8/30/11

CS583 Lecture 01

Jana Kosecka

some materials here are based on Profs. E. Demaine , D. Luebke
A.Shehu, J-M. Lien and Prof. Wang’s past lecture notes

Course Info

+ course webpage:

- from the syllabus on http://cs.gmu.edu/ or
- http://cs.gmu.edu/~kosecka/cs583/

* http://mymason.gmu.edu//

* Information you will find

course syllabus, time table
office hours

.pdf copies of the lectures
handouts, practice problems

Prerequisite

Data structures and algorithms (CS 310)
Formal methods and models (CS 330)
Calculus (MATH 113, 114, 213)

Discrete math (MATH 125)

Ability to program in a high-level language
that supports recursion

Textbook

ALGORITHMS

Introduction to Algorithms by T. [memesss===
H. Cormen, C. E. Leiserson, R. L. -

Rivest, and C. Stein, The McGraw- | -y
Hill Companies, 2nd Edition (2001) sy '

| also recommend you read the
following book: Algorithms, by S.
Dasgupta, C. Papadimitriou, and
U. Vazirani, McGraw-Hill, 2006

http://mitpress.mit.edu/algorithms/

8/30/11

8/30/11

Grades

» Short Quizes every 2 weeks (30%)

» Practice Problems

e Midterm Exam 30%

* Final Exam 40%

» Make-up tests will NOT be given for
missed examinations

Other Important Info

* Email
= make sure your gmu mail is activated
= send only from your gmu account; mails
might be filtered if you send from other
accounts
= when you send emails, put [CS583] in
your subject header

8/30/11

Goal of the Course

* Design efficient algorithms and analyze their complexity
* Analysis: what are the computational resources needed ?
« time, storage, #processors, programs, communications

* What is an algorithm: Recipe to solve a problem

* Clear specification of the problem

» What is the input ? What is the output ?

* How long does it take, under particular circumstances ? (time)
* What are the memory requirements ? (space)

Examples of algorithms

» examples of algorithms

 sorting algorithms — everywhere

 routing, graph theoretic algorithms

» number theoretic algorithms, cryptography

» web search

« triangulation- graphics, optimization problems

« string matching (computational biology),
cryptography - security

Shortest Paths

Given a graph, find the shortest path in the

graph connecting the start and goal vertices.

What is a graph?

How do you represent the graph?
How do you formalize the problem?
How do you solve the problem?

Shortest Paths

* What is the most naive way to solve the

shortest path problem?

= EX: a graph with only 4 nodes

= How much time does your method
take?

= Can we do better?

= How do we know our method is
optimal? (i.e., no other methods can be
more efficient.)

8/30/11

8/30/11

Shortest Paths

» Given a graph, find the shortest path in the
graph that visits each vertex exactly once.
= How do you formalize the problem?
= How do you solve the problem?
= How much time does your method take?
= Can we do better?

Hard Problems

» We are able to solve many problems, but
there are many other problems that we
cannot solve efficiently
= we can solve the shortest path between
two vertices efficiently

= but we cannot efficiently solve the
shortest path problem that requires that
path to visit each vertex exactly once

Course Topics

* Week 1: Algorithm Analysis (growth of functions)
+ Week 2: Sorting & Order Statistics

* Week 3: Dynamic Programming

* Week 4: Greedy Algorithms

+ Week 5: Graph Algorithms (basic graph search)
* Week 6: Minimum Spanning Tree

+ Week 7: Single-Source Shortest Paths

+ Week 8: All-Pairs Shortest Paths

+ Week 9: Maximum Flow

* Week 10: Linear Programming

* Week 11: NP completeness

+ See updates on the course webpage

Warning & Suggestions

» Please don’t take this class if you

= You do not have the mathematics and/or CS
prerequisites

= You are not able to make arrangements to
come to GMU to take the exams on-site

= You are working full-time and taking another
graduate level computer science class

= You are not able to spend a minimum of 9~12
hours a week outside of class reading the
material and doing practice problem sets

8/30/11

Sorting

* Problem: Sort real numbers in
nondecreasing order

* Input: A sequence of n numbers (a1, ...,a,)
Output:
A permutation (ay,...,a,) st. a1 <ay<...<a,

* Why do we need to sort?

Sorting

Sorting is important, so
there are many sorting algorithms

Selection sort
Insertion sort
Library sort
Shell sort
Gnome sort
Bubble sort
Comb sort
Binary tree sort
Topological sort

8/30/11

Sorting

 Algorithms in general
» We will be concerned with efficiency
* Memory requirements
* Independent of the computer speed

* How to design algorithms

» What is the easiest (or most naive) way to

do sorting?

- EX:sort 3,1,2,4

= how efficient is your method?

= We will look at two sorting algoritms

Insertion Sort

 If you ever sorted a deck of cards, you
e have done insertion sort
“ @ ' If you don’t remember, this is how you
% sort the cards:
= you sort the card one by one
= assuming the first i cards are sorted,
now “sort” the (i+1)-th card
- EX:4,6,1,3,7,9,2

1 i J n
4: | n—— |
v key

sorted

8/30/11

8/30/11

Insertion Sort

1: for j — 2 ton do
2: Temp « Alj]

3 1—j—1

4: while ¢ > 0 and A[i] > Temp do
5 Ali + 1] «+ A[7]

6: 1—1i—1

7. end while

8: Afi+ 1] « Temp

9: end for

® EX:4,6,1,3,7,9,2

8/30/11

Analyze Insertion Sort

Is it correct?

» How efficient/slow is insertion sort?

« Characterize running time as a function of
input size

» Compute running time of each statement

* Sum up the running times

Insertion Sort

. Cost times
1: for j — 2 ton do

2: Temp « Alj]

3 e j—1

4: while ¢ > 0 and A[i] > Temp do
5 Ali + 1] «+ Al7]

6: 1—1—1

7. end while

8 Ali+ 1] « Temp

9: end for

® EX:4,6,1,3,7,9,2

Insertion Sort

* Analysis

Tn)=cn+ca(n—1)4+cs(n—1)+ ¢y th +c5 Z(tj — 1)+ ¢ Z(tj —1)4cem
j=2 j=2 j=2

» Best case

T(n)=cin+ca(n—1)+c3s(n—1)4+ca(n—1)+cr(n —1)

* Worst case — input in the reverse order

T(n)=cn+en—1)+en—1)+ead jted (G—1)+ey (G—1) +em
j=2 j=2 j=2

T(n) = an® +bn +c

Algorithm analysis

* Running time

» depends on the size of the input (10 vs 100000)

* On the type of the input (sorted, partially sorted)

* Independent Speed of the computer

* Kinds of analysis:

* Worst Case analysis max time on any input

» Average Case T(n) = average time over all inputs

» of size n assuming some distribution

* Best Case T(n) = minimum time on some input

» can have bad algorithm which works only
sometime it correct?

8/30/11

Algorithm analysis

* Use pseudocode

 description in the language independent way

* use proper indentation

» Analysis of the running time of the algorithm:

« How much time does it take ?

» (Cost per operation * number of operations)

» Choosing the basic operations and how long they take
» Too detailed, constant factors do not matter

Machine independent time

* We would like to ignore machine dependent constants
» characterize the running time T(n) as n — oo

« Asymptotic analysis - we introduce Big Theta © notation

Asymptotic Notation
- Big ©

e Definition: f(n) is in ©(g(n)) if f(n) is bounded above and below by
g(n) (within constant multiple)

— there exist positive constant c¢; and ca and non-negative integer ng
such that c1g(n) < f(n) < ceg(n) for every n > ng

e Examples:

— in(n—1) € O(n?)
x why?
- 2n—>51€0(n)

* why?

8/30/11

I(n)

Asymptotic analysis

» Sometimes
asymptotically slower
algorithms work well
for small inputs

* Overall we are
interested in running
time as n gets large

Algorithm analysis
Example 3n3 4 90n2 45 = @(n3)

We learn some design principles

Every problem is different so it is hard to come up with
the general theory of design (but there few hints this
course can offer)

E.g. Some problems can be described recursively —
their Solution can be devised by solving smaller sub-
problems

Divide and Conquer: design methodology
Yields the description of running time in terms or
recurrences

8/30/11

Recurrences

Reminder: recurrence — system of equations that
describes
The function in terms of it’s values on smaller inputs
e.g. factorial
for k = 1 Fact(k) = 1
else Fact(k) = kFact(k-1) else
Merge Sort (divide and conquer approach)
DIVIDE the original sequence to two sequences of n/2
CONQUER sort the two sequences recursively
COMBINE combine the two sequences
Example: 7328 6154
2378
1456 =>123...

Merge Sort

Mergesort(A,p,7) Sorts elements in subarray p ...r

: if p < r then
q—(p+r)/2
Mergesort(A, p, q)
Mergesort(A,q+ 1,7)
Merge(A,p,q,7)

end if

Key is the merge procedure (textbook for pseudocode)

8/30/11

Merge

® Example [2|3(6|7 |14/5|8

Analyze Merge Sort

* How efficient/slow is merge sort?
1: if p <r then
2 g (p+r)/2
3: Mergesort(A, p,q)
4: Mergesort(A,q+ 1,7)
5. Merge(A,p,q,r)
6: end if

T(n) =27T(3) + ©(n)

* Which algorithm would you prefer Insertion or
Merge Sort and why?

* Which one is faster? by how much?

* Which one requires more space? by how
much?

8/30/11

Analyze Merge Sort

Running time for Merge Sort — solution to the
recurrence equation

T(n) =2T(3) + ©(n)

Expand the recurrence

Works correct for any n, analysis is simpler for n = 2*
Divide step O(1)

Conquer step o (ﬁ)

Combine step @(n)Q

T(n)=cifn=1
T(n)=2Tn/2)+cn if n > 1

Analyze Merge Sort

» Solution to the recurrence
Tn)=cifn=1
T(n)=2Tn/2)+cn if n > 1

* By expansion

8/30/11

Analyze Merge Sort

» Solution to the recurrence
Tn)=cifn=1
T(n)=2Tn/2)+cn if n > 1

* Draw recurrence tree

Recursion Tree

* T(n)=2T(n/2)+O(n)
O(n) o(n)

/\ /\

T(n/2) T(n/2) o(n/2) O(n/2)

T(n/4) T(n/4) T(nid) T(n/4)

8/30/11

O(n)

Recursion Tree (cont)

= T

O(n/2) o(n/2)
o(n/i4) ©(n/4) O(n/4) o(n/4) h=ig n

AT ANEVANAN

O(n/8) O(n/8) O(n/8) O(n/8) BO(n/8) O(/8) B(N/8) O(n/8)

o(1)
(Ig N)©(n)=O(nIg n). ©(n Ig n) grows more slowly than
O(n2). Mergesort asymtotically beats insertion sort in
the worst case.

Divide and Conquer

» Looking at the recursion tree you can compute
the running time (solve the recurrence)

+ DIVIDE and CONQUER in general

B O(1) ifn=1
T(n) = { aT(™) + D(n) + C(n) ifn>1

* Merge beats Insertion sort O(nlogn) grows
more slowly then @(n2)

8/30/11

Towers of Hanoi

Moves circles from A to B such that at no
instances larger rings is atop smaller one

A B C

Recursive description of the problem:
1. Move n-1rings from A-> C

2. Move largest ring from A-> B

3. Move all n-1 rings from C-> B

Towers of Hanoi
T(n)=1forn=1
T(n)=2T(n—-1)+1

A B C

Recursive description of the problem:
1. Move n-1rings from A-> C

2. Move largest ring from A-> B

3. Move all n-1 rings from C-> B

8/30/11

20

Solution

Solution to Tower of Hanoi by expansion

T(n) = 2T(n—1)+1=202T(n -2) +1) + 1

—on-l4on-24 4 o471=020n_1

Running time exponential in the size of input

With 64 rings, if rings can be moved one ring per
second. It would take 500 000 years to finish the
task

How to compare running time of different
algorithms ? we need how to compute the running
time within a constant factor

Order of growth of functions

Enables asymptotic analysis

How the algorithm behaves for large n

Simple characterization of algorithm efficiency
Enables comparative analysis of algorithms
E.g.

3n3 4+ 90n2 + 5 =0 (n3)

8/30/11

21

Order of Growth

» Theoretical analysis focuses on "“order of
growth" of an algorithm

* How the algorithm behavesas n — oo

« Some common order of growth

n,n?,n3,nd,logn,log* n,loglogn,nlogn,n!,2", 3", n", /n

Asymptotic Notation

- Big 0,Q2.0

» upper, lower, tight bound (when input is
sufficiently large and remain true when
input is infinitely large)

» defines a set of similar functions

8/30/11

22

Big O

o Definition: f(n) is in O(g(n)) if “order of growth of f(n)” < “order of
growth of g(n)” (within constant multiple)

— there exist positive constant ¢ and non-negative integer ng such that
f(n) < cg(n) for every n > ng

e Examples:
— 10n € O(n?)
* why?
— 5n+20 € O(n)
* why?
—2n+6 ¢ O(logn)
* why?

* g(n) is an upper bound

Big ©

e Definition: f(n) is in ©(g(n)) if f(n) is bounded above and below by
g(n) (within constant multiple)

— there exist positive constant c¢; and cs and non-negative integer ng
such that c1g(n) < f(n) < cag(n) for every n > ng

e Examples:
— 3n(n —1) € O(n?)
* why?
— 2n—51€O(n)
x why?

* g(n) is a tight bound

8/30/11

23

Big ()

For a given function g(n) 2(g(n)) = f(n)
There exist constant ¢ and n, such that:

0 <cg(n) < f(n) forall n > ng

f(n) grows at least as fast as g(n); g(n) is
asymptotically lower bound.

Example:
vn = Q(logn);c=1,n9 = 16

Asymptotic Notation

e Asymptotic notation has been developed to provide a tool for studying
order of growth

— O(g(n)): a set of functions with the same or smaller order of growth as g(n)
* 2n?2 —5n+1 € 0O(n?)
* 27 +nl00 — 2 € O(n!)
* 2n+6 ¢ O(logn)
— Q(g(n)): a set of functions with the same or larger order of growth as g(n)
* 2n? —5n+1 € Q(n?)
* 2" +nl00 _ 2 7 Q(n!)
* 2n+6 € Q(logn)
— ©(g(n)): a set of functions with the same order of growth as g(n)
* 2n? —5n+1 € 0(n?)
* 27 +nl00 _ 2 ¢ O(n!)
* 2n+6 ¢ O(logn)

8/30/11

24

* Useful relationships:
* Symmetry

f(n) = 0(g(n)) iff g(n) = ©(f(n))
* Transpose Symmetry
f(n) = 0(g(n)) iff g(n) = Q2(f(n))

* Transitivity

if f(n) = O(g(n)) and g(n) = O(h(n))
then f(n) = O(h(n))

Useful conventions

» Setin a formula represents anonymous
function in the set

n? 4+ 0(n) = O(n?)

f(n) =n’+0(n?)

8/30/11

25

How functions grow

33n 46nign 13n? 3.4n3 2n

Input size

10

100
1,000

10,000

100,000

0.00033s 0.0015s 0.0013s 0.0034s 0.001s

0.003s 0.03s 0.13s 3.4s 4*10% s
0.033s 0.45s 13s 0.94 hr

0.33s 6.1s 22min 39days

3.3s 1.3min 1.5day 108 yr.

Function Comparison

+ Verify the notation by compare the order of

growth
£(n) 0 t(n) has a smaller order of growth than g(n)
lim ——= =14 ¢>0 ¢(n) has the same order of growth as g(n)
—o g(n) 00 t(n) has a larger order of growth than g(n)

« useful tools for computing limits

e [’Hopital’s rule

e Stirling’s formula

8/30/11

26

8/30/11

Bounding Functions

1=1+1+---+1=n€0O(n)

Ms

non-recursive algorithms L

set up a sum for the number | S istan oD g

of times the basic operation = 2

is executed simplify the sum s Y@ - 1agpne = 20E el 2 g0
determine the order of N o

growth (using asymptotic " & "' T T A el
notation) 5.3 ai+bi=D ai+} b

Textbook appendix - basic & Y w=cYa

formulas . Z=f3+;

Bounding Recursions

* Next: Techniques for Bounding Recurrences

= Expansion

= Recursion-tree
= Substitution

= Master Theorem

27

