CS583 Lecture 02 Jana Kosecka

Previously

- Sample algorithms
- Exact running time, pseudo-code
- Approximate running time
- Worst case analysis
- Best case analysis

Rules of thumb

- Multiplicative constants can be omitted
- n^{a} dominates n^{b} if $a>b$; e.g. n^{2} dominates n
- Any exponential dominates any polynomial
- E.g. 3^{n} dominates n^{5}
- Any polynomial dominates any logarithm
- E.g. n dominates $(\log n)^{3}$

Today's topics

- Solving recurrences
- Substitution method
- Iteration methods
- Recursion tree
- Masters's theorem

Recurrence

- Methods for solving recurrences
- Some examples last time
- Expanding the reccurrence
- Recursion tree
- Technical issues; assume that $n=2^{k}$

Solving Recurrences

- Another option is "iteration method"
- Expand the recurrence
- Work some algebra to express as a summation
- Evaluate the summation
- We will show several examples

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
c+s(n-1) & n>0
\end{array}\right.
$$

- $\mathrm{s}(\mathrm{n})=\mathrm{c}+\mathrm{s}(\mathrm{n}-1)$

$$
\begin{aligned}
& =c+c+s(n-2)=2 c+s(n-2) \\
& =2 c+c+s(n-3)=3 c+s(n-3)=\ldots \\
& =k c+s(n-k)=c k+s(n-k)
\end{aligned}
$$

- So far for $\mathrm{n}>=\mathrm{k}$ we have

$$
\mathrm{s}(\mathrm{n})=\mathrm{ck}+\mathrm{s}(\mathrm{n}-\mathrm{k})
$$

- What if $\mathrm{k}=\mathrm{n}$?

$$
\mathrm{s}(\mathrm{n})=\mathrm{cn}+\mathrm{s}(0)=\mathrm{cn}
$$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
c+s(n-1) & n>0
\end{array}\right.
$$

- Thus in general $s(n)=c n$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- $\mathrm{s}(\mathrm{n})$

$$
=\mathrm{n}+\mathrm{s}(\mathrm{n}-1)
$$

$$
=\mathrm{n}+\mathrm{n}-1+\mathrm{s}(\mathrm{n}-2)
$$

$$
=\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{s}(\mathrm{n}-3)
$$

$$
=\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{n}-3+\mathrm{s}(\mathrm{n}-4)
$$

$$
=\ldots
$$

$$
=\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{n}-3+\ldots+\mathrm{n}-(\mathrm{k}-1)+\mathrm{s}(\mathrm{n}-\mathrm{k})
$$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- $\mathrm{s}(\mathrm{n})$

$$
=\mathrm{n}+\mathrm{s}(\mathrm{n}-1)
$$

$$
=\mathrm{n}+\mathrm{n}-1+\mathrm{s}(\mathrm{n}-2)
$$

$$
=\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{s}(\mathrm{n}-3)
$$

$$
=\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{n}-3+\mathrm{s}(\mathrm{n}-4)
$$

$$
=\ldots
$$

$$
=\mathrm{n}+\mathrm{n}-1+\mathrm{n}-2+\mathrm{n}-3+\ldots+\mathrm{n}-(\mathrm{k}-1)+\mathrm{s}(\mathrm{n}-\mathrm{k})
$$

$$
=\sum_{i=n-k+1}^{n} i+s(n-k)
$$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- So far for $\mathrm{n}>=\mathrm{k}$ we have

$$
\sum_{i=n-k+1}^{n} i+s(n-k)
$$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- So far for $n>=k$ we have

$$
\sum_{i=n-k+1}^{n} i+s(n-k)
$$

- What if $\mathrm{k}=\mathrm{n}$?

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- So far for $\mathrm{n}>=\mathrm{k}$ we have

$$
\sum_{i=n-k+1}^{n} i+s(n-k)
$$

- What if $\mathrm{k}=\mathrm{n}$?

$$
\sum_{i=1}^{n} i+s(0)=\sum_{i=1}^{n} i+0=n \frac{n+1}{2}
$$

$$
s(n)=\left\{\begin{array}{cc}
0 & n=0 \\
n+s(n-1) & n>0
\end{array}\right.
$$

- So far for $n>=k$ we have

$$
\sum_{i=n-k+1}^{n} i+s(n-k)
$$

- What if $\mathrm{k}=\mathrm{n}$?

$$
\sum_{i=1}^{n} i+s(0)=\sum_{i=1}^{n} i+0=n \frac{n+1}{2}
$$

- Thus in general

$$
s(n)=n \frac{n+1}{2}
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
2 T(n / 2)+c & n>1
\end{array}\right.
$$

- $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{c}=2(2 \mathrm{~T}(\mathrm{n} / 2 / 2)+\mathrm{c})+\mathrm{c}$

$$
\begin{aligned}
= & 2^{2} \mathrm{~T}\left(\mathrm{n} / 2^{2}\right)+2 \mathrm{c}+\mathrm{c} \\
= & 2^{2}\left(2 \mathrm{~T}\left(\mathrm{n} / 2^{2} / 2\right)+\mathrm{c}\right)+3 \mathrm{c}=2^{3} \mathrm{~T}\left(\mathrm{n} / 2^{3}\right)+4 \mathrm{c}+3 \mathrm{c} \\
= & 2^{3} \mathrm{~T}\left(\mathrm{n} / 2^{3}\right)+7 \mathrm{c} \\
= & 2^{3}\left(2 \mathrm{~T}\left(\mathrm{n} / 2^{3} / 2\right)+\mathrm{c}\right)+7 \mathrm{c}=2^{4} \mathrm{~T}\left(\mathrm{n} / 2^{4}\right)+15 \mathrm{c} \\
& \ldots \\
= & 2^{\mathrm{k}} \mathrm{~T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+\left(2^{\mathrm{k}}-1\right) \mathrm{c}
\end{aligned}
$$

$$
T(n)=\left\{\begin{array}{cc}
c & n=1 \\
2 T(n / 2)+c & n>1
\end{array}\right.
$$

- So far we have

$$
\text { - } \mathrm{T}(\mathrm{n})=2^{\mathrm{k}} \mathrm{~T}\left(\mathrm{n} / 2^{\mathrm{k}}\right)+\left(2^{\mathrm{k}}-1\right) \mathrm{c}
$$

- What if $\mathrm{k}=\lg \mathrm{n}$?
$-\mathrm{T}(\mathrm{n})=2^{\lg \mathrm{n}} \mathrm{T}\left(\mathrm{n} / 2^{\lg \mathrm{n}}\right)+\left(2^{\lg \mathrm{n}}-1\right) \mathrm{c}$
$=\mathrm{nT}(\mathrm{n} / \mathrm{n})+(\mathrm{n}-1) \mathrm{c}$
$=\mathrm{n} \mathrm{T}(1)+(\mathrm{n}-1) \mathrm{c}$
$=n c+(n-1) \mathrm{c}=(2 \mathrm{n}-1) \mathrm{c}$

Bounding Functions

- non-recursive algorithms

1. $\sum_{1=1}^{n} 1=1+1+\cdots+1=n \in \Theta(n)$

- set up a sum for the number of times the basic operation is executed

2. $\sum_{1=1}^{n} i=1+2+\cdots+n=\frac{n(n+1)}{2} \approx \frac{n^{2}}{2} \in \Theta\left(n^{2}\right)$
3. $\sum_{1=1}^{n} i^{2}=1+4+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \approx \frac{n^{3}}{3} \in \Theta\left(n^{3}\right)$

- simplify the sum and determine the order of growth (using asymptotic notation)

4. $\sum_{1=0}^{n} a^{i}=1+a^{1}+\cdots+a^{n}=\frac{a^{n+1}-1}{a-1}, \forall a \neq 1, \in \Theta\left(a^{n}\right)$
5. $\sum a_{i}+b_{i}=\sum a_{i}+\sum b_{i}$
6. $\sum c a_{i}=c \sum a_{i}$
7. $\sum_{1=0}^{n} a_{i}=\sum_{1=0}^{m} a_{i}+\sum_{1=m+1}^{n} a_{i}$

Substitution Method

- Most general method for solving recurrences
- Guess the form of solution
- Verify by induction
- Solve for constants
- Induction method of mathematical proof to establish a fact for all natural numbers

Induction Review

- Show the fact holds for base case, e.g. $\mathrm{P}(0)$ is true
- Form inductive hypothesis: Show that if $\mathrm{P}(\mathrm{k})$ holds then it also holds for $\mathrm{P}(\mathrm{k}+1)=>$ this implies that $\mathrm{P}(\mathrm{n})$ holds
- Example: Show that

$$
0+1+2+\cdots+n=\frac{n(n+1)}{2}
$$

Example

- Example $T(n)=4 T(n / 4)+4$
- Assume that $T(1)=\Theta(1)$
- Guess $O\left(n^{3}\right)$
- Assume that $T(k) \leq c k^{3}$ for $k<n$
- Prove $T(n) \leq c n^{3}$ by induction

Example of substitution

$$
T(n)=4 T(n / 2)+n
$$

$$
\leq 4 c(n / 2)^{3}+n
$$

$$
=(c / 2) n^{3}+n
$$

$$
=c n^{3}-\left((c / 2) n^{3}-n\right) \leftarrow \text { desired - residual }
$$

$$
\leq \mathrm{cn}^{3} \quad \leftarrow \text { desired }
$$

- Whenever $(c / 2) n^{3}-n \geq 0$ for example
- If $c \geq 2 ; n \geq 1$

Example cont

- Handle initial conditions, to ground the induction with the base case
- Base case $T(1)=\Theta(1)$ for all $n<n_{0}$
- For $1 \leq n \leq, n_{0}$ we have $\Theta(1) \leq c n^{3}$
if we pick c big enough

This bound is not tight !

Tighter upper bound

- Prove that $T(n)=O\left(n^{2}\right)$

$$
\begin{aligned}
& T(n)=4 T(n / 2)+n \\
& \quad \leq 4 c(n / 2)^{2}+n \\
& \quad=c n^{2}+n
\end{aligned}
$$

$\leq O\left(n^{2}\right) \quad$ Wrong !must prove inductive hyp.
$=c n^{2}-(-n)$
$\leq c n^{2} \quad$ For no choice of constant

Tighter upper bound

- Strengthen induction hypothesis $T(k) \leq c_{1} k^{2}-c_{2} k$

$$
\begin{aligned}
T(n) & =4 T(n / 2)+n \\
& \leq 4\left(c_{1}(n / 2)^{2}-c_{2}(n / 2)\right)+n \\
= & c_{1} n^{2}-2 c_{2} n+n \\
& =c_{1} n^{2}-c_{2} n-\left(c_{2} n-n\right) \\
& \leq c_{1} n^{2}-c_{2} n
\end{aligned}
$$

Substitution

- we can also guess that

$$
T(n)=2 T\left(\frac{n}{2}\right)+n \in O(n), \text { where } T(1)=1
$$

- Another strategy: change of variables

$$
T(n)=2 T(\sqrt{n})+\lg n
$$

Recursion Tree

- Recursion tree is good for make an initial guess of the bound
- Build a recursion tree for $T(n)=2 T(n / 2)+c n$

Recursion Tree Example

$$
T(n)=T(n / 4)+T(n / 2)+n^{2}
$$

Recursion Tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Masters Method

- Cookbook method for solving recurrences of the type

$$
T(n)=a T(n / b)+f(n)
$$

Master Theorem

- If $\quad T(n)=a T(n / b)+f(n)$
- Idea compare the rate of growth of $f(n)$ with $n^{\log _{b} a}$
- Idea compare the rate of growt of $f(n)$ with n
- $f(n)$ grows polynomialy slower then $n^{\log _{b} a}$
- $f(n)$ grows polynomialy slower then n
- Solution is $T(n)=\Theta\left(n^{\log _{b} a}\right)$

CASE 1: $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$, constant $\varepsilon>0$ $\Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right)$.

Masters Theorem

- Idea compare the rate of growth of $f(n)$ with n
- $f(n)$ grows at similar rate then $n^{\log _{b} a}$
- $f(n)$ grows at similar rate then n
- Solution is $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$

Master Theorem

- If $\quad T(n)=a T(n / b)+f(n)$
- Idea compare the rate of growth of $f(n)$ with $n^{\log _{b} a}$
- Idea compare the rate of growth of $f(n)$ with n
- $f(n)$ grows polynomialy faster then $n^{\text {log }}$
- Solution is $T(n)=\Theta(f(n))$

CASE 3: $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, constant $\varepsilon>0$, and regularity condition

$$
\Rightarrow T(n)=\Theta(f(n)) .
$$

- Regularity condition: $a f(n / b) \leq c f(n)$ for some constant $c<1$

Master Theorem

- If $\quad T(n)=a T(n / b)+f(n)$

CASE 1: $f(n)=O\left(n^{\log b a-\varepsilon}\right)$, constant $\varepsilon>0$

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right) .
$$

CASE 2: $f(n)=\Theta\left(n^{\log b a} 1 g n\right)$, constant

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \lg ^{g} \quad n\right) .
$$

CASE 3: $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, constant $\varepsilon>0$, and regularity condition

$$
\Rightarrow T(n)=\Theta(f(n)) .
$$

CASE 1: $f(n)=O\left(n^{\log b a-\varepsilon}\right)$, constant $\varepsilon>0$

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right) .
$$

CASE 2: $f(n)=\Theta\left(n^{\log _{b} a} 1 g^{n} n\right)$, constant

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \lg \quad n\right)
$$

CASE 3: $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, constant $\varepsilon>0$, and regularity condition

$$
\Rightarrow T(n)=\Theta(f(n)) .
$$

- Merge Sort Example
- CASE 2

$$
\begin{aligned}
& T(n)=2 T(n / 2)+c n \\
& a=2, b=2 \Rightarrow n^{\log _{b} a}=n^{\log _{2} 2}=n \\
& k=0 \Rightarrow T(n)=\Theta(n \lg n)
\end{aligned}
$$

Examples

$$
T(n)=4 T(n / 2)+n
$$

Examples

$$
T(n)=4 T(n / 2)+n^{2}
$$

Examples

$$
T(n)=4 T(n / 2)+n^{3}
$$

Asymptotic Bounds for Some Common Functions

- Polynomials. $a_{0}+a_{1} n+\ldots+a_{d} n^{d}$ is $\Theta\left(n^{d}\right)$ if $a_{d}>0$.

Polynomial time. Running time is $\mathrm{O}\left(\mathrm{n}^{\mathrm{d}}\right)$ for some constant d independent of the input size n.

- Logarithms. $O\left(\log _{a} n\right)=O\left(\log _{b} n\right)$ for any constants $a, b>$ 0 . can avoid specifying the base
- Logarithms. For every $\mathrm{x}>0, \log \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{\mathrm{x}}\right)$.
log grows slower than every polynomial
- Exponentials. For every $\mathrm{r}>1$ and every $\mathrm{d}>0, \mathrm{n}^{\mathrm{d}}=\mathrm{O}\left(\mathrm{r}^{\mathrm{n}}\right)$. every exponential grows faster than every polynomial

Masters Theorem via recursion tree

Masters Theorem via recursion tree

Masters Theorem via recursion tree

Recursion tree:

Masters Theorem via recursion tree

Masters Theorem via recursion tree

Binary Search

- Find an element in the sorted array
- Divide and conquer algorithm

1. Divide: Check the middle element
2. Conquer: Recursively search one subarray
3. Combine: Trivial

Binary Search

- Find 9 in sorted array

$$
\begin{array}{lllllll}
3 & 5 & 7 & 8 & 9 & 12 & 15
\end{array}
$$

Binary Search

- Recurrence equation

$$
T(n)=1 T(n / 2)+\Theta(1)
$$

\# of subproblems work dividing and combining
subproblem size

Binary Search

- Recurrence equation

- Analysis

Fibonacci Numbers

- Recursive definition

$$
\begin{aligned}
& \text { F } \\
& F_{n}=\left\{\begin{array}{ccc}
0 & \text { if } & n=0 ; \\
1 & \text { if } & n-1 ; \\
F_{n-1}+F_{n-2} \text { if } n \geq 2
\end{array}\right. \\
& 011235 \begin{array}{llll}
0 & 13 & 21 & 34
\end{array}
\end{aligned}
$$

Probabilistic Analysis

- use of probability theory in the analysis of algorithms
- To perform a probabilistic analysis, we have to make assumptions on the distribution of inputs
- After such assumption, we compute an expected running time that is computed over the distribution of all possible inputs
- We will return to it later

Sorting Continued

- So far we've talked about two algorithms to sort an array of numbers
- What is the advantage of merge sort?
- What is the advantage of insertion sort?
- Next on the agenda: Heapsort
- Combines advantages of both previous algorithms

Heaps

- A heap can be seen as a complete binary

What makes a binary tree complete?
Is the example above complete?

Heaps

- A heap can be seen as a complete binary tree:

The book calls them "nearly complete" binary trees; can think of unfilled slots as null pointers

Heaps

- In practice, heaps are usually implemented as arrays:

Heaps

- To represent a complete binary tree as an array:
- The root node is $\mathrm{A}[1]$
- Node i is $\mathrm{A}[i]$
- The parent of node i is $\mathrm{A}[i / 2]$ (note: integer divide)
- The left child of node i is A[2i]
- The right child of node i is $\mathrm{A}[2 i+1]$

$$
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|l}
\hline 16 & 14 & 10 & 8 & 7 & 9 & 3 & 2 & 4 & 1 & = \\
\hline
\end{array}
$$

Referencing Heap Elements

- So...

Parent(i) \{ return [i/2〕; \}
Left(i) \{ return 2*i; \}
right(i) \{ return 2*i +1 ; \}

- An aside: How would you implement this most efficiently?
- Another aside: Really?

The Heap Property

- Heaps also satisfy the heap property:

$\mathrm{A}[$ Parent $(i)] \geq \mathrm{A}[i] \quad$ for all nodes $i>1$

- In other words, the value of a node is at most the value of its parent
- Where is the largest element in a heap stored?
- Definitions:
- The height of a node in the tree = the number of edges on the longest downward path to a leaf
- The height of a tree = the height of its root

Heap Height

- What is the height of an n-element heap? Why?
- This is nice: basic heap operations take at most time proportional to the height of the heap

