
CS583 Lecture 02	

Jana Kosecka	


some materials here are based on E. Demaine , D. Luebke slides	




Previously	


•  Sample algorithms	


•  Exact running time, pseudo-code	


•  Approximate running time 	


•  Worst case analysis 	


•  Best case analysis	


	




Rules of thumb	


•  Multiplicative constants can be omitted 	


•     dominates        if          ; e.g.      dominates	


•  Any exponential dominates any polynomial	


•  E.g.        dominates 	


•  Any polynomial dominates any logarithm 	


•  E.g.      dominates  	


na
nb a > b n2 n

3n n5

n (log n)3



Today’s topics	


•  Solving recurrences	


•  Substitution method 	


•  Iteration methods	


•  Recursion tree	


•  Masters’s theorem	




Recurrence	


•  Methods for solving recurrences	


•  Some examples last time 	


•  Expanding the reccurrence	


•  Recursion tree	


•  Technical issues; assume that 	


	


n = 2k



Solving Recurrences	


•  Another option is “iteration method”	

-  Expand the recurrence 	


- Work some algebra to express as a 
summation	


-  Evaluate the summation	


•  We will show several examples 	




•  s(n) = c + s(n-1)	


	
       = c + c + s(n-2) = 2c + s(n-2)	


	
       = 2c + c + s(n-3) = 3c + s(n-3) = …	


	
       = kc + s(n-k) = ck + s(n-k)	


•  So far for n >= k we have 	


 s(n) = ck + s(n-k)	


•  What if k = n?	


  s(n) = cn + s(0) = cn	
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•  Thus in general  s(n) = cn	
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•  s(n) 	


= 	
n + s(n-1) 	


= 	
n + n-1 + s(n-2)	


= 	
n + n-1 + n-2 + s(n-3)	


= 	
n + n-1 + n-2 + n-3 + s(n-4)	


= 	
…	


= 	
n + n-1 + n-2 + n-3 + … + n-(k-1) + s(n-k)	
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•  s(n) 	


= 	
n + s(n-1) 	


= 	
n + n-1 + s(n-2)	


= 	
n + n-1 + n-2 + s(n-3)	


= 	
n + n-1 + n-2 + n-3 + s(n-4)	


= 	
…	


= 	
n + n-1 + n-2 + n-3 + … + n-(k-1) + s(n-k)	


	

= 	


⎩
⎨
⎧

>−+

=
=

0)1(
00

)(
nnsn
n

ns

)(
1

knsi
n

kni
−+∑

+−=



•  So far for n >= k we have	
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•  So far for n >= k we have	


•  What if k = n?	
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•  So far for n >= k we have	


•  What if k = n?	
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•  So far for n >= k we have	


•  What if k = n?	


•  Thus in general 	
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•  T(n) = 2T(n/2) + c = 2(2T(n/2/2) + c) + c	


	
        = 22T(n/22) + 2c + c	


	
        = 22(2T(n/22/2) + c) + 3c = 23T(n/23) + 4c + 3c	


	
        = 23T(n/23) + 7c	


	
        = 23(2T(n/23/2) + c) + 7c = 24T(n/24) + 15c 	


              ….	


	
        = 2kT(n/2k) + (2k - 1)c	


	
 	
	


€ 

T(n) =
c n =1

2T(n /2) + c n >1
" 
# 
$ 



•  So far  we have 	


-  T(n) = 2kT(n/2k) + (2k - 1)c	


•  What if k = lg n?	


-  T(n) = 2lg n T(n/2lg n) + (2lg n - 1)c	


	
= n T(n/n) + (n - 1)c	


	
= n T(1) + (n-1)c	


	
= nc + (n-1)c = (2n - 1)c	


€ 

T(n) =
c n =1

2T(n /2) + c n >1
" 
# 
$ 



Bounding Functions	


•  non-recursive algorithms	

-  set up a sum for the number of 

times the basic operation is 
executed	


-  simplify the sum and determine 
the order of growth (using 
asymptotic notation)	




Substitution Method	


•  Most general method for solving recurrences	


•  Guess the form of solution 	


•  Verify by induction 	


•  Solve for constants	


	


•  Induction method of mathematical proof to 
establish a fact for all natural numbers	




Induction Review	

•  Show the fact holds for base case, e.g. P(0) is true 	

•  Form inductive hypothesis: Show that if P(k) 

holds then it also holds for P(k+1) => this implies 
that P(n) holds	


•  Example: Show that 	


  

€ 

0 +1+ 2 ++ n =
n(n +1)
2



Example	


€ 

T(n) = 4T(n /4) + 4•  Example	


•  Assume that 	


•  Guess 	


•  Assume that                            for                     	


•  Prove                           by induction	
€ 

T(1) =Θ(1)

€ 

O(n3)

€ 

T(k) ≤ ck 3

€ 

k < n

€ 

T(n) ≤ cn3



Example of substitution	


                                                                	


•  Whenever                                   for 
example	


•  If  	

€ 

T(n) = 4T(n /2) + n
≤ 4c(n /2)3 + n
= (c /2)n3 + n
= cn3 − ((c /2)n3 − n)
≤ cn3

€ 

(c /2)n3 − n ≥ 0

€ 

c ≥ 2;n ≥1

 desired	


 desired  - residual	




Example cont	


•  Handle initial conditions, to ground the 
induction with the base case	


•  Base case                         for all	


•  For               ,      we have   	


if we pick c big enough	


	


This bound is not tight  !	


€ 

T(1) =Θ(1)

€ 

n < n0

€ 

Θ(1) ≤ cn3

€ 

1≤ n ≤ n0



Tighter upper bound	


•  Prove that 	


€ 

T(n) =O(n2)

€ 

T(n) = 4T(n /2) + n
≤ 4c(n /2)2 + n
= cn2 + n
≤O(n2)
= cn2 − (−n)
≤ cn2

Wrong !must prove inductive hyp. 	


For no choice of constant 	




Tighter upper bound	


•  Strengthen induction hypothesis	


€ 

T(k) ≤ c1k
2 − c2k

€ 

T(n) = 4T(n /2) + n
≤ 4(c1(n /2)

2 − c2(n /2))+ n
= c1n

2 − 2c2n + n
= c1n

2 − c2n − (c2n − n)
≤ c1n

2 − c2n



Substitution	


•  we can also guess that	


•  Another strategy: change of variables 	


€ 

T(n) = 2T( n ) + lgn



Recursion Tree	


•  Recursion tree is good for make an initial 
guess of the bound	


•  Build a recursion tree for 	




Recursion Tree Example	


€ 

T(n) = T(n /4) + T(n /2) + n2



Recursion Tree	




Masters Method	


•  Cookbook method for solving recurrences 
of the type 	


€ 

T(n) = aT(n /b) + f (n)



Master Theorem	


•  If	


•  Idea compare the rate of growth of        with	


•         grows polynomialy slower then         	


•  Solution is  	
€ 

T(n) = aT(n /b) + f (n)

€ 

f (n)

€ 

n logb a

€ 

T(n) =Θ(n logb a )
€ 

f (n)

€ 

n logb a



Masters Theorem	


•  Idea compare the rate of growth of        
with	


•         grows at similar rate then          	


•  Solution is  	


€ 

f (n)

€ 

n logb a

T (n) =Θ(nlogb a lgn)
€ 

f (n)

€ 

n logb a



Master Theorem	


•  If	


•  Idea compare the rate of growth of        with	


•         grows polynomialy faster then         	


•  Solution is	


•  Regularity condition:                                for some 
constant  	


€ 

T(n) = aT(n /b) + f (n)

€ 

f (n)

€ 

n logb a

€ 

T(n) =Θ( f (n))
€ 

f (n)

€ 

n logb a

€ 

af (n /b) ≤ cf (n)

€ 

c <1



Master Theorem	


•  If	


€ 

T(n) = aT(n /b) + f (n)



•  Merge Sort Example	


•  CASE 2 	


€ 

a = 2,b = 2⇒ n logb a = n log2 2 = n

€ 

k = 0⇒ T(n) =Θ(n lgn)
€ 

T(n) = 2T(n /2) + cn



Examples	


€ 

T(n) = 4T(n /2) + n



Examples	


€ 

T(n) = 4T(n /2) + n2



Examples	


€ 

T(n) = 4T(n /2) + n3



Asymptotic Bounds for Some 
Common Functions	


•  Polynomials.  a0 + a1n + … + adnd  is Θ(nd) if ad > 0. 	


Polynomial time.  Running time is O(nd) for some constant d 
independent of the input size n.	


•  Logarithms.  O(log a n) = O(log b n) for any constants a, b > 
0.	


	


•  Logarithms.  For every x > 0,  log n = O(nx).	


	


•  Exponentials.  For every r > 1 and every d > 0,  nd = O(rn).	

every exponential grows faster than every polynomial	


can avoid specifying the base	


log grows slower than every polynomial	




Masters Theorem via recursion tree	




Masters Theorem via recursion tree	




Masters Theorem via recursion tree	




Masters Theorem via recursion tree	




Masters Theorem via recursion tree	




Binary Search	


•  Find an element in the sorted array	


•  Divide and conquer algorithm	


1. Divide: Check the middle element	


2. Conquer: Recursively search one subarray	


3. Combine: Trivial	




Binary Search	


•  Find 9 in sorted array	


                 3    5   7   8   9  12   15	




Binary Search	


•  Recurrence equation	


€ 

T(n) =1T(n /2) +Θ(1)

# of subproblems	


subproblem size	


work dividing and combining	




Binary Search	


•  Recurrence equation	


•  Analysis 	


€ 

T(n) =1T(n /2) +Θ(1)

# of subproblems	


subproblem size	


work dividing and combining	




Fibonacci Numbers	


•  Recursive definition	


0  1  1  2  3  5  8  13   21  34	


€ 

Fn =

0 if n = 0;
1 if n −1;

Fn−1 + Fn−2 if n ≥ 2



Probabilistic Analysis	


•  use of probability theory in the analysis of 
algorithms	


•  To perform a probabilistic analysis, we 
have to make assumptions on the 
distribution of inputs	


•  After such assumption, we compute an 
expected running time that is computed 
over the distribution of all possible inputs	


•  We will return to it later	




Sorting Continued	


•  So far we’ve talked about two algorithms to 
sort an array of numbers	


- What is the advantage of merge sort?	


- What is the advantage of insertion sort?	


•  Next on the agenda: Heapsort	


-  Combines advantages of both previous 
algorithms	




•  A heap can be seen as a complete binary 
tree:	


	


What makes a binary tree complete?  	


Is the example above complete?	


Heaps	


16	


14	
 10	


8	
 7	
 9	
 3	


2	
 4	
 1	




•  A heap can be seen as a complete binary tree:	


	


The book calls them “nearly complete” binary trees; 
can think of unfilled slots as null pointers	


Heaps	


16	


14	
 10	


8	
 7	
 9	
 3	


2	
 4	
 1	
 1	
 1	
 1	
1	
1	




Heaps	


•  In practice, heaps are usually implemented 
as arrays:	


16	


14	
 10	


8	
 7	
 9	
 3	


2	
 4	
 1	


16	
14	
10	
 8	
 7	
 9	
 3	
 2	
 4	
 1	
A =	
 =	




Heaps	

•  To represent a complete binary tree as an array: 	

-  The root node is A[1]	

-  Node i is A[i]	

-  The parent of node i is A[i/2] (note: integer 

divide)	

-  The left child of node i is A[2i]	

-  The right child of node i is A[2i + 1]	


16	


14	
 10	


8	
 7	
 9	
 3	


2	
 4	
 1	


16	
14	
10	
 8	
 7	
 9	
 3	
 2	
 4	
 1	
A =	
 =	




Referencing Heap Elements	


•  So…	


Parent(i) { return ⎣i/2⎦; } 

Left(i) { return 2*i; } 

right(i) { return 2*i + 1; } 

•  An aside: How would you implement this ���
most efficiently?	


•  Another aside: Really?	




The Heap Property	

•  Heaps also satisfy the heap property:	

	
A[Parent(i)] ≥ A[i]	
 	
for all nodes i > 1	

-  In other words, the value of a node is at most 

the value of its parent	

-  Where is the largest element in a heap 

stored?	

•  Definitions:	

-  The height of a node in the tree = the number 

of edges on the longest downward path to a 
leaf 	


-  The height of a tree = the height of its root	




Heap Height	


•  What is the height of an n-element heap? 
Why?	


•  This is nice: basic heap operations take at 
most time proportional to the height of the 
heap	



