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CS583 Lecture 01 
Jana Kosecka 

some materials here are based on Profs. E. Demaine , D. Luebke 
A.Shehu,  J-M. Lien and Prof. Wang’s past lecture notes 

Course Info 

•  course webpage:  
-  from the syllabus on http://cs.gmu.edu/  or  
-  http://cs.gmu.edu/~kosecka/cs583/ 

•  http://mymason.gmu.edu// 

•  Information you will find 
-  course syllabus, time table 
-  office hours 
-  .pdf copies of the lectures 
-  handouts, practice problems  
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Prerequisite  

•  Data structures and algorithms (CS 310) 
•  Formal methods and models (CS 330) 
•  Calculus (MATH 113, 114, 213) 
•  Discrete math (MATH 125) 
•  Ability to program in a high-level language 

that supports recursion 

Textbook 

•  Introduction to Algorithms by T. 
H. Cormen, C. E. Leiserson, R. L. 
Rivest, and C. Stein, The McGraw-
Hill Companies, 2nd Edition (2001) 

•  I also recommend you read the 
following book: Algorithms, by S. 
Dasgupta, C. Papadimitriou, and 
U. Vazirani, McGraw-Hill, 2006 

•   http://mitpress.mit.edu/algorithms/ 
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Grades 

•  Short Quizes every 2 weeks (30%) 
•  Practice Problems  
•  Midterm Exam  30% 
•  Final Exam  40% 
•  Make-up tests will NOT be given for 

missed examinations  

Other Important Info 

•  Email 
-  make sure your gmu mail is activated 
-  send only from your gmu account; mails 

might be filtered if you send from other 
accounts 

-  when you send emails, put [CS583] in 
your subject header 
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•  Design efficient algorithms and analyze their complexity 
•  Analysis: what are the computational resources needed ? 
•  time, storage, #processors, programs, communications 

•  What is an algorithm: Recipe to solve a problem 
•  Clear specification of the problem 
•  What is the input ? What is the output ? 
•  How long does it take, under particular circumstances ? (time) 
•  What are the memory requirements ? (space) 

Goal of the Course 

Examples of algorithms 

•  examples of algorithms 
•  sorting algorithms – everywhere 
•  routing, graph theoretic algorithms 
•  number theoretic algorithms, cryptography 
•  web search  
•  triangulation- graphics, optimization problems 
•  string matching (computational biology), 

cryptography - security 
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Shortest Paths 

•  Given a graph, find the shortest path in the 
graph connecting the start and goal vertices. 

•  What is a graph? 
•  How do you represent the graph? 
•  How do you formalize the problem? 
•  How do you solve the problem? 

Shortest Paths 

•  What is the most naive way to solve the 
shortest path problem? 
-  EX: a graph with only 4 nodes 
-  How much time does your method 

take? 
-  Can we do better? 
-  How do we know our method is 

optimal? (i.e., no other methods can be 
more efficient.) 
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Shortest Paths 

•  Given a graph, find the shortest path in the 
graph that visits each vertex exactly once. 
-  How do you formalize the problem? 
-  How do you solve the problem? 
-  How much time does your method take? 
-  Can we do better?  

Hard Problems 

•  We are able to solve many problems, but 
there are many other problems that we 
cannot solve efficiently 
-  we can solve the shortest path between 

two vertices efficiently 
-  but we cannot efficiently solve the 

shortest path problem that requires that 
path to visit each vertex exactly once  



8/30/11	



7	



Course Topics  

•  Week 1: Algorithm Analysis (growth of functions) 
•  Week 2: Sorting & Order Statistics 
•  Week 3: Dynamic Programming 
•  Week 4: Greedy Algorithms 
•  Week 5: Graph Algorithms (basic graph search) 
•  Week 6:  Minimum Spanning Tree 
•  Week 7:  Single-Source Shortest Paths 
•  Week 8:  All-Pairs Shortest Paths 
•  Week 9:  Maximum Flow 
•  Week 10: Linear Programming 
•  Week 11: NP completeness 

•  See updates on the course webpage 

Warning & Suggestions 

•  Please don’t take this class if you 
-  You do not have the mathematics and/or CS 

prerequisites 
-  You are not able to make arrangements to 

come to GMU to take the exams on-site 
-  You are working full-time and taking another 

graduate level computer science class 
-  You are not able to spend a minimum of 9~12 

hours a week outside of class reading the 
material and doing practice problem sets 
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Sorting 

•  Problem: Sort real numbers in 
nondecreasing order 

•  Input: 
 Output: 

•  Why do we need to sort? 

Sorting 

•  Selection sort 
•  Insertion sort 
•  Library sort 
•  Shell sort 
•  Gnome sort 
•  Bubble sort 
•  Comb sort 
•  Binary tree sort 
•  Topological sort 

Sorting is important, so  
there are many sorting algorithms    
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Sorting 

•  Algorithms in general 
•  We will be concerned with efficiency 
•  Memory requirements  
•  Independent of the computer speed 

•  How to design algorithms  
•  What is the easiest (or most naive) way to 

do sorting? 
-  EX: sort 3,1,2,4 
-  how efficient is your method? 
-  We will look at two sorting algoritms 

Insertion Sort 
•  If you ever sorted a deck of cards, you 

have done insertion sort 
•  If you don’t remember,  this is how you 

sort the cards:  
-  you sort the card one by one 
-  assuming the first i cards are sorted, 

now “sort” the (i+1)-th card 
•  EX: 4, 6, 1, 3, 7, 9, 2 



8/30/11	



10	



•  EX: 4, 6, 1, 3, 7, 9, 2 

Insertion Sort 
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Analyze Insertion Sort 

•  Is it correct? 
•  How efficient/slow is insertion sort? 
•  Characterize running time as a function of 

input size 
•  Compute running time of each statement 
•  Sum up the running times 

•  EX: 4, 6, 1, 3, 7, 9, 2 

Insertion Sort 

Cost      times	
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Insertion Sort 

•  Analysis 

•  Best case 

•  Worst case – input in the reverse order 

Algorithm analysis 

•  Running time  
•  depends on the size of the input (10 vs 100000)  
•  On the type of the input (sorted, partially sorted) 
•  Independent Speed of the computer 
•  Kinds of analysis: 
•  Worst Case analysis max time on any input                         
•  Average Case T(n) = average time over all inputs 
•  of size n assuming some distribution 
•  Best Case T(n) = minimum time on some input 
•  can have bad algorithm which works only 

sometime it correct? 
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Algorithm analysis 
•  Use pseudocode  
•  description in the language independent way 
•  use proper indentation  
•  Analysis of the running time of the algorithm: 
•  How much time does it take ?  
•  (Cost per operation * number of operations) 
•  Choosing the basic operations and how long  they take 
•  Too detailed, constant factors do not matter 

Machine independent time 
•  We would like to ignore machine dependent constants  
•  characterize the running time T(n) as  
•  Asymptotic analysis - we introduce Big Theta    notation  

Asymptotic Notation 

•  Big 

€ 

Θ
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Asymptotic analysis 

•  Sometimes 
asymptotically slower 
algorithms work well 
for small inputs 

•  Overall we are 
interested in running 
time as n gets large 

Algorithm analysis 
•  Example 

•  We learn some design principles 
•  Every problem is different  so it is hard to come up with 

the general theory of design (but there few hints this 
course can offer) 

•  E.g. Some problems can be described recursively – 
their Solution can be devised by solving smaller sub-
problems 

•  Divide and Conquer: design methodology 
•  Yields the description of running time in terms or 

recurrences 
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Recurrences 
•  Reminder: recurrence – system of equations that 

describes 
•  The function in terms of it’s values on smaller inputs 
•  e.g. factorial   
                            for k = 1 Fact(k) = 1          
                           else  Fact(k) = kFact(k-1)  else 
•  Merge Sort  (divide and conquer approach) 
•  DIVIDE  the original sequence to two sequences of n/2 
•  CONQUER sort the two sequences recursively 
•  COMBINE combine the two sequences 
•  Example:      7 3 2 8     6 1 5 4 
                         2 3 7 8 
                         1 4 5 6               => 1 2 3 …. 

Merge Sort 
Sorts elements in subarray p …r	



Key is the merge procedure (textbook for pseudocode)	
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Merge 

•  Example 2	

 3	

 6	

 7	

 1	

 4	

 5	

 8	



Analyze Merge Sort 

•  How efficient/slow is merge sort? 

•  Which algorithm would you prefer Insertion or 
Merge Sort and why? 

•  Which one is faster? by how much? 
•  Which one requires more space? by how 

much? 
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Analyze Merge Sort 

•  Running time for Merge Sort – solution to the 
recurrence equation 

•  Expand the recurrence 
•  Works correct for any n, analysis is simpler for  
•  Divide step  
•  Conquer step 
•  Combine step 

Analyze Merge Sort 
•  Solution to the recurrence  

•  By expansion 



8/30/11	



18	



Analyze Merge Sort 
•  Solution to the recurrence  

•  Draw recurrence tree 

Recursion Tree 

•  T(n)=2T(n/2)+Θ(n) 

Θ(n) 

T(n/2) T(n/2) 

Θ(n) 

Θ(n/2) Θ(n/2) 

T(n/4) T(n/4) T(n/4) T(n/4) 
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Recursion Tree (cont) 

Θ(n) 

Θ(n/2) Θ(n/2) 

Θ(n/4) Θ(n/4) Θ(n/4) Θ(n/4) 

Θ(n/8) Θ(n/8) Θ(n/8) Θ(n/8) Θ(n/8) Θ(n/8) Θ(n/8) Θ(n/8) 

Θ(1) 

h=lg n 

Θ(n) 

Θ(n) 

Θ(n) 

Θ(n) 

Θ(n) 
(lg n)Θ(n)=Θ(n lg n). Θ(n lg n) grows more slowly than 
Θ(n2). Mergesort asymtotically beats insertion sort in 

the worst case. 

Divide and Conquer 
•  Looking at the recursion tree you can compute 

the running time (solve the recurrence) 

•  DIVIDE and CONQUER in general 

•  Merge beats Insertion sort                   grows 
     more slowly then  
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Towers of Hanoi 

•  Moves circles from A to B such that at no 
instances larger rings is atop smaller one 

A B C 

Recursive description of the problem: 
1.  Move n-1 rings from A-> C 
2.  Move largest ring from A-> B 
3.  Move all n-1 rings from C-> B 

Towers of Hanoi 

A B C 

Recursive description of the problem: 
1.  Move n-1 rings from A-> C 
2.  Move largest ring from A-> B 
3.  Move all n-1 rings from C-> B 
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Solution 

•  Solution to Tower of Hanoi  by expansion 

•  Running time exponential in the size of input 
•  With 64 rings, if rings can be moved one ring per 

second. It would take 500 000 years to finish the 
task   

•  How to compare running time of different 
algorithms ? we need how to compute the running 
time within a constant factor 

Order of growth of functions 

•  Enables asymptotic analysis 
•  How the algorithm behaves for large n 
•  Simple characterization of algorithm efficiency 
•  Enables comparative analysis of algorithms 
•  E.g.  
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Order of Growth 

•  Theoretical analysis focuses on ``order of 
growth'' of an algorithm 

•  How the algorithm behaves as  
•  Some common order of growth 

Asymptotic Notation 

•  Big 
•  upper, lower, tight bound (when input is 

sufficiently large and remain true when 
input is infinitely large) 

•  defines a set of similar functions 
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•  g(n) is an upper bound 	



•  g(n) is a tight bound	
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For a given function g(n) 
There exist constant  c  and n0 such that:          

f(n) grows at least as fast as  g(n); g(n) is  
asymptotically  lower  bound. 

Example: 

for all  

Asymptotic Notation 
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•  Useful relationships: 
•  Symmetry 

•  Transpose Symmetry 

•  Transitivity   

Useful conventions 

•  Set in a formula represents anonymous 
function in the set 
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How functions grow 

33n       46 n lg n      13 n2     3.4 n3    2n 

Input size 

10            0.00033s  0.0015s  0.0013s  0.0034s  0.001s 

100           0.003s       0.03s     0.13s      3.4s        4*106 s 
1,000        0.033s       0.45s     13s         0.94 hr 

10,000      0.33s         6.1s        22min     39days 

100,000    3.3s           1.3min    1.5day    108 yr. 

Function Comparison 

•  Verify the notation by compare the order of 
growth   

•  useful tools for computing limits 
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Bounding Functions 

•  non-recursive algorithms 
•  set up a sum for the number 

of times the basic operation 
is executed simplify the sum  

•  determine the order of 
growth (using asymptotic 
notation) 

•  Textbook appendix - basic 
formulas  

Bounding Recursions 

•  Next: Techniques for Bounding Recurrences 
-  Expansion -  Recursion-tree -  Substitution -  Master Theorem 


