
8/30/11	

1	

CS583 Lecture 01
Jana Kosecka

some materials here are based on Profs. E. Demaine , D. Luebke
A.Shehu, J-M. Lien and Prof. Wang’s past lecture notes

Course Info

•  course webpage:
-  from the syllabus on http://cs.gmu.edu/ or
-  http://cs.gmu.edu/~kosecka/cs583/

•  http://mymason.gmu.edu//

•  Information you will find
-  course syllabus, time table
-  office hours
-  .pdf copies of the lectures
-  handouts, practice problems

8/30/11	

2	

Prerequisite

•  Data structures and algorithms (CS 310)
•  Formal methods and models (CS 330)
•  Calculus (MATH 113, 114, 213)
•  Discrete math (MATH 125)
•  Ability to program in a high-level language

that supports recursion

Textbook

•  Introduction to Algorithms by T.
H. Cormen, C. E. Leiserson, R. L.
Rivest, and C. Stein, The McGraw-
Hill Companies, 2nd Edition (2001)

•  I also recommend you read the
following book: Algorithms, by S.
Dasgupta, C. Papadimitriou, and
U. Vazirani, McGraw-Hill, 2006

•  http://mitpress.mit.edu/algorithms/

8/30/11	

3	

Grades

•  Short Quizes every 2 weeks (30%)
•  Practice Problems
•  Midterm Exam 30%
•  Final Exam 40%
•  Make-up tests will NOT be given for

missed examinations

Other Important Info

•  Email
-  make sure your gmu mail is activated
-  send only from your gmu account; mails

might be filtered if you send from other
accounts

-  when you send emails, put [CS583] in
your subject header

8/30/11	

4	

•  Design efficient algorithms and analyze their complexity
•  Analysis: what are the computational resources needed ?
•  time, storage, #processors, programs, communications

•  What is an algorithm: Recipe to solve a problem
•  Clear specification of the problem
•  What is the input ? What is the output ?
•  How long does it take, under particular circumstances ? (time)
•  What are the memory requirements ? (space)

Goal of the Course

Examples of algorithms

•  examples of algorithms
•  sorting algorithms – everywhere
•  routing, graph theoretic algorithms
•  number theoretic algorithms, cryptography
•  web search
•  triangulation- graphics, optimization problems
•  string matching (computational biology),

cryptography - security

8/30/11	

5	

Shortest Paths

•  Given a graph, find the shortest path in the
graph connecting the start and goal vertices.

•  What is a graph?
•  How do you represent the graph?
•  How do you formalize the problem?
•  How do you solve the problem?

Shortest Paths

•  What is the most naive way to solve the
shortest path problem?
-  EX: a graph with only 4 nodes
-  How much time does your method

take?
-  Can we do better?
-  How do we know our method is

optimal? (i.e., no other methods can be
more efficient.)

8/30/11	

6	

Shortest Paths

•  Given a graph, find the shortest path in the
graph that visits each vertex exactly once.
-  How do you formalize the problem?
-  How do you solve the problem?
-  How much time does your method take?
-  Can we do better?

Hard Problems

•  We are able to solve many problems, but
there are many other problems that we
cannot solve efficiently
-  we can solve the shortest path between

two vertices efficiently
-  but we cannot efficiently solve the

shortest path problem that requires that
path to visit each vertex exactly once

8/30/11	

7	

Course Topics

•  Week 1: Algorithm Analysis (growth of functions)
•  Week 2: Sorting & Order Statistics
•  Week 3: Dynamic Programming
•  Week 4: Greedy Algorithms
•  Week 5: Graph Algorithms (basic graph search)
•  Week 6: Minimum Spanning Tree
•  Week 7: Single-Source Shortest Paths
•  Week 8: All-Pairs Shortest Paths
•  Week 9: Maximum Flow
•  Week 10: Linear Programming
•  Week 11: NP completeness

•  See updates on the course webpage

Warning & Suggestions

•  Please don’t take this class if you
-  You do not have the mathematics and/or CS

prerequisites
-  You are not able to make arrangements to

come to GMU to take the exams on-site
-  You are working full-time and taking another

graduate level computer science class
-  You are not able to spend a minimum of 9~12

hours a week outside of class reading the
material and doing practice problem sets

8/30/11	

8	

Sorting

•  Problem: Sort real numbers in
nondecreasing order

•  Input:
 Output:

•  Why do we need to sort?

Sorting

•  Selection sort
•  Insertion sort
•  Library sort
•  Shell sort
•  Gnome sort
•  Bubble sort
•  Comb sort
•  Binary tree sort
•  Topological sort

Sorting is important, so
there are many sorting algorithms

8/30/11	

9	

Sorting

•  Algorithms in general
•  We will be concerned with efficiency
•  Memory requirements
•  Independent of the computer speed

•  How to design algorithms
•  What is the easiest (or most naive) way to

do sorting?
-  EX: sort 3,1,2,4
-  how efficient is your method?
-  We will look at two sorting algoritms

Insertion Sort
•  If you ever sorted a deck of cards, you

have done insertion sort
•  If you don’t remember, this is how you

sort the cards:
-  you sort the card one by one
-  assuming the first i cards are sorted,

now “sort” the (i+1)-th card
•  EX: 4, 6, 1, 3, 7, 9, 2

8/30/11	

10	

•  EX: 4, 6, 1, 3, 7, 9, 2

Insertion Sort

8/30/11	

11	

Analyze Insertion Sort

•  Is it correct?
•  How efficient/slow is insertion sort?
•  Characterize running time as a function of

input size
•  Compute running time of each statement
•  Sum up the running times

•  EX: 4, 6, 1, 3, 7, 9, 2

Insertion Sort

Cost times	

8/30/11	

12	

Insertion Sort

•  Analysis

•  Best case

•  Worst case – input in the reverse order

Algorithm analysis

•  Running time
•  depends on the size of the input (10 vs 100000)
•  On the type of the input (sorted, partially sorted)
•  Independent Speed of the computer
•  Kinds of analysis:
•  Worst Case analysis max time on any input
•  Average Case T(n) = average time over all inputs
•  of size n assuming some distribution
•  Best Case T(n) = minimum time on some input
•  can have bad algorithm which works only

sometime it correct?

8/30/11	

13	

Algorithm analysis
•  Use pseudocode
•  description in the language independent way
•  use proper indentation
•  Analysis of the running time of the algorithm:
•  How much time does it take ?
•  (Cost per operation * number of operations)
•  Choosing the basic operations and how long they take
•  Too detailed, constant factors do not matter

Machine independent time
•  We would like to ignore machine dependent constants
•  characterize the running time T(n) as
•  Asymptotic analysis - we introduce Big Theta notation

Asymptotic Notation

•  Big

€

Θ

8/30/11	

14	

Asymptotic analysis

•  Sometimes
asymptotically slower
algorithms work well
for small inputs

•  Overall we are
interested in running
time as n gets large

Algorithm analysis
•  Example

•  We learn some design principles
•  Every problem is different so it is hard to come up with

the general theory of design (but there few hints this
course can offer)

•  E.g. Some problems can be described recursively –
their Solution can be devised by solving smaller sub-
problems

•  Divide and Conquer: design methodology
•  Yields the description of running time in terms or

recurrences

8/30/11	

15	

Recurrences
•  Reminder: recurrence – system of equations that

describes
•  The function in terms of it’s values on smaller inputs
•  e.g. factorial
 for k = 1 Fact(k) = 1
 else Fact(k) = kFact(k-1) else
•  Merge Sort (divide and conquer approach)
•  DIVIDE the original sequence to two sequences of n/2
•  CONQUER sort the two sequences recursively
•  COMBINE combine the two sequences
•  Example: 7 3 2 8 6 1 5 4
 2 3 7 8
 1 4 5 6 => 1 2 3 ….

Merge Sort
Sorts elements in subarray p …r	

Key is the merge procedure (textbook for pseudocode)	

8/30/11	

16	

Merge

•  Example 2	

 3	

 6	

 7	

 1	

 4	

 5	

 8	

Analyze Merge Sort

•  How efficient/slow is merge sort?

•  Which algorithm would you prefer Insertion or
Merge Sort and why?

•  Which one is faster? by how much?
•  Which one requires more space? by how

much?

8/30/11	

17	

Analyze Merge Sort

•  Running time for Merge Sort – solution to the
recurrence equation

•  Expand the recurrence
•  Works correct for any n, analysis is simpler for
•  Divide step
•  Conquer step
•  Combine step

Analyze Merge Sort
•  Solution to the recurrence

•  By expansion

8/30/11	

18	

Analyze Merge Sort
•  Solution to the recurrence

•  Draw recurrence tree

Recursion Tree

•  T(n)=2T(n/2)+Θ(n)

Θ(n)

T(n/2) T(n/2)

Θ(n)

Θ(n/2) Θ(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

8/30/11	

19	

Recursion Tree (cont)

Θ(n)

Θ(n/2) Θ(n/2)

Θ(n/4) Θ(n/4) Θ(n/4) Θ(n/4)

Θ(n/8) Θ(n/8) Θ(n/8) Θ(n/8) Θ(n/8) Θ(n/8) Θ(n/8) Θ(n/8)

Θ(1)

h=lg n

Θ(n)

Θ(n)

Θ(n)

Θ(n)

Θ(n)
(lg n)Θ(n)=Θ(n lg n). Θ(n lg n) grows more slowly than
Θ(n2). Mergesort asymtotically beats insertion sort in

the worst case.

Divide and Conquer
•  Looking at the recursion tree you can compute

the running time (solve the recurrence)

•  DIVIDE and CONQUER in general

•  Merge beats Insertion sort grows
 more slowly then

8/30/11	

20	

Towers of Hanoi

•  Moves circles from A to B such that at no
instances larger rings is atop smaller one

A B C

Recursive description of the problem:
1.  Move n-1 rings from A-> C
2.  Move largest ring from A-> B
3.  Move all n-1 rings from C-> B

Towers of Hanoi

A B C

Recursive description of the problem:
1.  Move n-1 rings from A-> C
2.  Move largest ring from A-> B
3.  Move all n-1 rings from C-> B

8/30/11	

21	

Solution

•  Solution to Tower of Hanoi by expansion

•  Running time exponential in the size of input
•  With 64 rings, if rings can be moved one ring per

second. It would take 500 000 years to finish the
task

•  How to compare running time of different
algorithms ? we need how to compute the running
time within a constant factor

Order of growth of functions

•  Enables asymptotic analysis
•  How the algorithm behaves for large n
•  Simple characterization of algorithm efficiency
•  Enables comparative analysis of algorithms
•  E.g.

8/30/11	

22	

Order of Growth

•  Theoretical analysis focuses on ``order of
growth'' of an algorithm

•  How the algorithm behaves as
•  Some common order of growth

Asymptotic Notation

•  Big
•  upper, lower, tight bound (when input is

sufficiently large and remain true when
input is infinitely large)

•  defines a set of similar functions

8/30/11	

23	

•  g(n) is an upper bound 	

•  g(n) is a tight bound	

8/30/11	

24	

For a given function g(n)
There exist constant c and n0 such that:

f(n) grows at least as fast as g(n); g(n) is
asymptotically lower bound.

Example:

for all

Asymptotic Notation

8/30/11	

25	

•  Useful relationships:
•  Symmetry

•  Transpose Symmetry

•  Transitivity

Useful conventions

•  Set in a formula represents anonymous
function in the set

8/30/11	

26	

How functions grow

33n 46 n lg n 13 n2 3.4 n3 2n

Input size

10  0.00033s 0.0015s 0.0013s 0.0034s 0.001s

100 0.003s 0.03s 0.13s 3.4s 4*106 s
1,000 0.033s 0.45s 13s 0.94 hr

10,000 0.33s 6.1s 22min 39days

100,000 3.3s 1.3min 1.5day 108 yr.

Function Comparison

•  Verify the notation by compare the order of
growth

•  useful tools for computing limits

8/30/11	

27	

Bounding Functions

•  non-recursive algorithms
•  set up a sum for the number

of times the basic operation
is executed simplify the sum

•  determine the order of
growth (using asymptotic
notation)

•  Textbook appendix - basic
formulas

Bounding Recursions

•  Next: Techniques for Bounding Recurrences
-  Expansion -  Recursion-tree -  Substitution -  Master Theorem

