
- Divide step $\Theta(1)$ Conquer step $2T\left(\frac{n}{2}\right)$ Combine step

$$T(n) = c \text{ if } n = 1$$

 $T(n) = 2T(n/2) + cn \text{ if } n > 1$

Analyze Merge Sort

· Solution to the recurrence

$$T(n) = c \text{ if } n = 1$$

 $T(n) = 2T(n/2) + cn \text{ if } n > 1$

By expansion

Analyze Merge Sort

· Solution to the recurrence

$$T(n) = c \text{ if } n = 1$$

$$T(n) = 2T(n/2) + cn \text{ if } n > 1$$

Draw recurrence tree

Recursion Tree

• $T(n)=2T(n/2)+\Theta(n)$

Divide and Conquer

- Looking at the recursion tree you can compute the running time (solve the recurrence)
- DIVIDE and CONQUER in general

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ aT(\frac{n}{b}) + D(n) + C(n) & \text{if } n > 1 \end{cases}$$

- Merge beats Insertion sort $\Theta(n \log n)$ grows more slowly then $\Theta(n^2)$

Towers of Hanoi

 Moves circles from A to B such that at no instances larger rings is atop smaller one

Recursive description of the problem:

- 1. Move n-1 rings from A-> C
- 2. Move largest ring from A-> B
- 3. Move all n-1 rings from C-> B

Towers of Hanoi

$$T(n) = 1$$
 for $n = 1$
 $T(n) = 2T(n-1) + 1$

Recursive description of the problem:

- 1. Move n-1 rings from A-> C
- 2. Move largest ring from A-> B
- 3. Move all n-1 rings from C-> B

Solution

· Solution to Tower of Hanoi by expansion

$$T(n) = 2T(n-1) + 1 = 2(2T(n-2) + 1) + 1$$

= $2^{n-1} + 2^{n-2} + \dots + 2 + 1 = 2^n - 1$

- · Running time exponential in the size of input
- With 64 rings, if rings can be moved one ring per second. It would take 500 000 years to finish the task
- How to compare running time of different algorithms? we need how to compute the running time within a constant factor

Order of growth of functions

- Enables asymptotic analysis
- How the algorithm behaves for large n
- Simple characterization of algorithm efficiency
- Enables comparative analysis of algorithms
- E.g.

$$3n^3 + 90n^2 + 5 = \Theta(n^3)$$

Order of Growth

- Theoretical analysis focuses on ``order of growth" of an algorithm
- How the algorithm behaves as $n \to \infty$
- Some common order of growth

 $n, n^2, n^3, n^d, \log n, \log^* n, \log \log n, n \log n, n!, 2^n, 3^n, n^n, \sqrt{n}$

Asymptotic Notation

- Big $O, \Omega.\Theta$
- upper, lower, tight bound (when input is sufficiently large and remain true when input is infinitely large)
- · defines a set of similar functions

$\operatorname{Big} O$

- **Definition**: f(n) is in O(g(n)) if "order of growth of f(n)" \leq "order of growth of g(n)" (within constant multiple)
 - there exist positive constant c and non-negative integer n_0 such that $f(n) \leq cg(n)$ for every $n \geq n_0$
- Examples:
 - $-10n \in O(n^2)$
 - * why?
 - $-5n + 20 \in O(n)$
 - * why?
 - $-2n+6 \not\in O(\log n)$
 - * why?
- g(n) is an upper bound

$Big \Theta$

- **Definition**: f(n) is in $\Theta(g(n))$ if f(n) is bounded above and below by g(n) (within constant multiple)
 - there exist positive constant c_1 and c_2 and non-negative integer n_0 such that $c_1g(n) \leq f(n) \leq c_2g(n)$ for every $n \geq n_0$
- Examples:
 - $-\frac{1}{2}n(n-1)\in\Theta(n^2)$
 - * why?
 - $-2n-51 \in \Theta(n)$
 - * why?
- g(n) is a tight bound

$\operatorname{Big}\Omega$

For a given function $g(n)\Omega(g(n))=f(n)$ There exist constant c and n_0 such that:

$$0 \le cg(n) \le f(n)$$
 for all $n \ge n_0$

f(n) grows at least as fast as g(n); g(n) is asymptotically lower bound.

Example:

$$\sqrt{n} = \Omega(\log n); c = 1, n_0 = 16$$

Asymptotic Notation

- Asymptotic notation has been developed to provide a tool for studying order of growth
 - O(g(n)): a set of functions with the same or smaller order of growth as g(n)
 - * $2n^2 5n + 1 \in O(n^2)$
 - * $2^n + n^{100} 2 \in O(n!)$
 - $* \ 2n+6 \not\in O(\log n)$
 - $\Omega(g(n))$: a set of functions with the same or larger order of growth as g(n)
 - * $2n^2 5n + 1 \in \Omega(n^2)$
 - * $2^n + n^{100} 2 \notin \Omega(n!)$
 - * $2n + 6 \in \Omega(\log n)$
 - $\Theta(g(n))$: a set of functions with the same order of growth as g(n)
 - * $2n^2 5n + 1 \in \Theta(n^2)$
 - $* \ 2^n + n^{100} 2 \not\in \Theta(n!)$
 - * $2n + 6 \not\in \Theta(\log n)$

- · Useful relationships:
 - Symmetry

$$f(n) = \Theta(g(n)) \text{ iff } g(n) = \Theta(f(n))$$

Transpose Symmetry

$$f(n) = O(g(n))$$
 iff $g(n) = \Omega(f(n))$

Transitivity

if
$$f(n) = O(g(n))$$
 and $g(n) = O(h(n))$
then $f(n) = O(h(n))$

Useful conventions

Set in a formula represents anonymous function in the set

$$n^2 + O(n) = O(n^2)$$

$$f(n) = n^3 + O(n^2)$$

How functions grow						
		33n	46 n lg n	13 n ²	3.4 n ³	2 ⁿ
Input size						
10		0.00033	s 0.0015s	0.0013s	0.0034s	0.001s
100 1,0		0.003s 0.033s		0.13s 13s	3.4s 0.94 hr	4*10 ⁶ s
10,	000	0.33s	6.1s	22min	39days	
100	0,000	3.3s	1.3min	1.5day	108 yr.	

Function Comparison

Verify the notation by compare the order of growth

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\left\{\begin{array}{ll} 0 & t(n) \text{ has a smaller order of growth than }g(n)\\ c>0 & t(n) \text{ has the same order of growth as }g(n)\\ \infty & t(n) \text{ has a larger order of growth than }g(n) \end{array}\right.$$

- · useful tools for computing limits
 - $\bullet\,$ L'Hôpital's rule

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

 $\bullet\,$ Stirling's formula

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Bounding Functions

- non-recursive algorithms
- set up a sum for the number 2. $\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2} \approx \frac{n^2}{2} \in \Theta(n^2)$ of times the basic operation
- determine the order of growth (using asymptotic notation)
- Textbook appendix basic formulas

- is executed simplify the sum $3. \sum_{i=1}^{n} i^2 = 1 + 4 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} \approx \frac{n^3}{3} \in \Theta(n^3)$
 - 4. $\sum_{i=0}^{n} a^{i} = 1 + a^{1} + \dots + a^{n} = \frac{a^{n+1} 1}{a 1}, \forall a \neq 1, \in \Theta(a^{n})$
 - $5. \sum a_i + b_i = \sum a_i + \sum b_i$
 - 6. $\sum ca_i = c \sum a_i$
 - 7. $\sum_{i=0}^{n} a_i = \sum_{i=0}^{m} a_i + \sum_{i=m+1}^{n} a_i$

Bounding Recursions

- Next: Techniques for Bounding Recurrences
 - Expansion
 - Recursion-tree
 - Substitution
 - Master Theorem