CS583 Lecture 02

Jana Kosecka

some materials here are based on E. Demaine , D. Luebke slides

Previously

- Sample algorithms
- Exact running time, pseudo-code
- Approximate running time
- Worst case analysis
- Best case analysis

Rules of thumb

- Multiplicative constants can be omitted
- n^a dominates n^b if a > b; e.g. n^2 dominates n
- Any exponential dominates any polynomial
- E.g. 3^n dominates n^5
- Any polynomial dominates any logarithm
- E.g. n dominates $(\log n)^3$

Today's topics

- Solving recurrences
- Substitution method
- Iteration methods
- Recursion tree
- Masters's theorem

Recurrence

- Methods for solving recurrences
- Some examples last time
- Expanding the recourrence
- Recursion tree
- Technical issues; assume that $n = 2^k$

Solving Recurrences

- Another option is "iteration method"
 - Expand the recurrence
 - Work some algebra to express as a summation
 - Evaluate the summation
- We will show several examples

$$s(n) = \begin{cases} 0 & n = 0\\ c + s(n-1) & n > 0 \end{cases}$$

•
$$s(n) = c + s(n-1)$$

$$= c + c + s(n-2) = 2c + s(n-2)$$
$$= 2c + c + s(n-3) = 3c + s(n-3) = ...$$
$$= kc + s(n-k) = ck + s(n-k)$$

• So far for $n \ge k$ we have

 $\mathbf{s}(\mathbf{n}) = \mathbf{c}\mathbf{k} + \mathbf{s}(\mathbf{n} \mathbf{-}\mathbf{k})$

• What if k = n?

s(n) = cn + s(0) = cn

$$s(n) = \begin{cases} 0 & n = 0\\ c + s(n-1) & n > 0 \end{cases}$$

• Thus in general s(n) = cn

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

- s(n)
- = n + s(n-1)
- = n + n 1 + s(n 2)
- = n + n 1 + n 2 + s(n 3)
- = n + n 1 + n 2 + n 3 + s(n 4)
- = ...
- = n + n 1 + n 2 + n 3 + ... + n (k 1) + s(n k)

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

- s(n)
- = n + s(n-1)
- = n + n 1 + s(n 2)
- = n + n 1 + n 2 + s(n 3)
- = n + n 1 + n 2 + n 3 + s(n 4)

= ...

= n + n - 1 + n - 2 + n - 3 + ... + n - (k - 1) + s(n - k)

$$=\sum_{i=n-k+1}^{n}i+s(n-k)$$

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

• So far for $n \ge k$ we have $\sum_{i=n-k+1}^{n} i + s(n-k)$

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

- So far for $n \ge k$ we have $\sum_{i=n-k+1}^{n} i + s(n-k)$
- What if k = n?

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

• So far for $n \ge k$ we have $\sum_{i=n-k+1}^{n} i + s(n-k)$

• What if k = n?

$$\sum_{i=1}^{n} i + s(0) = \sum_{i=1}^{n} i + 0 = n \frac{n+1}{2}$$

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

• So far for $n \ge k$ we have $\sum_{i=n-k+1}^{n} i + s(n-k)$

• What if k = n?

$$\sum_{i=1}^{n} i + s(0) = \sum_{i=1}^{n} i + 0 = n \frac{n+1}{2}$$

• Thus in general s(n) =

$$s(n) = n\frac{n+1}{2}$$

$$T(n) = \begin{cases} c & n = 1\\ 2T(n/2) + c & n > 1 \end{cases}$$

•
$$T(n) = 2T(n/2) + c = 2(2T(n/2/2) + c) + c$$

= $2^{2}T(n/2^{2}) + 2c + c$
= $2^{2}(2T(n/2^{2}/2) + c) + 3c = 2^{3}T(n/2^{3}) + 4c + 3c$
= $2^{3}T(n/2^{3}) + 7c$
= $2^{3}(2T(n/2^{3}/2) + c) + 7c = 2^{4}T(n/2^{4}) + 15c$

$$= 2^{k}T(n/2^{k}) + (2^{k} - 1)c$$

. . . .

$$T(n) = \begin{cases} c & n = 1\\ 2T(n/2) + c & n > 1 \end{cases}$$

- So far we have
 - $T(n) = 2^k T(n/2^k) + (2^k 1)c$
- What if $k = \lg n$?
 - $T(n) = 2^{\lg n} T(n/2^{\lg n}) + (2^{\lg n} 1)c$
 - = n T(n/n) + (n 1)c
 - = n T(1) + (n-1)c
 - = nc + (n-1)c = (2n 1)c

Bounding Functions

- non-recursive algorithms
 - set up a sum for the number of times the basic operation is executed
 - simplify the sum and determine the order of growth (using asymptotic notation)

1.
$$\sum_{1=1}^{n} 1 = 1 + 1 + \dots + 1 = n \in \Theta(n)$$

2.
$$\sum_{1=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2} \approx \frac{n^2}{2} \in \Theta(n^2)$$

3.
$$\sum_{1=1}^{n} i^2 = 1 + 4 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} \approx \frac{n^3}{3} \in \Theta(n^3)$$

4.
$$\sum_{1=0}^{n} a^i = 1 + a^1 + \dots + a^n = \frac{a^{n+1} - 1}{a - 1}, \forall a \neq 1, \in \Theta(a^n)$$

5.
$$\sum a_i + b_i = \sum a_i + \sum b_i$$

6.
$$\sum ca_i = c \sum a_i$$

7.
$$\sum_{1=0}^{n} a_i = \sum_{1=0}^{m} a_i + \sum_{1=m+1}^{n} a_i$$

Substitution Method

- Most general method for solving recurrences
- Guess the form of solution
- Verify by induction
- Solve for constants

• Induction method of mathematical proof to establish a fact for all natural numbers

Induction Review

- Show the fact holds for base case, e.g. P(0) is true
- Form inductive hypothesis: Show that if P(k) holds then it also holds for P(k+1) => this implies that P(n) holds
- Example: Show that

$$0 + 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Example

- Example T(n) = 4T(n/4) + 4
- Assume that $T(1) = \Theta(1)$
- Guess $O(n^3)$
- Assume that $T(k) \le ck^3$ for k < n
- Prove $T(n) \le cn^3$ by induction

Example of substitution

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^{3} + n$$

$$= (c/2)n^{3} + n$$

$$= cn^{3} - ((c/2)n^{3} - n) \quad \leftarrow \text{ desired } - \text{ residual}$$

$$\leq cn^{3} \qquad \leftarrow \text{ desired}$$
• Whenever $(c/2)n^{3} - n \ge 0$ for

- example
- If $c \ge 2; n \ge 1$

Example cont

- Handle initial conditions, to ground the induction with the base case
- Base case $T(1) = \Theta(1)$ for all $n < n_0$
- For $1 \le n \le n_0$ we have $\Theta(1) \le cn^3$

if we pick c big enough

This bound is not tight !

Tighter upper bound

• Prove that $T(n) = O(n^2)$ T(n) = 4T(n/2) + n $\leq 4c(n/2)^2 + n$ $=cn^{2}+n$ $\leq O(n^2)$ Wrong !must prove inductive hyp. $= cn^{2} - (-n)$

$$\leq cn^2$$
 For no choice of constant

Tighter upper bound

• Strengthen induction hypothesis $T(k) \le c_1 k^2 - c_2 k$

$$T(n) = 4T(n/2) + n$$

$$\leq 4(c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1 n^2 - 2c_2 n + n$$

$$= c_1 n^2 - c_2 n - (c_2 n - n)$$

$$\leq c_1 n^2 - c_2 n$$

Substitution

- we can also guess that $T(n) = 2T(\frac{n}{2}) + n \in O(n)$, where T(1) = 1.
- Another strategy: change of variables $T(n) = 2T(\sqrt{n}) + \lg n$

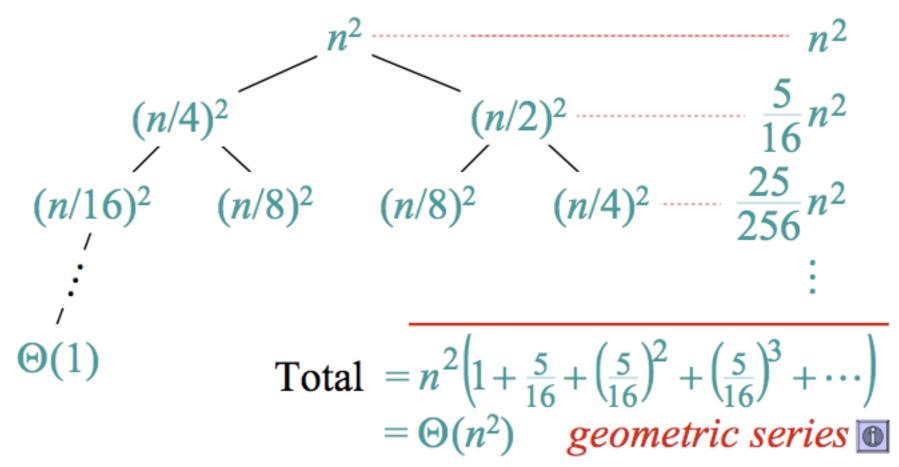
Recursion Tree

- Recursion tree is good for make an initial guess of the bound
- Build a recursion tree for T(n) = 2T(n/2) + cn

Recursion Tree Example $T(n) = T(n/4) + T(n/2) + n^2$

Recursion Tree

Solve $T(n) = T(n/4) + T(n/2) + n^2$:



Masters Method

• Cookbook method for solving recurrences of the type

$$T(n) = aT(n/b) + f(n)$$

Master Theorem

- If T(n) = aT(n/b) + f(n)
- Idea compare the rate of growth of f(n) with $n^{\log_b a}$
- f(n) grows polynomially slower then $n^{\log_b a}$
- Solution is $T(n) = \Theta(n^{\log_b a})$

CASE 1: $f(n) = O(n^{\log_b a} - \varepsilon)$, constant $\varepsilon > 0$ $\Rightarrow T(n) = \Theta(n^{\log_b a})$.

Masters Theorem

- Idea compare the rate of growth of f(n)with $n^{\log_b a}$
- f(n) grows at similar rate then $n^{\log_b a}$
- Solution is $T(n) = \Theta(n^{\log_b a} \lg n)$

Master Theorem

- If T(n) = aT(n/b) + f(n)
- Idea compare the rate of growth of f(n) with $n^{\log_b a}$
- f(n) grows polynomialy faster then $n^{\log_b a}$
- Solution is $T(n) = \Theta(f(n))$

CASE 3: $f(n) = \Omega(n^{\log_b a + \varepsilon})$, constant $\varepsilon > 0$, and regularity condition $\Rightarrow T(n) = \Theta(f(n))$.

• Regularity condition: $af(n/b) \le cf(n)$ for some constant c < 1

Master Theorem

• If T(n) = aT(n/b) + f(n)

CASE 1: $f(n) = O(n^{\log_b a} - \varepsilon)$, constant $\varepsilon > 0$ $\Rightarrow T(n) = \Theta(n^{\log_b a})$.

CASE 2: $f(n) = \Theta(n^{\log_b a} \lg^n n)$, constant $\Rightarrow T(n) = \Theta(n^{\log_b a} \lg^l n)$.

CASE 3: $f(n) = \Omega(n^{\log_b a + \varepsilon})$, constant $\varepsilon > 0$, and regularity condition $\Rightarrow T(n) = \Theta(f(n))$. CASE 1: $f(n) = O(n^{\log_b a - \varepsilon})$, constant $\varepsilon > 0$ $\Rightarrow T(n) = \Theta(n^{\log_b a})$. CASE 2: $f(n) = \Theta(n^{\log_b a} \lg^n n)$, constant $\Rightarrow T(n) = \Theta(n^{\log_b a} \lg^n n)$. CASE 3: $f(n) = \Omega(n^{\log_b a + \varepsilon})$, constant $\varepsilon > 0$, and regularity condition $\Rightarrow T(n) = \Theta(f(n))$.

- Merge Sort Example
- CASE 2

$$T(n) = 2T(n/2) + cn$$

$$a = 2, b = 2 \implies n^{\log_b a} = n^{\log_2 2} = n$$

$$k = 0 \implies T(n) = \Theta(n \lg n)$$

Examples

$$T(n) = 4T(n/2) + n$$

Examples

$$T(n) = 4T(n/2) + n^2$$

Examples

$$T(n) = 4T(n/2) + n^3$$

Asymptotic Bounds for Some Common Functions

• Polynomials. $a_0 + a_1n + \ldots + a_dn^d$ is $\Theta(n^d)$ if $a_d > 0$.

Polynomial time. Running time is $O(n^d)$ for some constant d independent of the input size n.

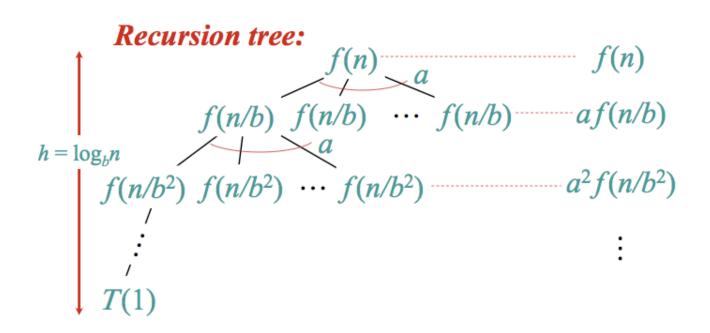
• Logarithms. $O(\log_a n) = O(\log_b n)$ for any constants a, b > 0.

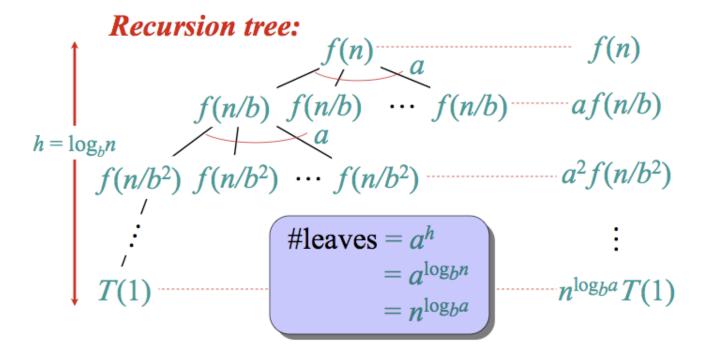
• Logarithms. For every x > 0, $\log n = O(n^x)$.

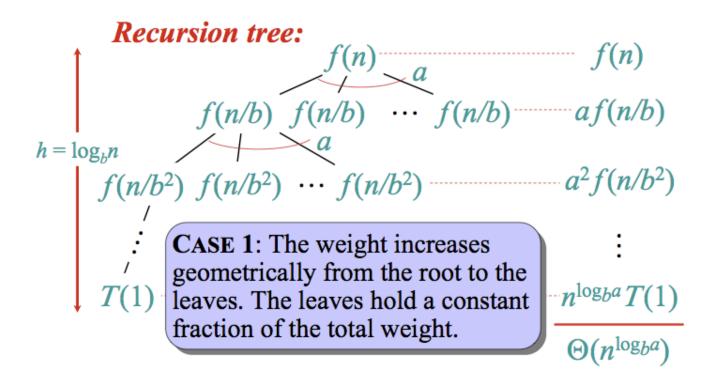
log grows slower than every polynomial

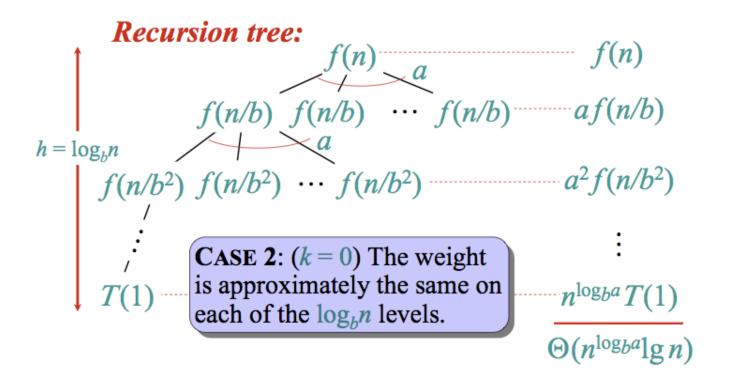
• Exponentials. For every
$$r > 1$$
 and every $d > 0$, $n^d = O(r^n)$.

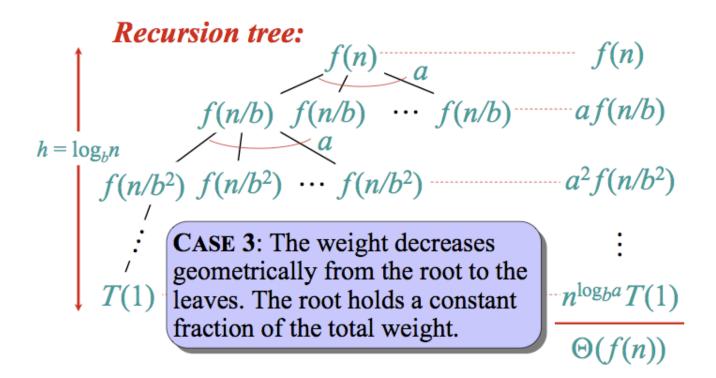
every exponential grows faster than every polynomial











- Find an element in the sorted array
- Divide and conquer algorithm
- 1. Divide: Check the middle element
- 2. Conquer: Recursively search one subarray
- 3. Combine: Trivial

• Find 9 in sorted array

3 5 7 8 9 12 15

• Recurrence equation $T(n) = 1T(n/2) + \Theta(1)$

of subproblems work dividing and combining

subproblem size

Recurrence equation

 $T(n) = 1T(n/2) + \Theta(1)$ # of subproblems work dividing and combining subproblem size

• Analysis

Fibonacci Numbers

• Recursive definition

$$F_{n} = \begin{bmatrix} 0 & if & n = 0; \\ 1 & if & n - 1; \\ F_{n-1} + F_{n-2} & if & n \ge 2 \end{bmatrix}$$

$$0 \ 1 \ 1 \ 2 \ 3 \ 5 \ 8 \ 13 \ 21 \ 34$$

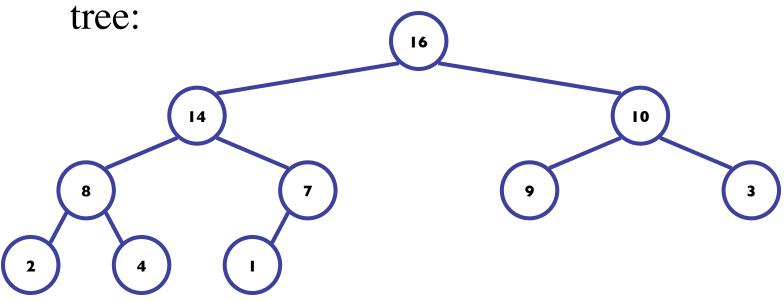
Probabilistic Analysis

- use of probability theory in the analysis of algorithms
- To perform a probabilistic analysis, we have to **make assumptions on the distribution** of inputs
- After such assumption, we compute an **expected running time** that is computed over the distribution of all possible inputs
- We will return to it later

Sorting Continued

- So far we've talked about two algorithms to sort an array of numbers
 - What is the advantage of merge sort?
 - What is the advantage of insertion sort?
- Next on the agenda: *Heapsort*
 - Combines advantages of both previous algorithms

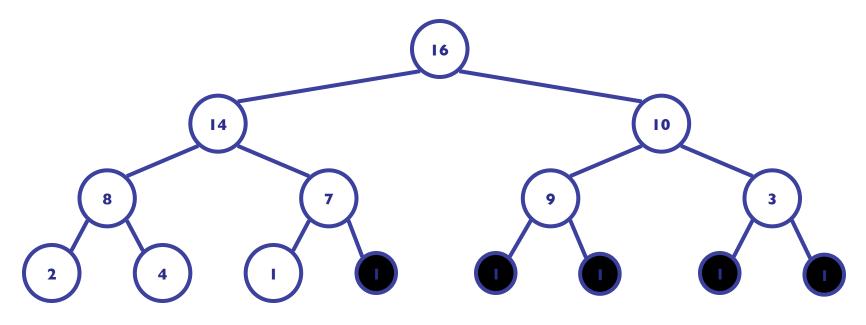
• A *heap* can be seen as a complete binary



What makes a binary tree complete?

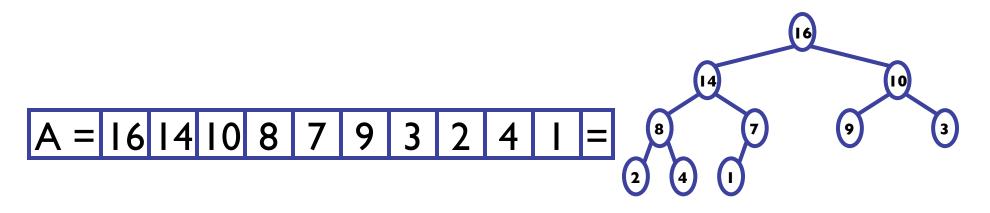
Is the example above complete?

• A *heap* can be seen as a complete binary tree:



The book calls them "nearly complete" binary trees; can think of unfilled slots as null pointers

• In practice, heaps are usually implemented as arrays:



- To represent a complete binary tree as an array:
 - The root node is A[1]
 - Node *i* is A[*i*]
 - The parent of node *i* is A[*i*/2] (note: integer divide)
 - The left child of node *i* is A[2*i*]
 - The right child of node *i* is A[2i + 1]

14

10

9

Referencing Heap Elements

• So...

Parent(i) { return [i/2]; }
Left(i) { return 2*i; }
right(i) { return 2*i + 1; }

- An aside: *How would you implement this most efficiently?*
- Another aside: *Really*?

The Heap Property

- Heaps also satisfy the *heap property*: $A[Parent(i)] \ge A[i] \quad \text{for all nodes } i > 1$
 - In other words, the value of a node is at most the value of its parent
 - Where is the largest element in a heap stored?
- Definitions:
 - The *height* of a node in the tree = the number of edges on the longest downward path to a leaf
 - The height of a tree = the height of its root

Heap Height

- What is the height of an n-element heap? Why?
- This is nice: basic heap operations take at most time proportional to the height of the heap