
CS583 Lecture 02	

Jana Kosecka	

some materials here are based on E. Demaine , D. Luebke slides	

Previously	

•  Sample algorithms	

•  Exact running time, pseudo-code	

•  Approximate running time 	

•  Worst case analysis 	

•  Best case analysis	

	

Rules of thumb	

•  Multiplicative constants can be omitted 	

•  dominates if ; e.g. dominates	

•  Any exponential dominates any polynomial	

•  E.g. dominates 	

•  Any polynomial dominates any logarithm 	

•  E.g. dominates 	

na
nb a > b n2 n

3n n5

n (log n)3

Today’s topics	

•  Solving recurrences	

•  Substitution method 	

•  Iteration methods	

•  Recursion tree	

•  Masters’s theorem	

Recurrence	

•  Methods for solving recurrences	

•  Some examples last time 	

•  Expanding the reccurrence	

•  Recursion tree	

•  Technical issues; assume that 	

	

n = 2k

Solving Recurrences	

•  Another option is “iteration method”	

-  Expand the recurrence 	

- Work some algebra to express as a
summation	

-  Evaluate the summation	

•  We will show several examples 	

•  s(n) = c + s(n-1)	

	

 = c + c + s(n-2) = 2c + s(n-2)	

	

 = 2c + c + s(n-3) = 3c + s(n-3) = …	

	

 = kc + s(n-k) = ck + s(n-k)	

•  So far for n >= k we have 	

 s(n) = ck + s(n-k)	

•  What if k = n?	

 s(n) = cn + s(0) = cn	

	

⎩
⎨
⎧

>−+

=
=

0)1(
00

)(
nnsc
n

ns

•  Thus in general s(n) = cn	

⎩
⎨
⎧

>−+

=
=

0)1(
00

)(
nnsc
n

ns

•  s(n) 	

= 	

n + s(n-1) 	

= 	

n + n-1 + s(n-2)	

= 	

n + n-1 + n-2 + s(n-3)	

= 	

n + n-1 + n-2 + n-3 + s(n-4)	

= 	

…	

= 	

n + n-1 + n-2 + n-3 + … + n-(k-1) + s(n-k)	

	

⎩
⎨
⎧

>−+

=
=

0)1(
00

)(
nnsn
n

ns

•  s(n) 	

= 	

n + s(n-1) 	

= 	

n + n-1 + s(n-2)	

= 	

n + n-1 + n-2 + s(n-3)	

= 	

n + n-1 + n-2 + n-3 + s(n-4)	

= 	

…	

= 	

n + n-1 + n-2 + n-3 + … + n-(k-1) + s(n-k)	

	

= 	

⎩
⎨
⎧

>−+

=
=

0)1(
00

)(
nnsn
n

ns

)(
1

knsi
n

kni
−+∑

+−=

•  So far for n >= k we have	

⎩
⎨
⎧

>−+

=
=

0)1(
00

)(
nnsn
n

ns

)(
1

knsi
n

kni
−+∑

+−=

•  So far for n >= k we have	

•  What if k = n?	

⎩
⎨
⎧

>−+

=
=

0)1(
00

)(
nnsn
n

ns

)(
1

knsi
n

kni
−+∑

+−=

•  So far for n >= k we have	

•  What if k = n?	

⎩
⎨
⎧

>−+

=
=

0)1(
00

)(
nnsn
n

ns

)(
1

knsi
n

kni
−+∑

+−=

2
10)0(

11

+
=+=+ ∑∑

==

nnisi
n

i

n

i

•  So far for n >= k we have	

•  What if k = n?	

•  Thus in general 	

⎩
⎨
⎧

>−+

=
=

0)1(
00

)(
nnsn
n

ns

)(
1

knsi
n

kni
−+∑

+−=

2
10)0(

11

+
=+=+ ∑∑

==

nnisi
n

i

n

i

2
1)(+

=
nnns

•  T(n) = 2T(n/2) + c = 2(2T(n/2/2) + c) + c	

	

 = 22T(n/22) + 2c + c	

	

 = 22(2T(n/22/2) + c) + 3c = 23T(n/23) + 4c + 3c	

	

 = 23T(n/23) + 7c	

	

 = 23(2T(n/23/2) + c) + 7c = 24T(n/24) + 15c 	

 ….	

	

 = 2kT(n/2k) + (2k - 1)c	

	

 	

	

€

T(n) =
c n =1

2T(n /2) + c n >1
"

$

•  So far we have 	

-  T(n) = 2kT(n/2k) + (2k - 1)c	

•  What if k = lg n?	

-  T(n) = 2lg n T(n/2lg n) + (2lg n - 1)c	

	

= n T(n/n) + (n - 1)c	

	

= n T(1) + (n-1)c	

	

= nc + (n-1)c = (2n - 1)c	

€

T(n) =
c n =1

2T(n /2) + c n >1
"

$

Bounding Functions	

•  non-recursive algorithms	

-  set up a sum for the number of

times the basic operation is
executed	

-  simplify the sum and determine
the order of growth (using
asymptotic notation)	

Substitution Method	

•  Most general method for solving recurrences	

•  Guess the form of solution 	

•  Verify by induction 	

•  Solve for constants	

	

•  Induction method of mathematical proof to
establish a fact for all natural numbers	

Induction Review	

•  Show the fact holds for base case, e.g. P(0) is true 	

•  Form inductive hypothesis: Show that if P(k)

holds then it also holds for P(k+1) => this implies
that P(n) holds	

•  Example: Show that 	

€

0 +1+ 2 ++ n =
n(n +1)
2

Example	

€

T(n) = 4T(n /4) + 4•  Example	

•  Assume that 	

•  Guess 	

•  Assume that for 	

•  Prove by induction	

€

T(1) =Θ(1)

€

O(n3)

€

T(k) ≤ ck 3

€

k < n

€

T(n) ≤ cn3

Example of substitution	

 	

•  Whenever for
example	

•  If 	

€

T(n) = 4T(n /2) + n
≤ 4c(n /2)3 + n
= (c /2)n3 + n
= cn3 − ((c /2)n3 − n)
≤ cn3

€

(c /2)n3 − n ≥ 0

€

c ≥ 2;n ≥1

 desired	

 desired - residual	

Example cont	

•  Handle initial conditions, to ground the
induction with the base case	

•  Base case for all	

•  For , we have 	

if we pick c big enough	

	

This bound is not tight !	

€

T(1) =Θ(1)

€

n < n0

€

Θ(1) ≤ cn3

€

1≤ n ≤ n0

Tighter upper bound	

•  Prove that 	

€

T(n) =O(n2)

€

T(n) = 4T(n /2) + n
≤ 4c(n /2)2 + n
= cn2 + n
≤O(n2)
= cn2 − (−n)
≤ cn2

Wrong !must prove inductive hyp. 	

For no choice of constant 	

Tighter upper bound	

•  Strengthen induction hypothesis	

€

T(k) ≤ c1k
2 − c2k

€

T(n) = 4T(n /2) + n
≤ 4(c1(n /2)

2 − c2(n /2))+ n
= c1n

2 − 2c2n + n
= c1n

2 − c2n − (c2n − n)
≤ c1n

2 − c2n

Substitution	

•  we can also guess that	

•  Another strategy: change of variables 	

€

T(n) = 2T(n) + lgn

Recursion Tree	

•  Recursion tree is good for make an initial
guess of the bound	

•  Build a recursion tree for 	

Recursion Tree Example	

€

T(n) = T(n /4) + T(n /2) + n2

Recursion Tree	

Masters Method	

•  Cookbook method for solving recurrences
of the type 	

€

T(n) = aT(n /b) + f (n)

Master Theorem	

•  If	

•  Idea compare the rate of growth of with	

•  grows polynomialy slower then 	

•  Solution is 	

€

T(n) = aT(n /b) + f (n)

€

f (n)

€

n logb a

€

T(n) =Θ(n logb a)
€

f (n)

€

n logb a

Masters Theorem	

•  Idea compare the rate of growth of
with	

•  grows at similar rate then 	

•  Solution is 	

€

f (n)

€

n logb a

T (n) =Θ(nlogb a lgn)
€

f (n)

€

n logb a

Master Theorem	

•  If	

•  Idea compare the rate of growth of with	

•  grows polynomialy faster then 	

•  Solution is	

•  Regularity condition: for some
constant 	

€

T(n) = aT(n /b) + f (n)

€

f (n)

€

n logb a

€

T(n) =Θ(f (n))
€

f (n)

€

n logb a

€

af (n /b) ≤ cf (n)

€

c <1

Master Theorem	

•  If	

€

T(n) = aT(n /b) + f (n)

•  Merge Sort Example	

•  CASE 2 	

€

a = 2,b = 2⇒ n logb a = n log2 2 = n

€

k = 0⇒ T(n) =Θ(n lgn)
€

T(n) = 2T(n /2) + cn

Examples	

€

T(n) = 4T(n /2) + n

Examples	

€

T(n) = 4T(n /2) + n2

Examples	

€

T(n) = 4T(n /2) + n3

Asymptotic Bounds for Some
Common Functions	

•  Polynomials. a0 + a1n + … + adnd is Θ(nd) if ad > 0. 	

Polynomial time. Running time is O(nd) for some constant d
independent of the input size n.	

•  Logarithms. O(log a n) = O(log b n) for any constants a, b >
0.	

	

•  Logarithms. For every x > 0, log n = O(nx).	

	

•  Exponentials. For every r > 1 and every d > 0, nd = O(rn).	

every exponential grows faster than every polynomial	

can avoid specifying the base	

log grows slower than every polynomial	

Masters Theorem via recursion tree	

Masters Theorem via recursion tree	

Masters Theorem via recursion tree	

Masters Theorem via recursion tree	

Masters Theorem via recursion tree	

Binary Search	

•  Find an element in the sorted array	

•  Divide and conquer algorithm	

1. Divide: Check the middle element	

2. Conquer: Recursively search one subarray	

3. Combine: Trivial	

Binary Search	

•  Find 9 in sorted array	

 3 5 7 8 9 12 15	

Binary Search	

•  Recurrence equation	

€

T(n) =1T(n /2) +Θ(1)

# of subproblems	

subproblem size	

work dividing and combining	

Binary Search	

•  Recurrence equation	

•  Analysis 	

€

T(n) =1T(n /2) +Θ(1)

# of subproblems	

subproblem size	

work dividing and combining	

Fibonacci Numbers	

•  Recursive definition	

0 1 1 2 3 5 8 13 21 34	

€

Fn =

0 if n = 0;
1 if n −1;

Fn−1 + Fn−2 if n ≥ 2

Probabilistic Analysis	

•  use of probability theory in the analysis of
algorithms	

•  To perform a probabilistic analysis, we
have to make assumptions on the
distribution of inputs	

•  After such assumption, we compute an
expected running time that is computed
over the distribution of all possible inputs	

•  We will return to it later	

Sorting Continued	

•  So far we’ve talked about two algorithms to
sort an array of numbers	

- What is the advantage of merge sort?	

- What is the advantage of insertion sort?	

•  Next on the agenda: Heapsort	

-  Combines advantages of both previous
algorithms	

•  A heap can be seen as a complete binary
tree:	

	

What makes a binary tree complete? 	

Is the example above complete?	

Heaps	

16	

14	

 10	

8	

 7	

 9	

 3	

2	

 4	

 1	

•  A heap can be seen as a complete binary tree:	

	

The book calls them “nearly complete” binary trees;
can think of unfilled slots as null pointers	

Heaps	

16	

14	

 10	

8	

 7	

 9	

 3	

2	

 4	

 1	

 1	

 1	

 1	

1	

1	

Heaps	

•  In practice, heaps are usually implemented
as arrays:	

16	

14	

 10	

8	

 7	

 9	

 3	

2	

 4	

 1	

16	

14	

10	

 8	

 7	

 9	

 3	

 2	

 4	

 1	

A =	

 =	

Heaps	

•  To represent a complete binary tree as an array: 	

-  The root node is A[1]	

-  Node i is A[i]	

-  The parent of node i is A[i/2] (note: integer

divide)	

-  The left child of node i is A[2i]	

-  The right child of node i is A[2i + 1]	

16	

14	

 10	

8	

 7	

 9	

 3	

2	

 4	

 1	

16	

14	

10	

 8	

 7	

 9	

 3	

 2	

 4	

 1	

A =	

 =	

Referencing Heap Elements	

•  So…	

Parent(i) { return ⎣i/2⎦; }

Left(i) { return 2*i; }

right(i) { return 2*i + 1; }

•  An aside: How would you implement this ���
most efficiently?	

•  Another aside: Really?	

The Heap Property	

•  Heaps also satisfy the heap property:	

	

A[Parent(i)] ≥ A[i]	

 	

for all nodes i > 1	

-  In other words, the value of a node is at most

the value of its parent	

-  Where is the largest element in a heap

stored?	

•  Definitions:	

-  The height of a node in the tree = the number

of edges on the longest downward path to a
leaf 	

-  The height of a tree = the height of its root	

Heap Height	

•  What is the height of an n-element heap?
Why?	

•  This is nice: basic heap operations take at
most time proportional to the height of the
heap	

